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Abstract 
One of the most striking characteristics of human beings is their ability to function 
successfully in complex environments about which they know very little. In light of our 
pervasive ignorance, we cannot get around in the world just reasoning deductively from 
our prior beliefs together with new perceptual input. As our conclusions are not 
guaranteed to be true, we must countenance the possibility that new information will lead 
us to change our minds, withdrawing previously adopted beliefs. In this sense, our 
reasoning is “defeasible”. The question arises how defeasible reasoning works, or ought to 
work. In particular we need rules governing what a cognizer ought to believe given a set 
of interacting arguments some of which defeat others. That is what is called a “semantics” 
for defeasible reasoning, and this chapter will propose a new semantics that avoids certain 
clear counter-examples to all existing semantics. 

1. Reasoning in the Face of Pervasive Ignorance 
 One of the most striking characteristics of human beings is their ability to function successfully 
in complex environments about which they know very little. Reflect on how little you really know 
about all the individual matters of fact that characterize the world. What, other than vague 
generalizations, do you know about the apples on the trees of China, individual grains of sand, or 
even the residents of Cincinnati? But that does not prevent you from eating an apple while visiting 
China, lying on the beach in Hawaii, or giving a lecture in Cincinnati. Our ignorance of individual 
matters of fact is many orders of magnitude greater than our knowledge. And the situation does 
not improve when we turn to knowledge of general facts. Modern science apprises us of some 
generalizations, and our experience teaches us numerous higher-level although less precise general 
truths, but surely we are ignorant of most general truths. 
  In light of our pervasive ignorance, we cannot get around in the world just reasoning 
deductively from our prior beliefs together with new perceptual input. This is obvious when we 
look at the varieties of reasoning we actually employ. We tend to trust perception, assuming that 
things are the way they appear to us, even though we know that sometimes they are not. And we 
tend to assume that facts we have learned perceptually will remain true, at least for awhile, when 
we are no longer perceiving them, but of course, they might not. And, importantly, we combine 
our individual observations inductively to form beliefs about both statistical and exceptionless 
generalizations. None of this reasoning is deductively valid. On the other hand, we cannot be 
criticized for drawing conclusions on the basis of such non-conclusive evidence, because there is no 
feasible alternative. Our non-deductive reasoning makes our conclusions reasonable, but does not 
guarantee their truth. As our conclusions are not guaranteed to be true, we must countenance the 
possibility that new information will lead us to change our minds, withdrawing previously adopted 
beliefs. In this sense, our reasoning is “defeasible”. That is, it makes it reasonable for us to form 
beliefs, but it can be “defeated” by considerations that make it unreasonable to maintain the 
previously reasonable beliefs. 
 If we are to understand how rational cognition works, we must know how defeasible reasoning 
works, or ought to work. This chapter attempts to answer that question. 
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2. The Structure of Defeasible Reasoning 
2.1 Inference Graphs 
 I assume that much of our reasoning proceeds by stringing together individual inferences into 
more complex arguments. In philosophy it is customary to think of arguments as linear sequences 
of propositions, with each member of the sequence being either a premise or the conclusion of an 
inference (in accordance with some inference scheme) from earlier propositions in the sequence. 
However, this representation of arguments is an artifact of the way we write them. In many cases 
the ordering of the elements of the sequence is irrelevant to the structure of the argument. For 
instance, consider an argument that proceeds by giving a subargument for P and an unrelated 
subargument for (P → Q), and then finishes by inferring Q by modus ponens. We might diagram 
this argument as in figure 1. The ordering of the elements of the two subarguments with respect to 
each other is irrelevant. If we write the argument for Q as a linear sequence of propositions, we 
must order the elements of the subarguments with respect to each other, thus introducing artificial 
structure in the representation. For many purposes it is better to represent the argument 
graphically, as as in figure 1. Such a graph is an inference graph. The compound arrows linking 
elements of the inference graph represent the application of inference schemes. 
 

 
 

Figure 1. An inference graph 

 More generally, we can take the elements of arguments to be Fitch-style sequents — ordered 
pairs of propositions and suppositions (sets of propositions), and inference rules like 
conditionalization can take advantage of that. However, for the purposes of this chapter, I will ignore 
that sophistication. 
 In deductive reasoning, the inference schemes employed are deductive inference rules. What 
distinguishes deductive reasoning from reasoning more generally is that the reasoning is not 
defeasible. More precisely, given a deductive argument for a conclusion, you cannot rationally deny 
the conclusion without denying one or more of the premises. In contrast, consider an inductive 
argument. Suppose we observe a number of swans and they are all white. This gives us a reason 
for thinking that all swans are white. If we subsequently journey to Australia and observe a black 
swan, we must retract that conclusion. But notice that this does not give us a reason for retracting 
any of the premises. It is still reasonable to believe that each of the initially observed swans is white. 
What distinguishes defeasible arguments from deductive arguments is that the addition of 
information can mandate the retraction of the conclusion of a defeasible argument without 
mandating the retraction of any of the premises or conclusions from which the retracted conclusion 
was inferred. 

2.2 Rebutting defeaters 
 Information that can mandate the retraction of the conclusion of a defeasible argument 
constitutes a defeater for the argument. There are two kinds of defeaters. The simplest are rebutting 
defeaters, which attack an argument by attacking its conclusion. In the inductive example concerning 
white swans, what defeated the argument was the discovery of a black swan, and the reason that 
was a defeater is that it entails the negation of the conclusion, i.e., it entails that not all swans are 
white. More generally, a rebutting defeater could be any reason for denying the conclusion 
(deductive or defeasible). For instance, I might be informed by Herbert, an ornithologist, that not 
all swans are white. People do not always speak truly, so the fact that he tells me this does not entail 
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that it is true that not all swans are white. Nevertheless, because Herbert is an ornithologist, his 
telling me that gives me a defeasible reason for thinking that not all swans are white, so it is a 
rebutting defeater. 

2.3 Undercutting defeaters 
 Not all defeaters are rebutting defeaters. Suppose Simon, whom I regard as very reliable, tells 
me, “Don’t believe Herbert. He is incompetent.” That Herbert told me that not all swans are white 
gives me a reason for believing that not all swans are white, but Simon’s remarks about Herbert 
give me a reason for withdrawing my belief, and they do so without either (1) making me doubt 
that Herbert said what I took him to say or (2) giving me a reason for thinking it false that not all 
swans are white. Even if Herbert is incompetent, he might have accidentally gotten it right that not 
all swans are white. Thus Simon’s remarks constitute a defeater, but not a rebutting defeater. This is 
an example of an undercutting defeater. 
 The difference between rebutting defeaters and undercutting defeaters is that rebutting 
defeaters attack the conclusion of a defeasible inference, while undercutting defeaters attack the 
defeasible inference itself, without doing so by giving us a reason for thinking it has a false 
conclusion. We can think of an undercutting defeater as a reason for thinking that it is false that the 
premises of the inference would not be true unless the conclusion were true. More simply, we can 
think of it as giving us a reason for believing that (under the present circumstances) the truth of the 
premises does not guarantee the truth of the conclusion. It will be convenient to symbolize this as 
“premises ⊗ conclusion”. 
 It is useful to expand our graphical representation of reasoning by including defeat relations. 
Thus we might represent the preceding example as in figure 2. Here I have drawn the defeat 
relations using thick grey arrows. Note that the rebutting defeat is symmetrical, but undercutting 
defeat is not. 
 
 

 
 

Figure 2. Inference graph with defeat 

2.4 Computing Defeat-statuses 
 We can combine all of a cognizer’s reasoning into a single inference graph and regard that as a 
representation of those aspects of his cognitive state that pertain to reasoning. The hardest problem 
in a theory of defeasible reasoning is to give a precise account of how the structure of the cognizer’s 
inference graph determines what he should believe. Such an account is called a “semantics” for 
defeasible reasoning, although it is not a semantics in the same sense as, for example, a semantics 



 4 

for first-order logic. If a cognizer reasoned only deductively, it would be easy to provide an account 
of what he should believe. In that case, a cognizer should believe all and only the conclusions of his 
arguments (assuming that the premises are somehow initially justified). However, if an agent 
reasons defeasibly, then the conclusions of some of his arguments may be defeaters for other 
arguments, and so he should not believe the conclusions of all of them. For example, in figure 2, the 
cognizer first concludes “All swans are white”. Then he constructs an argument for a defeater for 
the first argument, at which point it would no longer be reasonable to believe its conclusion. But 
then he constructs a third argument supporting a defeater for the second (defeating) argument, and 
that should reinstate the first argument. 
 Obviously, the relationships between interacting arguments can be very complex. We want a 
general account of how it is determined which conclusions should be believed, or to use 
philosophical parlance, which conclusions are “justified” and which are not. This distinction enforces 
a further distinction between beliefs and conclusions. When a cognizer constructs an argument, he 
entertains the conclusion and he entertains the propositions comprising the intervening steps, but 
he need not believe them. Constructing arguments is one thing. Deciding which conclusions to 
accept is another. What we want is a criterion which, when applied to the inference graph, 
determines which conclusions are defeated and which are not, i.e., a criterion that determines the 
defeat-statuses of the conclusions. The conclusions that ought to be believed are those that are 
undefeated. The remainder of the chapter will be devoted to proposing such a criterion. 
 

3. The Multiple-Assignment Semantics 
 Let us collect all of an agent’s arguments into an inference-graph, where the nodes are labeled 
by the conclusions of arguments, support-links tie nodes to the nodes from which they are inferred, 
and defeat-links indicate defeat relations between nodes. These links relate their roots to their targets. 
The root of a defeat-link is a single node, and the root of a support-link is a set of nodes. The 
analysis is somewhat simpler if we construct the inference-graph in such a way that when the same 
conclusion is supported by two or more arguments, it is represented by a separate node for each 
argument. For example, consider the inference-graph diagrammed in figure three, which 
represents two different arguments for (P&Q) given the premises, P, Q, A, and (A → (P&Q)). The 
nodes of such an inference-graph represent arguments rather than just representing their 
conclusions. In such an inference-graph, a node has at most one support-link. When it is 
unambiguous to do so, I will refer to the nodes in terms of the conclusions they encode. 
 

 
 

Figure 3. An inference-graph 

 Because a conclusion can be supported by multiple arguments, it is the arguments themselves to 
which we must first attach defeat-statuses. Then a conclusion is undefeated iff it is supported by at 
least one undefeated argument. The only exception to this rule is “initial nodes”, which (from the 
perspective of the inference graph) are simply “given” as premises. Initial nodes are unsupported 
by arguments, but are taken to be undefeated. Ultimately, we want to use this machinery to model 
rational cognition. In that case, all that can be regarded as “given” is perceptual input (construed 
broadly to include such modes of perception as proprioception,  introspection, etc.), in which case it 
may be inaccurate to take the initial nodes to encode propositions. It is probably better to regard 
them as encoding percepts.1 

                                                
1 See Pollock (1998) and Pollock and Oved (2006) for a fuller discussion of this. 
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 The node-basis of a node is the set of roots of its support-link (if it has one), i.e., the set of nodes 
from which the node is inferred in a single step. If a node has no support-link (i.e., it is initial) then 
the node-basis is empty. The node-defeaters are the roots of the defeat-links having the node as their 
target.  
 Given an inference-graph, a semantics must determine which nodes encode (the conclusions of) 
arguments that ought to be accepted, i.e., that are not defeated. This is the defeat-status computation, 
and nodes are marked “defeated” or “undefeated”. The defeat-status computation is made more 
complex by the fact that some arguments support their conclusions more strongly than other 
arguments. For instance, if Jones tells me it is raining, and Smith denies it, and I regard them as 
equally reliable, then I have equally strong arguments both for believing that it is raining and for 
believing that it is not raining. In that case, I should withhold belief, not accepting either conclusion. 
On the other hand, if I regard Jones as much more reliable than Smith, then I have a stronger 
argument for believing that it is raining, and if the difference is great enough, that is the conclusion 
I should draw. So argument-strengths make a difference. However, most semantics for defeasible 
reasoning ignore argument strengths, pretending that all initial nodes are equally well justified and 
all inference schemes equally strong. I will make this same simplifying assumption in this chapter. 
What can we say about the semantics in this simplified case? 
 Let us define: 
 

A node of the inference-graph is initial iff its node-basis and list of node-defeaters are empty. 

It is initially tempting to try to characterize defeat-statuses recursively using the following two 
rules: 

(D1) Initial nodes are undefeated. 
(D2) A non-initial node is undefeated iff all the members of its node-basis are undefeated and all 

node-defeaters are defeated. 

However, this recursion turns out to be ungrounded because we can have nodes of an inference-
graph that defeat each other, as in inference-graph (4), where dashed arrows indicate defeasible 
inferences and heavy arrows indicate defeat-links. In computing defeat-statuses in inference-graph 
(4), we cannot proceed recursively using rules (D1) and (D2), because that would require us to 
know the defeat-status of Q before computing that of ~Q, and also to know the defeat-status of ~Q 
before computing that of Q. The general problem is that a node Q can have an inference/defeat-
descendant that is a defeater of Q, where an inference/defeat-descendant of a node is any node that 
can be reached from the first node by following support-links and defeat-links. I will say that a 
node is Q-dependent iff it is an inference/defeat-descendant of a node Q. So the recursion is blocked 
in inference-graph (4) by there being Q-dependent defeaters of Q and ~Q-dependent defeaters of 
~Q. 
 

 
 

 Inference-graph (4) is a case of “collective defeat”. For example, let P be “Jones says that it is 
raining”, R be “Smith says that it is not raining”, and Q be “It is raining”. Given P and Q, and 
supposing you regard Smith and Jones as equally reliable, what should you believe about the 
weather? It seems clear that you should withhold belief, accepting neither Q nor ~Q . In other 
words, both Q and ~Q should be defeated. This constitutes a counter-example to rule (D2). So not 
only do rules (D1) and (D2) not provide a recursive characterization of defeat-statuses — they are 
not even true. The failure of these rules to provide a recursive characterization of defeat-statuses 
suggests that no such characterization is possible, and that in turn suggested to me (in my 1994, 
1995) that rules (D1) and (D2) might be used to characterize defeat-statuses in another way. Reiter’s 
(1980) default logic proceeded in terms of multiple “extensions”, and “skeptical default logic” 
characterizes a conclusion as following nonmonotonically from a set of premises and defeasible 
inference-schemes iff it is true in every extension. There are simple examples showing that this 
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semantics is inadequate for the general defeasible reasoning of epistemic agents (see below), but 
the idea of having multiple extensions suggested to me that rules (D1) and (D2) might be used to 
characterize multiple “status assignments”. On this approach, a partial status assignment is an 
assignment of defeat-statuses to a subset of the nodes of the inference-graph in accordance with 
(D1) and (D2): 

 
An assignment σ of “defeated” and “undefeated” to a subset of the nodes of an inference-graph 
is a partial status assignment iff: 

1. σ assigns “undefeated” to any initial node; 

2. σ assigns “undefeated” to a non-initial node α iff σ assigns “undefeated” to all the members 
of the node-basis of α and all node-defeaters of α are assigned “defeated”. 

My (1995) semantics defined: 
 

σ is a status assignment iff σ is a partial status assignment and σ is not properly contained in any 
other partial status assignment. 

My proposal was then: 
 

A node is undefeated iff every status assignment assigns “undefeated” to it; otherwise it is 
defeated. 
 
Belief in P is justified for an agent iff P is encoded by an undefeated node of the inference-graph 
representing the agent’s current epistemological state. 

 I will refer to this semantics as the multiple-assignment semantics. 
 To illustrate, consider inference-graph (4) again. There are two status assignments for this 
inference graph: 

 
assignment 1: 
 P “undefeated” 
 R “undefeated” 
 Q “undefeated” 
 ~Q “defeated” 
 
assignment 2: 
 P “undefeated” 
 R “undefeated” 
 Q “defeated” 
 ~Q “undefeated” 

P and R are undefeated, but neither Q nor ~Q is assigned “undefeated” in every assignment, so 
both are defeated. 

 

 The reason for making status assignments “partial” is that there are inference graphs for which 
it is impossible to construct status assignments assigning statuses to every node. One case in which 
this happens is when we have “self-defeating arguments”, i.e., arguments whose conclusions defeat 
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some of the inferences leading to those conclusions. A simple example is inference-graph (5). A 
partial status assignment must assign “undefeated” to P. If it assigned “undefeated” to Q then it 
would assign “undefeated” to R and P⊗Q, in which case it would have to assign “defeated” to Q. So 
it cannot assign “undefeated” to Q. If it assigned “defeated” to Q it would have to assign “defeated” 
to R and P⊗Q, in which case it would have to assign “undefeated” to Q. So that is not possible 
either. Thus a partial status assignment cannot assign anything to Q, R, and P⊗Q. Hence there is 
only one status assignment (i.e., maximal partial status assignment), and it assigns “undefeated” to 
P and nothing to the other nodes. Accordingly, P is undefeated and the other nodes are defeated. 
An intuitive example having approximately the same form is shown in inference-graph (6). Here 
we suppose that people generally tell the truth, and this gives us a reason for believing what they 
tell us. However, some people suffer from a malady known as “pink-elephant phobia”. In the 
presence of pink elephants, they become strangely disoriented so that their statements about their 
surroundings cease to be reliable. Now imagine Robert, who tells us that the elephant beside him 
looks pink. In ordinary circumstances, we would infer that the elephant beside Robert does look 
pink, and hence probably is pink. However, Robert suffers from pink-elephant phobia. So if it were 
true that the elephant beside Robert is pink, we could not rely upon his report to conclude that it is. 
So we should not conclude that it is pink. We may be left wondering why he would say that it is, 
but we cannot explain his utterance by supposing that the elephant really is pink. So this gives us no 
reason at all for a judgment about the color of the elephant. On the other hand, it gives us no 
reason to doubt that Robert did say that the elephant is pink, or that Robert has pink-elephant 
phobia. Those are perfectly justified beliefs. 

 

 
 Inference-graphs (5) and (6) constitute intuitive counterexamples to default logic (Reiter 1980) 
and the stable model semantics (Dung 1995) because there are no extensions. Hence on those 
semantics, P has the same status as Q, R, and P⊗Q. It is perhaps more obvious that this is a problem 
for those semantics if we imagine this self-defeating argument being embedded in a larger 
inference-graph containing a number of otherwise perfectly ordinary arguments. On these 
semantics, all of the nodes in all of the arguments would have to have the same status, because 
there would still be no extensions. But surely the presence of the self-defeating argument should 
not have the effect of defeating all other (unrelated) arguments. 
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4. A Problem Case 
 The multiple-assignment semantics produces the intuitively correct answer for many 
complicated inference-graphs. For a number of years, I thought that, given the simplifying 
assumption that all arguments are equally strong, this semantics was correct. But I no longer think 
so. Here is the problem. Contrast inference-graph (4) with inference-graph (7). Inference-graph (7) 
involves “odd-length defeat cycles”. For an example of inference-graph (7), let A = “Jones says that 
Smith is unreliable”, B = “Smith is unreliable”, C = “Smith says that Robinson is unreliable”, D = 
“Robinson is unreliable”, E = “Robinson says that Jones is unreliable”, F = “Jones is unreliable”. 
Intuitively, this should be another case of collective defeat, with A, C, and E being undefeated and B, 
D, and F being defeated. The multiple-assignment semantics does yield this result, but it does it in a 
peculiar way. A, C, and E must be assigned “undefeated”, but there is no consistent way to assign 
defeat-statuses to B, D, and F. Accordingly, there is only one status assignment (maximal partial 
status assignment), and it leaves B, D, and F unassigned. We get the right answer, but it seems 
puzzling that we get it in a different way than we do for even-length defeat cycles like that in 
inference-graph (4). This difference has always bothered me. 
 

 

 That we get the right answer in a different way does not show that the semantics is incorrect. As 
long as otherwise equivalent inference-graphs containing odd-length and even-length defeat cycles 
always produce the same defeat-statuses throughout the graphs, there is no problem. However, 
they do not. Contrast inference-graphs (8) and (9). In inference-graph (8), there are two status-
assignments, one assigning “defeated” to B and “undefeated” to D, and the other assigning 
“undefeated” to B and “defeated” to D. On either status assignment, P has an undefeated defeater, 
so it is defeated on both status assignments, with the result that Q is undefeated on both status-
assignments. Hence Q is undefeated simpliciter. However, in inference-graph (9), there is only one 
status-assignment, and it assigns no status to any of B, D, F, P, or Q. Thus Q is defeated in inference-
graph (9), but undefeated in inference-graph (8). This, I take it, is a problem. Although it might not 
be clear which inference-graph is producing the right answer, the right answer ought to be the 
same for both inference-graphs. Thus the semantics is getting one of them it wrong. It is worth 
noting in passing that, as far as I know, no currently available semantics for defeasible reasoning 
handles (8) and (9) correctly. I take this to show that we need a different semantics. 
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5. A Recursive Semantics 
 The multiple-assignment semantics is based upon the two rules: 

(D1) Initial nodes are undefeated. 
(D2) A non-initial node is undefeated if all the members of its node-basis are undefeated and all 

node-defeaters are defeated. 

We have seen that these rules are not true as stated. For example, inference-graph (4) is a counter-
example to rule (D2). Both Q and ~Q should be defeated, but then both have undefeated node-
bases but no undefeated defeaters. I tried to avoid this problem by imposing these rules instead on 
partial-status assignments. But perhaps we should take seriously the fact that these rules are simply 
wrong. In inference-graph (4), in computing the defeat-status of Q, what is crucial is that (a) its 
node-basis is undefeated, (b) the node-basis of its defeater is undefeated, and (c) there is no other 
defeater for ~Q besides Q itself. We can capture this by asking whether ~Q would be defeated if it 
were not defeated by Q. We can test this by removing the mutual defeat-links between Q and ~Q, 
producing inference-graph (4*). In (4*), ~Q is undefeated. The proposal is that this should make Q 
defeated in (4). Note that the defeaters we are removing in constructing inference-graph (4*) are 
those that are Q-dependent, i.e., those that can be reached by following paths from Q consisting of 
inference-links and defeat-links. 

                

 Consider another example — inference-graph (10). In computing the defeat-status of Q, we note 
that its node-basis is undefeated, and its defeater P⊗Q is defeated only by the Q-dependent defeat-
link from R⊗S. If we remove the Q-dependent defeat-links from inference-graph (10) we get 
inference-graph (10*). In inference-graph (10*), P⊗Q is undefeated, so again, the proposal is that this 
makes Q defeated in inference-graph (10). 

 

 These examples suggest that we might replace rule (D2) by a rule that computes the defeat-
statuses of defeat-links in a modified inference-graph from which we have removed those defeat-
links that make the computation circular. Recall that a defeat-link or support-link extends from its 
root to its target. The root of a defeat-link is a single node, and the root of a support-link is a set of 
nodes. Let us define: 
 

Definition:  An inference/defeat-path from a node ϕ to a node θ is a sequence of support-links 

and defeat-links such that (1) ϕ is or is a member of the root of the first link in the path; (2) θ is 
the target of the last link in the path; (3) the root or is a member of the root of each link after 
the first member of the path is the target of the preceding link; (4) the path does not contain an 
internal loop, i.e., no two links in the path have the same target. 
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Definition:  θ is ϕ-dependent iff there is an inference/defeat-path from ϕ to θ. 
 

Definition:  A circular inference/defeat-path from a node ϕ to itself is an inference/defeat-path 
from ϕ to a defeater for ϕ. 

 
Definition: A defeat-link is ϕ-critical iff it is a member of some minimal set of defeat-links such 
that removing all the defeat-links in the set suffices to cut all the circular inference/defeat-paths 
from ϕ to ϕ. 

 It will be convenient to modify our understanding of initial nodes. Previously, I took them to be 
automatically undefeated, and we can still regard that as the default value, but it will also be useful 
to be able to stipulate that some of the initial nodes in a newly-constructed inference-graph are 
defeated. The construction I am going to propose builds new inference-graphs as subgraphs of pre-
existing inference-graphs by (1) deleting ϕ-critical links, and (2) making ϕ-independent nodes initial, 
i.e., deleting the arguments for them. The latter nodes, being ϕ-independent, have defeat-statuses 
that were computable in the original inference-graph without first having to compute a defeat-
status for ϕ. I want to be able to simply stipulate that these newly-initial nodes have the same 
defeat-statuses in the new inference-graph as they had in the original. This allows us to define: 
 

Definition: If ϕ is a node of an inference-graph G, let Gϕ be the inference-graph that results from 
deleting all ϕ-critical defeat-links from G and making all members of the node-basis of ϕ and all 
ϕ-independent nodes initial-nodes (i.e., deleting their support-links and defeat-links) with 
stipulated defeat-statuses the same as their defeat-statuses in G. 

My proposed semantics now consists of two rules: 
 

(CL1) Initial nodes are undefeated unless they are stipulated to be defeated. 
 
(CL2) A non-initial node ϕ is undefeated in an inference-graph G iff all members of the node-

basis of ϕ  are undefeated in G and any defeater for ϕ is defeated in Gϕ. 

On the assumption that arguments cannot be circular, this pair of rules can be applied recursively to 
compute the defeat-status of any node in a finite inference-graph. The recursion simply steps 
through arguments, computing the defeat-status of each node ϕ after the defeat-statuses of the 
nodes in ϕ’s node-basis are computed. The problem of circular inference/defeat-paths is avoided by 
removing the ϕ-critical defeat-links and evaluating node-defeaters in Gϕ. I will refer to this new 
semantics as the critical-link semantics, and constrast it with the multiple-assignment semantics. 
 I believe that the critical-link semantics gets everything right that the multiple-assignment  
semantics got right. Consider a more complex example. Inference-graph (11) illustrates the so-
called “lottery paradox” (Kyburg 1961). Here P reports a description (e.g., a newspaper report) of a 
fair lottery with one million tickets. P constitutes a defeasible reason for R, which is the description. 
That is, the newspaper report gives us a defeasible reason for believing the lottery is fair and has a 
million tickets. In such a lottery, each ticket has a probability of one in a million of being drawn, so 
for each i, the statistical syllogism gives us a reason for believing ~Ti (“ticket i will not be drawn”). 
The supposed paradox is that although we thusly have a reason for believing of each ticket that it 
will not be drawn, we can also infer on the basis of R that some ticket will be drawn. Of course, this 
is not really a paradox, because the inferences are defeasible and this is a case of collective defeat. 
This results from the fact that for each i, we can infer Ti from (i) the description R (which entails that 
some ticket will be drawn) and (ii) the conclusions that none of the other tickets will be drawn. This 
gives us a defeating argument for the defeasible argument to the conclusion that ~Ti, as 
diagrammed in inference-graph (11). The result is that for each i, there is a status assignment on 
which ~Ti is assigned “defeated” and the other ~Tj‘s are all assigned “undefeated”, and hence none 
of them are assigned “undefeated” in every status assignment. 
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 I believe that all (skeptical) semantics for defeasible reasoning get the lottery paradox right. A 
more interesting example is the “lottery paradox paradox”, diagrammed in inference-graph (12). 
This results from the observation that because R entails that some ticket will be drawn, from the 
collection of conclusions of the form ~Ti we can infer ~R, and that is a defeater for the defeasible 
inference from P to R. This is a self-defeating argument. Clearly, the inferences in the lottery 
paradox should not lead us to disbelieve the newspaper’s description of the lottery, so R should be 
undefeated. Circumscription (McCarthy 1986), in its simple non-prioritized form, gets this example 
wrong, because one way of minimizing abnormalities would be to block the inference from P to R. 
My own early analysis (Pollock 1987) also gets this wrong. This was the example that led me to the 
multiple-assignment semantics. The multiple-assignment semantics gets this right. We still have the 
same status assignments as in inference-graph (11), and ~R is defeated in all of them because it is 
inferred from the entire set of ~Ti’s, and one of those is defeated in every status assignment. 
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 It will be convenient to have a simpler example of an inference-graph with the same general 
structure as the lottery paradox paradox. For that purpose we can use inference-graph (13). Here P 
and R should be undefeated, but T1, T2, and ~R should be defeated. In the critical link semantics, to 
compute the defeat-status of R in inference-graph (13), we construct (13*) by removing the only 
defeat-link whose removal results in R no longer having an R-dependent defeater. In (13*), the 
triangle consisting of R, T1 and T2 is analogous to inference-graph (4), with the result that T1 and T2 
are both defeated in inference-graph (13*). They constitute the node-basis for ~R, so ~R is also 
defeated in inference-graph (13*). Thus by (CL2), R is undefeated in inference-graph (13). Turning 
to T1 and T2 in inference-graph (13), both have R as their node-basis, and R is undefeated. Thus to 
compute the defeat-status of T1 or T2, we construct inference-graph (13**), and observe that T1 and 
T2 are undefeated there. It then follows by (CL2) that T1 and T2  are defeated in inference-graph 
(13). Then because T1 and T2 are defeated, ~R is defeated in inference-graph (13). So we get the 
intuitively correct answers throughtout. 

 

 
 

 

 Inference-graph (13) also illustrates why, in constructing Gϕ, we remove only the ϕ-critical 
defeat-links, and not all of the ϕ-dependent defeat-links. All of the defeat-links in inference-graph 
(13) are R-dependent, and if we remove them all we get inference-graph (13***). But in inference-
graph (13***), ~R is undefeated. This would result in R being defeated in inference-graph (13) rather 
than undefeated. Thus it is crucial to remove only the ϕ-critical defeat-links rather than all the ϕ-
dependent defeat-links. 

6. The Problem Cases 
 Now let us turn to some cases that the multiple-assignment semantics does not or may not get 
right. First, consider the pair of inference-graphs that motivated the search for a new semantics. 
These are inference-graphs (8) and (9). In these inference-graphs, not everyone agrees whether Q 
should come out defeated or undefeated, but it does seem clear that whatever the right answer is, it 
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should be the same for both inference-graphs. Unfortunately, on the multiple-assignment  
semantics, Q is undefeated in inference-graph (8) and defeated in inference-graph (9). 

 

 On the critical-link semantics, we compute the defeat-statuses of B and D in inference-graph (8) 
by constructing inference-graph (8*). B and D are undefeated in inference-graph (8*), so each 
defeats the other in inference-graph (8), with the result that B and D are defeated in inference-graph 
(8). There are no P-critical defeat-links in (8), so removing P-critical defeat-links leaves inference-
graph (8) unchanged. B and D are defeated in inference-graph (8), so it follows that P is defeated in 
inference-graph (8). Then because there are no Q-dependent defeat-links in inference-graph (8), Q is 
undefeated. 

 

 The computation of defeat-statuses in inference-graph (9) works in exactly the same way, via 
inference-graph (9*), again producing the result that Q is undefeated. So on the critical-link 
semantics, we do not get a divergence between inference-graphs (8) and (9). 
 Still, we can ask whether the answer we get for inference-graphs (8) and (9) is the correct 
answer. There is some intuitive reason for thinking so. In inference-graph (8), B and D are defeated, 
so they should not have the power to defeat P, and hence P should defeat Q. Similarly, in inference-
graph (9), all three of B, D, and F are defeated, and so again, D should not have the power to defeat 
P, and hence P should defeat Q. However, not everyone agrees that this intuitive reasoning is 
correct. This issue is closely connected with a question that has puzzled theorists since the earliest 
work on the semantics of defeasible reasoning. The multiple-assignment semantics, as well as 
default logic, the stable model semantics, circumscription, and almost every familiar semantics for 
defeasible reasoning and nonmonotonic logic, supports what I have called (1987) “presumptive 
defeat”.2 For example, consider inference-graph (4). On the multiple-assignment semantics, a 
defeated conclusion like Q that is assigned “defeated” in some status assignment and “undefeated” 
in another retains the ability to defeat. That is because, in the assignment in which it is undefeated, 
the defeatee is defeated, and hence not undefeated in all status-assignments. In the case of 
inference-graph (4) this has the consequence that S is assigned “defeated” in those status-
assignments in which Q is assigned “defeated”, but S is assigned “undefeated” and ~S is assigned 

                                                
2 The only semantics I know about that does not support presumptive defeat are certain versions of Nute’s (1992) 
defeasible logic. See also Covington, Nute, and Vellino (1997), and Nute (1999). 
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“defeated” in those status-assignments in which Q is assigned “undefeated”. Touretzky, Horty, and 
Thomason (1987) called this “ambiguity propagation”, and Makinson and Schlechta (1991) called 
such arguments “Zombie arguments” (they are dead, but they can still get you). However, the 
critical-link semantics precludes presumptive defeat. It entails that Q, ~Q, and hence S, are all 
defeated, and ~S is undefeated. Is this the right answer? 
 

 
 
 Consider an example. You are sitting with Keith and Alvin, and the following conversation 
ensues: 
 

Keith: I heard on the news this morning that it is going to rain this afternoon. 
 
Alvin: Nonsense! I was sitting right beside you listening to the same weather report, and the 
announcer clearly said that it is going to be a sunny day in Tucson. 
 
Keith: You idiot, you must have cotton in your ears! It was perfectly clear that he said it is going 
ro rain. 
 
Alvin: You never pay attention. No one in his right mind could have thought he said it was 
going to rain. He said it would be sunny. 
 
… 

At that point, you wander off shaking your head, still wondering what the weather is going to be. 
Then it occurs to you that it is about time for the noon News, so you turn on the radio and hear the 
announcer say, “This just in from the National Weather Service. It is going to rain in Tucson this 
afternoon.” Surely, that settles the matter. You will believe, with complete justification, that it is 
going to rain. The earlier conversation between Keith and Alvin does not defeat your judgment on 
the basis of the noon broadcast. This example has the form of inference-graph (14) if we let: 

  S = “It is going to rain in Tucson this afternoon” 

  Q = “The morning news said that S” 

  P = “Alvin says that Q” 

  R = “Keith says that ~Q” 

  A = “The noon news says that S” 

This seems to me to be a fairly compelling example of the failure of presumptive defeat. 
 Formally, presumptive defeat arises for the multiple-assignment semantics from the fact that if a 
node P is defeated in one assignment and undefeated in another, then P-dependent nodes will also 
have different defeat-statuses in the different assignments unless one of their inference-ancestors is 
defeated absolutely (i.e., in all status assignments). A similar problem arises for inference-nodes P 
that cannot be assigned defeat-statuses in any assignments. This occurs, for example, in cases of 
self-defeat or when there are odd-length defeat cycles. In this case, no P-dependent node can be 
assigned a defeat-statuse either unless one of its inference-ancestors is defeated absolutely. For 
example, consider once more the sad case of Robert, the pink-elephant-phobic (inference-graph 
(6)). We observed that Robert’s statement that the elephant beside him is pink does not give us a 
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good reason for believing that it really is pink. Now suppose that Robert is accompanied by 
Herbert, who is also standing beside the elephant. While Robert is blathering about pink-elephants, 
Herbert turns to you and says, “I read in the newspaper this morning that the President is going to 
visit China.” From this you infer that he did read that in the newspaper, and hence the President is 
probably going to visit China. Suppose, however, that Herbert also suffers from pink-elephant-
phobia. Does that make any difference? It does not seem so, because as we observed, Robert’s 
statement gives us no reason to think the elephant is pink, and so no reason to distrust Herbert’s 
statement. This scenario is diagrammed in inference-graph (15). However, on the multiple-
assignment semantics, 

 The elephant beside Robert and Herbert is pink 

has no status assignment, and hence neither does 
 
(People generally tell the truth and Herbert says that he read in the newspaper this morning 
that the President is going to visit China) ⊗ Herbert read in the newspaper this morning that 
the President is going to visit China 

or 

 Herbert read in the newspaper this morning that the President is going to visit China 

or 

 The president is going to visit China. 

This seems clearly wrong. On the other hand, on the critical-link semantics, 

 The elephant beside Robert and Herbert looks link 

is defeated, and hence so is 

 The elephant beside Robert and Herbert is pink 

and so is 
 
(People generally tell the truth and Herbert says that he read in the newspaper this morning 
that the President is going to visit China) ⊗ Herbert read in the newspaper this morning that 
the President is going to visit China. 

Accordingly, 

 Herbert read in the newspaper this morning that the President is going to visit China 

and 

 The president is going to visit China 

are undefeated, which is the intuitively correct result. 
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 The upshot is that the critical-link semantics agrees with the multiple-assignment semantics on 
simple cases in which the latter seems to give the right answer, but the critical-link semantics also 
seems to get right a number of cases that the multiple-assignment semantics gets wrong. The test 
of a semantics for defeasible reasoning is that it agrees with our intuitions about clear cases. So we 
have reasonably strong inductive reasons for thinking that the critical-link semantics properly 
characterizes the semantics of defeasible reasoning. 

7. Computing Defeat-Statuses 
 Principles (CL1) and (CL2) provide a recursive characterization of defeat-status relative to an 
inference-graph. However, this characterization does not lend itself well to implementation because 
it requires the construction of modified inference-graphs, which would be computationally 
expensive. The objective of this section is to produce an equivalent recursive characterization that 
appeals only to the given inference-graph. 
 A defeat-link is ϕ-critical iff it is a member of a minimal set such that removing all the defeat-
links in the set suffices to cut all the circular inference/defeat-paths from ϕ to ϕ.  A necessary 
condition for a defeat-link L to be ϕ−critical is that it lie on such a circular path. In general, there can 
be diverging and reconverging paths with several “parallel” defeat-links, as in figure 16. In figure 
16, removing the defeat-link D3 suffices to cut both circular paths. But the set {D1,D2} of parallel 
defeat-links is also a minimal set of defeat-links such that the removal of all the links in the set 
suffices to cut all the circular inference/defeat-paths from ϕ to ϕ. Thus in figure 16, all of the defeat-
links are ϕ−critical. However, lying on a circular inference/defeat-path is not a sufficient condition 
for being ϕ-critical. A defeat-link on a circular inference/defeat-path from ϕ to ϕ fails to be ϕ−critical 
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when there is a path around it consisting entirely of support-links, as diagrammed in figure 17. In 
this case, you must remove D3 to cut both paths, but once you have done that, removing D1 is a 
gratuitous additional deletion. So D1 is not contained in a minimal set of deletions sufficient for 
cutting all the circular inference/defeat-paths from ϕ to ϕ, and hence D1 is not ϕ-critical. This 
phenomenon is also illustrated by inference-graph (13), and we saw that it is crucial to the 
computation of degrees of justification in that inference-graph that such defeat-links not be 
regarded as ϕ-critical. It turns out that this is the only way a defeat-link on a circular 
inference/defeat-path can fail to be ϕ-critical, as will now be proven. 
 

 
 

Figure 16. Parallel ϕ-critical defeat-links 
 
 

 
 

Figure 17. Defeat link that is not ϕ-critical 

 Let us say that a node α precedes a node β on an inference/defeat-path iff α and β both lie on the 
path and either α = β or the path contains a subpath originating on α and terminating on β. Node-
ancestors of a node are nodes that can be reached by following support-links backwards. It will be 
convenient to define: 
 

Definition:  A defeat-link L is bypassed on an inference/defeat-path µ in G iff there is a node α 
preceding the root of L on µ and a node β preceded by the target of L on µ such that α = β or α is 
a node-ancestor of β in G. 

 
Definition:  µ is a ϕ-circular-path in G iff µ is a circular inference/defeat-path in G from ϕ to ϕ and 
no defeat-link in G is bypassed on µ. 

 
Lemma 1:  If µ1 and µ2 are ϕ-circular-paths and every defeat-link in µ1 occurs in µ2, then µ1 and µ2 
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contain the same defeat-links and they occur in the same order. 

Proof:  Suppose the defeat-links in µ1 are δ1,...,δn, occurring in that order. Suppose µ1 and µ2 differ 
first at the ith defeat-link. Then µ1 and µ2 look as in figure 18. But every defeat-link in µ1 occurs in µ2, 
so δi must occur later in µ2. But then the path from δi-1 to δi in µ1 is a bypass around δi* in µ2, which is 
impossible if it is a ϕ-circular-path.  ■ 
 

 
 

Figure 18. Paths must agree. 
 
Lemma 2:  Every defeat-link in a ϕ-circular-path is ϕ-critical. 

Proof: Suppose δ is a defeat-link on the ϕ-circular-path µ. Let D be the set of all defeaters in the 
inference-graph other than those on µ. If deleting all members of D is sufficient to cut all ϕ-circular-
paths not containing δ, then select a minimal subset D0 of D whose deletion is sufficient to cut all ϕ-
circular-paths not containing δ. Adding δ to D0 gives us a set of defeat-links whose deletion is 
sufficient to cut all ϕ-circular-paths. Furthermore, it is minimal, because adding δ cannot cut any 
paths not containing δ, and all members of D0 are required to cut those paths. Thus δ is a member 
of a minimal set of defeat-links the deletion of which is sufficient to to cut all ϕ-circular-paths, i.e., δ is 
ϕ-critical. 
 Thus if δ is not ϕ-critical, there is a ϕ-circular-path ν not containing δ and not cut by cutting all 
defeat-links not in µ. That is only possible if every defeat-link in ν is in µ. But then by the previous 
lemma, µ and ν must contain the same defeat-links, so contrary to supposition, δ is in ν. Thus the 
supposition that δ is not ϕ-critical is inconsistent with the supposition that it lies on a ϕ-circular-path.  
■ 
 
Lemma 3:  If a defeat-link does not occur on any ϕ-circular-path then it is not ϕ-critical. 

Proof: For every circular inference/defeat-path µ from ϕ to ϕ there is a ϕ-circular-path ν such that 
every defeat-link in ν is in µ. ν results from removing bypassed defeat-links and support-links in µ 
and replacing them by their bypasses. It follows that any set of deletions of defeat-links that will cut 
all ϕ-circular-paths will also cut every circular inference/defeat-path from ϕ to ϕ. Conversely, ϕ-
circular-paths are also circular-paths from ϕ to ϕ, so any set of deletions that cuts all circular-paths 
from ϕ to ϕ will also cut all ϕ-circular-paths. So the ϕ-circular-paths and the circular-paths from ϕ to ϕ 
have the same sets of deletions of defeat-links sufficient to cut them, and hence the same minimal 
sets of deletions. If a defeat-link δ does not occur on any ϕ-circular-path, then it is irrelevant to 
cutting all the ϕ-circular-paths, and hence it is not in any minimal set of deletions sufficient to cut all 
circular-paths from ϕ to ϕ, i.e., it is not ϕ-critical.  ■ 
 
Theorem 4 follows immediately from lemmas 2 and 3: 

Theorem 4: A defeat-link is ϕ-critical in G iff it lies on a ϕ-circular-path in G. 
 



 19 

 A further simplification results from observing that, for the purpose of deciding whether a 
defeat-link is ϕ-critical, all we have to know about ϕ-circular-paths is what defeat-links occur in 
them. It makes no difference what support-links they contain. So let us define: 
 

Definition:  A ϕ-defeat-loop is a sequence µ of defeat-links for which there is a ϕ-circular-path ν 

such that the same defeat-links occur in µ and ν and in the same order. 
 

In other words, to construct a ϕ-defeat-loop from a ϕ-circular-path we simply remove all the 
support-links. We have the following very simple characterization of ϕ-defeat-loops: 
 
Theorem 5:  A sequence 〈δ1,...,δn〉 of defeat-links is a ϕ-defeat-loop iff (1) ϕ is a node-ancestor of the 

root of δ1 but not of the root of any δk for k > 1, (2) ϕ is the target of δn, and (3) for each k < 
n, the target of δk is equal to or an ancestor of the root of δk+1, but not of the root of δk+j 
for j > 1. 

 
The significance of ϕ-defeat-loops is that by omitting the support-links we make them easier to 
process, but we still have the simple theorem: 
 
Theorem 6:  A defeat-link is ϕ-critical in G iff it lies on a ϕ-defeat-loop in G. 

 In simple cases, Gϕ will be an inference-graph in which no node ψ has a ψ-critical defeat-link. But 
in more complex cases, like inference-graph (13), we have to repeat the construction, constructing 
first Gϕ, and then (Gϕ)ψ. Let us define recursively: 
 

Definition: 
  

G
!1 ,...,!

n

= G
!2 ,...,!

n
( )

!1

 

As formulated, the recursive semantics requires us to construct the inference-graphs 
  
G

!1 ,...,!
n

. To 
reformulate the semantics so as to avoid this, let us define recursively: 
 
 Definition:   

 A defeat-link δ of G is 〈ϕ1,...,ϕn〉-critical in G iff (1) δ lies on a ϕ1-defeat-loop µ in G containing 

no 〈ϕ2,...,ϕn〉-critical defeat-links. 
 
 A defeat-link δ of G is hereditarily-〈ϕ1,...,ϕn〉-critical in G iff either δ is 〈ϕ1,...,ϕn〉-critical in G or δ is 

hereditarily-〈ϕ2,...,ϕn〉-critical in G. 
 
 A defeater (i.e., a node) of G is hereditarily-〈ϕ1,...,ϕn〉-critical in G iff it is the root of a 

hereditarily-〈ϕ1,...,ϕn〉-critical defeat-link in G. 
 

Obviously: 
 
Theorem 7: δ is hereditarily-〈ϕ1,...,ϕn〉-critical in G iff δ is ϕ1-critical in 

  
G

!2 ,...,!
n

 or ϕ2-critical in 
  
G

!3 ,...,!
n

 

or ... or ϕn-critical in G. 
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Note that a defeat-link that is ϕi-critical in 
  
G

!
i+1 ,...,!

n

 does not exist in 
  
G

! j+1 ,...,!n

 for j < i, so: 

 
Theorem 8: δ is ϕ1-critical in 

  
G

!2 ,...,!
n

 iff δ is 〈ϕ1,...,ϕn〉-critical in G. 

Furthermore, a defeat-link still exists in 
  
G

!3 ,...,!
n

 (i.e., has not been removed) iff it is not 
〈ϕ1,...,ϕn〉-critical in G.  
 

 Where θ,ϕ1,...,ϕn are nodes of an inference-graph G, define: 
 
 Definition:   

 θ is 〈ϕ〉-independent of ψ in G iff there is no inference/defeat-path in G from ϕ to θ. 
 
 θ is 〈ϕ1,...,ϕn〉-independent in G iff every inference/defeat-path in G from ϕ1 to θ contains a 

hereditarily-〈ϕ2,...,ϕn〉-critical defeat-link. 
 

Theorem 9: θ is 〈ϕ1,...,ϕn〉-independent in G iff θ is ϕ1-independent in 
  
G

!2 ,...,!
n

. 

 
Let us define recursively: 
 

Definition: 

(a) If ψ is initial in G then ψ is 〈ϕ1,...,ϕn〉-undefeated in G iff ψ is undefeated in G; 

(b) If ψ is 〈ϕ1,...,ϕn〉-independent in G then  ψ is 〈ϕ1,...,ϕn〉-undefeated in G iff ψ is 〈ϕ2,...,ϕn〉-
undefeated in G; 

(c) Otherwise, ψ is 〈ϕ1,...,ϕn〉-undefeated in G iff (1) all members of the node-basis of ψ are 
〈ϕ1,...,ϕn〉-undefeated in G, (2) all defeaters for ψ that are 〈ϕ1,...,ϕn〉-independent of ψ in G and 
are not hereditarily-〈ϕ1,...,ϕn〉-critical in G (i.e., still exist in 

  
G

!3 ,...,!
n

) are 〈ϕ1,...,ϕn〉-defeated in 

G, and (3) all defeaters for ψ that are 〈ϕ1,...,ϕn〉-dependent of ψ in G and are not hereditarily-
〈ϕ1,...,ϕn〉-critical in G (i.e., still exist in 

  
G

!3 ,...,!
n

) are 〈ψ,ϕ1,...,ϕn〉-defeated in G, 
 
The reason this is a recursive definition is that we always reach an n at which there are no more 
〈ϕ1,...,ϕn〉-dependent defeaters, and then the values of all nodes are computed recursively in terms of 
the values assigned to initial nodes. 
 It is now trivial to prove by induction on n that: 
 
Theorem 10:  ψ is undefeated in 

  
G

!1 ,...,!
n

 iff ψ is 〈ϕ1,...,ϕn〉-undefeated in G. 
 
Thus we have a recursive definition of the defeat-status of a node that computes defeat-statuses 
entirely by reference to the given inference-graph rather than by building a sequence of modified 
inference-graphs in accordance with the original analysis. This is easily implemented with two 
pages of LISP code. 
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8. Conclusions 
 In an environment of real-world complexity, it is impossible to know enough about the world 
to confine one’s reasoning to deductively valid inferences. One has to reason defeasibly, drawing 
conclusions that are made reasonable by one’s evidence, but be prepared to change one’s mind in 
the face of new evidence. The question then arises how defeasible reasoning ought to work. In 
particular, given a set of defeasible arguments some of which support defeaters for others, how is it 
determined which conclusions ought to be believed? Most semantics for defeasible reasoning agree 
with regard to simple cases, and produce intuitively congenial answers. But there are some complex 
cases that all existing semantics seem to get wrong. This chapter proposes a new semantics, based 
on the concept of a critical link, that arguably gets those cases right. Furthermore, the semantics is 
recursive and easily implemented. 
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