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Abstract

The question addressed in this paper is how the degree of justification of a belief is determined.
A conclusion may be supported by several different arguments, the arguments typically being
defeasible, and there may also be arguments of varying strengths for defeaters for some of the
supporting arguments. What is sought is a way of computing the “on sum” degree of justification
of a conclusion in terms of the degrees of justification of all relevant premises and the strengths of
all relevant reasons.

I have in the past defended various principles pertaining to this problem. In this paper I reaffirm
some of those principles but propose a significantly different final analysis. Specifically, I endorse
the weakest link principle for the computation of argument strengths. According to this principle
the degree of justification an argument confers on its conclusion in the absence of other relevant
arguments is the minimum of the degrees of justification of its premises and the strengths of the
reasons employed in the argument. I reaffirm my earlier rejection of the accrual of reasons, according
to which two arguments for a conclusion can result in a higher degree of justification than either
argument by itself. This paper diverges from my earlier theory mainly in its treatment of defeaters.
First, it argues that defeaters that are too weak to defeat an inference outright may still diminish the
strength of the conclusion. Second, in the past I have also denied that multiple defeaters can result
in the defeat of an argument that is not defeated by any of the defeaters individually. In this paper I
urge that there are compelling examples that support a limited version of this “collaborative” defeat.

The need to accommodate diminishers and collaborative defeat has important consequences for
the computation of degrees of justification. The paper proposes a characterization of degrees of
justification that captures the various principles endorsed and constructs an algorithm for computing
them.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

I have argued at length elsewhere that a rational agent operating in a complex
environment must reason about its environment defeasibly. 1 For example, perceptual input
is not always accurate, so an agent forming beliefs about its environment on the basis of
its sensors must be prepared to withdraw such beliefs in the face of further information.
A sophisticated agent should be able to discover generalizations about its environment by
reasoning inductively, but inductive reasoning is defeasible—new evidence may overturn
earlier generalizations. Because perception only enables an agent to monitor small parts
of its environment at any one time, in order to build a coherent world model the agent
must combine conclusions drawn on the basis of different perceptual experiences occurring
at different times. But that requires a defeasible assumption that the world does not
change too rapidly, so that what was perceived a moment ago is still true. The ability to
maneuver through a rich environment requires an agent to be able to reason about the causal
consequences of both its own actions and other events that it observes. That requires a
solution to the frame problem, and it is generally agreed that any such solution will require
defeasible reasoning. 2 I have also argued that planning with incomplete information
requires a defeasible assumption that different plans do not destructively interfere with
each other. 3 Although most of these “theoretical” observations are fairly obvious, they
have not had much impact on the actual practice of AI, because for the most part people
have not tried to build autonomous agents of sufficient sophistication to encounter these
problems. However, that is changing and we are getting close to the point where we can
construct practical agents that will not work satisfactorily unless their designers take these
observations to heart.

The OSCAR architecture for rational agents is based upon a general theory of defeasible
reasoning. OSCAR implements the system of defeasible reasoning described in Pollock
[28]. 4 That system in turn derives from thirty years of theorizing in philosophical
epistemology. The basic idea is that the agent constructs arguments using both deductive
and defeasible reason-schemes (inference-schemes). The conclusions of some of these
arguments may constitute defeaters for steps of some of the other arguments. Given the
set of interacting arguments that represent the agent’s epistemological state at a given
time, an algorithm is run to compute degrees of justification, determining which arguments
are undefeated and the level of support they provide their conclusions. What the agent
should believe at any particular time are the conclusions of the undefeated arguments. The
hard part of a theory of defeasible reasoning is to give an account of which arguments
are undefeated. This is a topic I have addressed before [25,27,28], but some of the
considerations adduced later in this paper have convinced me of the need to revisit it.

1 The argument spans three decades. My most recent papers in this vein are [29] and [30], but see also [22,24,
26,28,31].

2 I have proposed and implemented a solution to the frame problem in [29].
3 A system of planning based upon this observation was described in [30], and has been implemented in

OSCAR.
4 For a presentation of OSCAR and its current capabilities, see the OSCAR web page at http://oscarhome.soc-

sci.edu/ftp/OSCAR-web-page/OSCAR.htm.
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My analysis will turn on the taxonomy of defeaters that I introduced in [21] and [22] and
that has been endorsed by most subsequent work on defeasibly reasoning (see Prakken and
Vreeswijk [33] and Chesñevar, Maguitman, and Loui [4]). According to this taxonomy,
there are two importantly different kinds of defeaters. Where P is a defeasible reason for
Q, R is a rebutting defeater iff R is a reason for denying Q. All work on nonmonotonic
logic and defeasible reasoning has recognized the existence of rebutting defeaters, but there
are other defeaters as well. For instance, suppose x looks red to me, but I know that x is
illuminated by red lights and red lights can make objects look red when they are not.
Knowing this defeats the defeasible reason, but it is not a reason for thinking that x is
not red. After all, red objects look red in red light too. This is an undercutting defeater.
Undercutting defeaters attack the connection between the reason and the conclusion rather
than attacking the conclusion directly. For example, an undercutting defeater for the
inference from x’s looking red to x’s being red attacks the connection between “x looks
red to me” and “x is red”, giving us a reason for doubting that x wouldn’t look red unless
it were red. I will symbolize the negation of “P wouldn’t be true unless Q were true” as
“P ⊗Q”. A shorthand reading is “P does not guarantee Q”. If Γ (a set of propositions)
is a defeasible reason for P , then where ΠΓ is the conjunction of the members of Γ , any
reason for believing “ΠΓ ⊗ P ” is a defeater. Thus I propose to characterize undercutting
defeaters as follows:

If Γ is a defeasible reason for P , an undercutting defeater for Γ as
a defeasible reason for P is any reason for believing “(ΠΓ ⊗P )”.

Are there any defeaters other than rebutting and undercutting defeaters? A number of
authors have advocated specificity defeaters (e.g., Touretzky [39], Poole [32], Simari and
Loui [38]). These have been formulated differently by different authors, but the general
idea is that if two arguments lead to conflicting conclusions but one argument is based
upon more information than the other then the “more informed” argument defeats the “less
informed” one.

A phenomenon like this is common in several different kinds of probabilistic reasoning.
To illustrate, consider the statistical syllogism. The statistical syllogism can be formulated
as follows (see [26]):

(SS) If r > 0.5, then “Fc & prob(G/F) � r” is a defeasible reason for
believing “Gc”, the strength of the reason depending upon the value
of r .

When reasoning in accordance with (SS), there is a kind of “total evidence requirement”
according to which we should make our inference on the basis of the most comprehensive
facts regarding which we know the requisite probabilities. This can be accommodated by
endorsing the following undercutting defeater for (SS):

“Hc & prob(G/F&H ) �= prob(G/F )” is an undercutting defeater for (SS).

I refer to these as subproperty defeaters. 5

5 I first pointed out the need for subproperty defeaters in [23]. Touretzky [40] subsequently introduced similar
defeaters for use in defeasible inheritance hierarchies.
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Fig. 1. An inference-graph.

Early work in AI on defeasible reasoning tended to concentrate on examples that were
instances of the statistical syllogism (e.g., the venerable “Tweety” arguments), and this
led people to suppose that something like subproperty defeat was operative throughout
defeasible reasoning. However, I do not see any reason to believe that. There are several
specific kinds of defeasible reasoning that are subject to total-evidence requirements.
The statistical syllogism is one. Direct inference (discussed in section eight below) is
another. Don Nute has pointed out to me that various kinds of legal reasoning and
deontic reasoning are subject to a similar requirement. These can all be accommodated
by acknowledging similar subproperty defeaters (which are undercutting defeaters) for the
defeasible inference-schemes involved in the reasoning. To the best of my knowledge,
there has never been an intuitive example of specificity defeat presented anywhere in
the literature that is not an example of the operation of the total-evidence requirement
in one of these special varieties of defeasible inference, and the latter are all instances of
undercutting defeat. Accordingly, I will assume that undercutting defeaters and rebutting
defeaters are the only possible kinds of defeaters.

I have defended the preceding remarks at length in numerous publications over the past
30 years, so for the purposes of this paper I will regard them as ancient history and take
them for granted without further discussion. They are not the topic of this paper. This paper
is about how to compute defeat statuses. The literature on defeasible and nonmonotonic
reasoning contains numerous proposals for how to do this. 6 The current version of OSCAR
computes defeat statuses in the manner described in [27] and [28]. 7 If we ignore the fact
that some arguments provide stronger support for their conclusions than other arguments,
we can describe OSCAR’s defeat status computation as follows. We collect arguments
into an inference-graph, where the nodes represent the conclusions of arguments, support-
links tie nodes to the nodes from which they are inferred, and defeat-links indicate defeat
relations between nodes. These links relate their roots to their targets. The root of a defeat-
link is a single node, and the root of a support-link is a set of nodes. The analysis is
somewhat simpler if we construct the inference-graph in such a way that when the same
conclusion is supported by two or more arguments, it is represented by a separate node
for each argument. For example, consider the inference-graph diagrammed in figure one,
which represents two different arguments for (P&Q) given the premises, P , Q, A, and
(Q → (P&Q)). The nodes of such an inference-graph represent arguments rather than
just representing their conclusions. In such an inference-graph, a node has at most one
support-link. When it is unambiguous to do so, I will refer to the nodes in terms of the
conclusions they encode.

6 Two good surveys are Prakken and Vreeswijk [33] and Chesñevar, Maguitman, and Loui [4].
7 For comparison with default logic and circumscription, see [28], chapter three. For comparison with more

recent systems of defeasible argumentation, see Prakken and Vreeswijk [33].
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The node-basis of a node is the root of its support-link (if it has one), i.e., the set of nodes
from which the node is inferred in a single step. If a node has no support-link (i.e., it is a
premise) then the node-basis is empty. The node-defeaters are the roots of the defeat-links
having the node as their target. We define:

A node of the inference-graph is initial iff its node-basis and list of
node-defeaters is empty.

The defeat status of a node is either “defeated” or “undefeated”. It is initially tempting
to try to characterize defeat statuses recursively using the following three rules:

(1) Initial nodes are undefeated.
(2) A node is undefeated if all the members of its node-basis are undefeated and all

node-defeaters are defeated.
(3) A node is defeated if either some member of its node-basis is defeated or some

node-defeater is undefeated.
However, this recursion turns out to be ungrounded because we can have nodes of an
inference-graph that defeat each other, as in inference-graph (1), where dashed arrows
indicate defeasible inferences and heavy arrows indicate defeat-links. In computing defeat
statuses in inference-graph (1), we cannot proceed recursively using rules (1)–(3), because
that would require us to know the defeat status of Q before computing that of ∼Q, and
also to know the defeat status of ∼Q before computing that of Q. The problem is more
generally that a node P can have an inference/defeat-descendant that is a defeater of P ,
where an inference/defeat-descendant of a node is any node that can be reached from
the first node by following support-links and defeat-links. I will say that a node is P -
dependent iff it is an inference/defeat-descendant of a node P . So the recursion is blocked
in inference-graph (1) by there being Q-dependent defeaters of Q and ∼Q-dependent
defeaters of ∼Q.

Inference-graph (1) is a case of “collective defeat”. For example, let P be “Jones says
that it is raining”, R be “Smith says that it is not raining”, and Q be “It is raining”. Given
P and Q, and supposing you regard Smith and Jones as equally reliable, what should
you believe about the weather? It seems clear that you should withhold belief, accepting
neither. In other words, both Q and ∼Q should be defeated. This constitutes a counter-
example to rule (2). So not only do rules (1)–(3) not provide a recursive characterization
of defeat statuses—they are not even true. The failure of these rules to provide a recursive
characterization of defeat statuses suggests that no such characterization is possible, and
that in turn suggested to me (in [27] and [28]) that rules (1)–(3) might be used to
characterize defeat statuses in another way. Reiter’s [35] default logic proceeded in terms of
multiple “extensions”, and “skeptical default logic” characterizes a conclusion as following
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nonmonotonically from a set of premises and defeasible inference-schemes iff it is true in
every extension. The currently popular stable model semantics [7] is derived from this
approach. There are simple examples showing that these semantics are inadequate for
the general defeasible reasoning of epistemic agents (see section two), but the idea of
having multiple extensions suggested to me that rules (1)–(3) might be used to characterize
multiple “status assignments”. On this approach, a status assignment is an assignment of
defeat statuses to the nodes of the inference-graph in accordance with three simple rules:

An assignment σ of “defeated” and “undefeated” to a subset of the nodes of an
inference-graph is a partial status assignment iff:

1. σ assigns “undefeated” to any initial node;
2. σ assigns “undefeated” to a node α iff σ assigns “undefeated” to all the members of

the node-basis of α and all node-defeaters of α are assigned “defeated”; and
3. σ assigns “defeated” to a node α iff either some member of the node-basis of α is

assigned “defeated”, or some node-defeater of α is assigned “undefeated”.
σ is a status assignment iff σ is a partial status assignment and σ is not properly contained
in any other partial status assignment.

My proposal was then:

A node is undefeated iff every status assignment assigns “undefeated” to it;
otherwise it is defeated.

Belief in P is justified for an agent iff P is encoded by an undefeated node of the
inference-graph representing the agent’s current epistemological state.

2. Examples

The ultimate test of a semantics is that it validates the intuitively right reasoning. It
is human intuitions about correct reasoning that we want to capture. (See chapter six
of [31] for further discussion of this.) With this in mind, it will be useful to have a
number of examples of inference-graphs to test the analysis I will propound below. I will
assume throughout this section that all initial nodes (premises) have the same degree of
justification, and all reason-schemes have the same reason-strength.

The simplest case is inference-graph (0). Presumably, any semantics for defeasible
reasoning will yield the result that S is defeated, and P , Q, and R are undefeated.

Inference-graph (1) illustrates “collective defeat”. It was discussed above, and again all
semantics for defeasible reasoning yield the result that Q and ∼Q are defeated, but P and
R are undefeated.
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Inference-graph (2) is another instance of collective defeat, differing from inference-
graph (1) in that the defeaters are undercutting defeaters rather than rebutting defeaters.
The result should be that Q, S, R ⊗ S, and P ⊗ Q are defeated, and P and R are
undefeated. For an example, let P = “Jones says Smith is untrustworthy”, R = “Smith
says Jones is untrustworthy”,Q= “Smith is untrustworthy”, S = “Jones is untrustworthy”.
The semantics of section one produces two status assignments, one in which Q and R ⊗ S

are assigned “defeated” and all other nodes are assigned “undefeated”, and one in which S

and P ⊗Q are assigned “defeated” and all other nodes are assigned “undefeated”.

Inference-graph (3) is a simple example of a “self-defeating” argument. A partial status
assignment must assign “undefeated” to P . If it assigned “undefeated” to Q then it would
assign “undefeated” to R and P ⊗Q, in which case it would have to assign “defeated” to
Q. So it cannot assign “undefeated” to Q. If it assigned “defeated” to Q it would have to
assign “defeated” to R and P ⊗Q, in which case it would have to assign “undefeated” to
Q. So that is not possible either. Thus a partial status assignment cannot assign anything to
Q, R, and P ⊗Q. Hence there is only one status assignment (i.e., maximal partial status
assignment). Accordingly, P is undefeated and the other nodes are defeated. An intuitive
example having approximately the same form is shown in inference-graph (3′). Inference-
graphs (3) and (3′) constitute intuitive counterexamples to default logic [35] and the stable
model semantics [7] because there are no extensions. Hence on those semantics, P has
the same status as Q, R, and P ⊗ Q. It is perhaps more obvious that this is a problem
for those semantics if we imagine this self-defeating argument being embedded in a larger
inference-graph containing a number of otherwise perfectly ordinary arguments. On these
semantics, all of the nodes in all of the arguments would have to have the same status,
because there would still be no extensions. But surely the presence of the self-defeating
argument should not have the effect of defeating all other (unrelated) arguments.

Inference-graph (4), illustrates that self-defeat can be “cancelled” by external defeat.
Here R is defeated by C, so P ⊗Q is defeated and Q is undefeated. Accordingly, there is
just one status assignment, assigning “undefeated” to A, B , C, P , and Q, and “defeated”
to R and P ⊗Q.

Inference-graph (5) illustrates the so-called “lottery paradox” (Kyburg [13]). Here P

reports a description (e.g., a newspaper report) of a fair lottery with one million tickets. P
constitutes a defeasible reason for R, which is the description. In such a lottery, each ticket
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has a probability of one in a million of being drawn, so for each i , the statistical syllogism
gives us a reason for believing ∼Ti (“ticket i will not be drawn”). The supposed paradox
is that although we thusly have a reason for believing of each ticket that it will not be
drawn, we can also infer on the basis of R that some ticket will be drawn. Of course, this
is not really a paradox, because the inferences are defeasible and this is a case of collective
defeat. This results from the fact that for each i , we can infer Ti from the description R

(which entails that some ticket will be drawn) and the conclusions that none of the other
tickets will be drawn. This gives us a defeating argument for the defeasible argument to
the conclusion that ∼Ti , as diagrammed in inference-graph (5). The result is that for each
i , there is a status assignment on which ∼Ti is assigned “defeated” and the other ∼Tj ’s
are all assigned “undefeated”, and hence none of them are assigned “undefeated” in every
status assignment.
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I believe that all semantics for defeasible reasoning get the lottery paradox right. A more
interesting example is the “lottery paradox paradox”, diagrammed in inference-graph (6).
This results from the observation that because R entails that some ticket will be drawn,
from the collection of conclusions of the form ∼Ti we can infer ∼R, and that is a
defeater for the defeasible inference from P to R. This is another kind of self-defeating
argument. Clearly, the inferences in the lottery paradox should not lead us to disbelieve
the newspaper’s description of the lottery, so R should be undefeated. Circumscription
(McCarthy [17]), in its simple non-prioritized form, gets this example wrong, because
one way of minimizing abnormalities would be to block the inference from P to R.
My own early analysis [25] also gets this wrong. This was the example that led me to
the analysis of section one. That analysis gets this right. We still have the same status
assignments as in inference-graph (5), and ∼R is defeated in all of them because it
is inferred from the entire set of ∼Ti ’s, and one of those is defeated in every status
assignment.



242 J.L. Pollock / Artificial Intelligence 133 (2001) 233–282

It will be convenient to have a simpler example of an inference-graph with the same
general structure as the lottery paradox paradox. For that purpose we can use inference-
graph (7). Here P and R should be undefeated, but T1, T2, and ∼R should be defeated.

A final example that creates interesting problems involves “odd-length defeat cycles”,
as in inference-graph (8). For example, let A= “Jones says that Smith is unreliable”, B =
“Smith is unreliable”, C = “Smith says that Robinson is unreliable”, D = “Robinson is
unreliable”, E = “Robinson says that Jones is unreliable”, F = “Jones is unreliable”.
Intuitively, this should be another case of collective defeat, with A, C, and E being
undefeated and B , D, and F being defeated. The semantics of section one does yield
this result, but it does it in a peculiar way. A, C, and E must be assigned “undefeated”, but
there is no consistent way to assign defeat statuses of B , D, and F . Accordingly, there is
only one status assignment (maximal partial status assignment), and it leaves B , D, and F

unassigned. We get the right answer, but it seems puzzling that we get it in a different way
than we do for even-length defeat cycles like that in inference-graph (1). This difference
has always bothered me.

3. Varying degrees of justification

The preceding account of defeat status assumes that all arguments support their
conclusions equally strongly. However, this assumption is unrealistic. For example,
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increasing the degrees of justification of the premises of an argument may increase the
degree of justification of the conclusion, and increasing the strengths of the reasons
employed in the argument may increase the degree of justification of the conclusion. This
phenomenon has been ignored in most AI work on defeasible and nonmonotonic reasoning,
but it is of considerable importance in applications of such reasoning. For example, in
Pollock [29] I discussed temporal projection, wherein it is assumed defeasibly that if
something is true at one time it is still true at a later time. This is, in effect, a defeasible
assumption that fluents are stable, tending not to change truth values as time passes. The
stability of a fluent is measured by the probability ρ that if it is true at time t then it is still
true at time t + 1. More generally, if it is true at time t , then the probability of its being
true at t +�t is ρ�t . So the strength of the defeasible expectation supported by temporal
projection is a monotonic decreasing function of the time interval. This can be captured in
a system of defeasible reasoning by employing a reasoning scheme of the following sort:

“P -at-t” is a defeasible reason for believing “P -at-(t +�t)”, the strength of the
reason being a monotonic decreasing function of �t . 8

The decreasing strength is important in understanding perceptual updating, wherein on the
basis of new perceptual experience the agent overrides temporal projection and concludes
that the fluent has changed truth value. Perception is not infallible, so perception should
provide only a defeasible reason for believing that the environment is as represented by
the percept. 9 Suppose an object looks red at one time t1 and blue at a later time t2. The
agent should assume defeasibly that the object is initially red, but should also conclude
defeasibly that it changes color later and is blue at t2. The object’s being red at t1 provides
a defeasible reason for expecting it to be red at t2, and its looking blue at t2 provides a
defeasible reason for thinking it blue and hence not red at t2. If these reasons were of the
same strength, there would be no basis for preferring one conclusion to the other and the
agent would be unable to draw a justified conclusion about the color of the object at t2.
The situation is resolved by noting that the reason for thinking the object is still red at t2 is
weaker than the reason for thinking it was red at t1, and hence weaker than the reason for
thinking the object is blue (and so not red) at t2. Because the agent has a stronger reason
for thinking the object is blue at t2 than for thinking it is red at t2, that becomes the justified
conclusion and the agent is able to conclude that the object has changed color.

The preceding example illustrates the importance of incorporating an account of degrees
of justification into a system of defeasible reasoning. There are many other examples
illustrating the same point. For instance, in the statistical syllogism the strength of the
reason is a function of the probability employed. Autonomous agents capable of engaging
in sophisticated defeasible reasoning must accommodate varying degrees of justification.
The question addressed in this paper is how the degree of justification of a conclusion
should be determined. A conclusion may be supported by several different arguments. The
arguments are typically defeasible, and there may also be arguments of varying strengths
for defeaters for some of the supporting arguments. What is sought is a way of computing

8 The reason-schema proposed in [29] involves some additional qualifications, but they are not relevant to the
present discussion.

9 This is discussed in detail in Pollock [29].
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the “on sum” degree of justification of a conclusion. It is clear that three variables, at least,
are involved in determining degrees of justification. The reason-strengths of the reason-
schemes employed in the argument are relevant. The degrees of justification of the premises
are relevant. And the degrees of justification of any defeaters for defeasible steps of the
argument are relevant. Other variables might be relevant as well. I am going to assume that
reason-strengths and degrees of justification are measurable as non-negative extended real
numbers (i.e., the non-negative reals together with ∞). The justification for this assumption
will be provided in section nine.

4. Argument-strengths

For the sake of completeness, this section and the next repeat arguments given in [28].
Let us begin by looking at arguments for which we have no arguments supporting defeaters.
Let the strength of an argument be the degree of justification it would confer on its
conclusion under those circumstances. A common and seductive view would have it that
argument strength can be modeled by the probability calculus. On this view, the strength
a conclusion gains from the premises can be computed in accordance with the probability
calculus from the strength of the reason (a conditional probability) and the probabilities of
the premises. I, and many other authors, have argued against this view at length, but it has
a remarkable ability to keep attracting new converts.

There are a number of familiar arguments against the probabilistic model. The simplest
argument proceeds by observing that the probabilistic model would make it impossible to
be justified in believing a conclusion on the basis of a deductive argument from numerous
uncertain premises. This is because as you conjoin premises, if degrees of support work
like probabilities, the degree of support decreases. Suppose you have 100 independent
premises, each highly probable, having, say, probability 0.99. According to the probability
calculus, the probability of the conjunction will be only 0.37, so we could never be justified
in using these 100 premises conjointly in drawing a conclusion. But this flies in the face of
human practice. For example, an engineer building a bridge will not hesitate to make use of
one hundred independent measurements to compute (deduce) the correct size for a girder.
I have discussed this issue at length elsewhere [24,31], so in this paper I am just going to
assume that deductive arguments provide one way of arriving at new justified conclusions
on the basis of earlier ones. A corollary is that the probabilistic model is wrong. 10

If deductive reasoning automatically carries us from justified conclusions to justified
conclusions, then the degree of support a deductive argument confers on its conclusion
cannot decrease as the number of premises increases. The degree of justification for the
conclusion must be no less than that of the most weakly justified premise. This is the
Weakest Link Principle for Deductive Arguments, according to which a deductive argument
is as good as its weakest link. More precisely:

The argument strength of a deductive argument is the minimum of the degrees of
justification of its premises.

10 The same objection can be leveled against the Dempster–Shafer theory [6,37].
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This formulation of the weakest link principle applies only to deductive arguments, but
we can use it to obtain an analogous principle for defeasible arguments. If P is a defeasible
reason for Q, then we can use conditionalization to construct a simple defeasible argument
for the conclusion (P →Q), and this argument turns upon no premises:

∣∣∣∣∣
SupposeP

Then (defeasibly) Q.

Therefore, (P →Q).

As this argument has no premises, the degree of support of its conclusion should be a
function of nothing but the strength of the defeasible reason. The next thing to notice is
that any defeasible argument can be reformulated so that defeasible reasons are only used
in subarguments of this form, and then all subsequent steps of reasoning are deductive.
The conclusion of the defeasible argument is thus a deductive consequence of the premises
together with a number of conditionals justified in this way. By the weakest link principle
for deductive arguments, the degree of support of the conclusion should then be the
minimum of (1) the degrees of justification of the premises used in the argument and (2)
the strengths of the defeasible reasons:

The argument strength of a defeasible argument is the minimum of the strengths of
the defeasible reasons employed in it and the degrees of justification of its premises.

This is the general Weakest Link Principle. The problem of computing argument
strengths is thus computationally simple.

5. The accrual of reasons

If we have two independent reasons for a conclusion, does that make the conclusion
more justified than if we had just one? It is natural to suppose that it does, 11 but upon
closer inspection that becomes unclear. Cases that seem initially to illustrate such accrual
of justification appear upon reflection to be better construed as cases of having a single
reason that subsumes the two separate reasons. For instance, if Brown tells me that the
president of Fredonia has been assassinated, that gives me a reason for believing it; and if
Smith tells me that the president of Fredonia has been assassinated, that also gives me a
reason for believing it. Surely, if they both tell me the same thing, that gives me a better
reason for believing it. However, there are considerations indicating that my reason in the
latter case is not simply the conjunction of the two reasons I have in the former cases.
Reasoning based upon testimony is a straightforward instance of the statistical syllogism.
We know that people tend to tell the truth, and so when someone tells us something, that
gives us a defeasible reason for believing it. This turns upon the following probability being
reasonably high:

(1) prob(P is true/S asserts P).

11 See, for example, Verheij [41].
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Given that this probability is high, I have a defeasible reason for believing that the president
of Fredonia has been assassinated if Brown tells me that the president of Fredonia has been
assassinated.

In the discussion of the weakest link principle, I urged that argument strengths do not
conform to the probability calculus. However, that must be clearly distinguished from
the question of whether probabilities license defeasible inferences. In fact, I think that a
large proportion of our defeasible inferences are based upon probabilities. Such inferences
proceed in terms of the statistical syllogism, described in section one and formulated as
principle (SS). When we have the concurring testimony of two people, our degree of
justification is not somehow computed by applying a predetermined function to the latter
probability. Instead, it is based upon the quite distinct probability

(2) prob(P is true/S1 asserts P and S2 asserts P and S1 �= S2).

The relationship between (1) and (2) depends upon contingent facts about the linguistic
community. We might have one community in which speakers tend to make assertions
completely independently of one another, in which case (2) > (1); and we might have
another community in which speakers tend to confirm each other’s statements only when
they are fabrications, in which case (2) < (1). Clearly our degree of justification for
believing P will be different in the two linguistic communities. It will depend upon the
value of (2), rather than being some function of (1).

It is important to distinguish epistemic reasoning—reasoning about what to believe—
from practical reasoning—reasoning about what actions to perform. These two kinds
of reasoning have quite different logical properties, as is illustrated at length in [31].
Something like the accrual of reasons seems to hold for practical reasoning. Normally,
two independent reasons for choosing a particular action provide a stronger justification
for choosing it than either reason by itself. But we cannot conclude from this that the same
thing is true of epistemic reasoning.

All examples I have considered that seem initially to illustrate the accrual of reasons
in epistemic reasoning turn out in the end to have this same form. They are all cases in
which we can estimate probabilities analogous to (2) and make our inferences on the basis
of the statistical syllogism rather than on the basis of the original reasons. Accordingly,
I doubt that epistemic reasons do accrue. If we have two separate undefeated arguments for
a conclusion, the degree of justification for the conclusion is the maximum of the strengths
of the two arguments. This will be my assumption.

6. The influence of defeaters

Thus far I have considered how reason-strengths and the degrees of justification of
premises affect the degree of justification of a conclusion. The third variable we must
consider is the presence of arguments supporting defeaters. Suppose we have only two
arguments to consider, and the conclusion of one of them is a defeater for the final step
of the other, as diagrammed in inference-graph (0). How should this affect the degree of
justification of S?
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It seems clear that if the argument strength of the left argument (for Q) is as great as
that of the right argument (for S), then the degree of justification of S should be 0. But
what if the argument strength of the left argument is less than that of the right argument?
In [28] I maintained that defeat was an all-or-nothing matter, and hence weaker defeaters
leave arguments unaffected. In the scenario just described, this has the consequence that
the degree of justification of S is the same as the argument strength of the right argument.
However, there are some examples that now convince me that this is incorrect. The simplest
examples have to do with biased lotteries. To see how these examples work, recall the
earlier analysis of reasoning about fair lotteries. Consider a fair lottery consisting of 1
million tickets, and suppose it is known that one and only one ticket will win. Observing
that the probability is only 0.000001 of any particular ticket being drawn given that it
is a ticket in the lottery, it seems initially reasonable to employ the statistical syllogism
and accept the conclusion regarding any particular ticket that it will not be drawn. This
reasoning is completely general and applies to each ticket. However, these conclusions
conflict jointly with something else we are justified in believing, viz., that some ticket will
be drawn. We cannot be justified in believing each member of an explicitly contradictory
set of propositions, and we have no way to choose between them, so it follows intuitively
that we are not justified in believing of any ticket that Jones did not hold that ticket.
The formal reconstruction of this reasoning proceeds by observing that this is a case
of collective defeat. For each n, the statistical syllogism provides a defeasible reason
for believing “∼Tn”. But for each k, we have an equally strong defeasible reason for
believing each “∼Tk”. We know that some ticket will be drawn. Thus we can construct
the counterargument diagramed in inference-graph (5) for the conclusion that “Tn” is true.
Our reason for believing each “∼Tk” is as good as our reason for believing “∼Tn”, so we
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Fig. 2. Lottery 2.

have as strong a reason for “Tn” as for “∼Tn”. Hence our defeasible reason for the latter is
defeated and we are not justified in believing “∼Tn”.

Next, consider lottery 2, which is a biased lottery consisting of just ten tickets. The
probability of ticket 1 being drawn is 0.000001, and the probability of any other ticket
being drawn is 0.111111. It is useful to diagram these probabilities as in Fig. 2. In this
lottery, it seems reasonable to infer that ticket 1 will not be drawn, because the probability
of any other ticket being the drawn is more than 100,000 times greater. This can be justified
as follows. As before, we have a defeasible reason for believing “∼Tn”, for each n. But
these reasons are no longer of equal strength. Because ticket 1 is much less likely to be
drawn than any other ticket, we have a much stronger reason for believing that ticket 1 will
not be drawn. As before, for n > 1, we have the counterargument diagramed in inference-
graph (5) for “Tn”, and that provides as good a reason for believing “Tn” as we have for
believing “∼Tn”. Thus the defeasible reason for “∼Tn” is defeated. But we do not have as
good a reason for believing “T1” as we do for believing “∼T1”. An argument is only as
good as its weakest link, and the counterargument for “T1” employs the defeasible reasons
for “∼Tn” for n > 1. These reasons are based upon lower probabilities (of value 0.888889)
and hence are not as strong as the defeasible reason for “∼T1” (based upon a probability
of value 0.999999). Thus, although we have a reason for believing “T1”, we have a better
reason for believing “∼T1”, and so on sum we are justified in believing the latter.

Now contrast lottery 2 with lottery 3, which consists of 10,000 tickets. In lottery 3, the
probability of ticket 1 being drawn is still 0.000001, but the probability of any other ticket
being drawn is 0.000011. This is diagramed as in Fig. 3. It may still be reasonable to infer
that ticket 1 will not be drawn, but, and this is the crucial observation, the justification for
this conclusion does not seem to be nearly so strong. This is because although we have
the same defeasible argument for “∼T1”, the reasons involved in the counterargument for
“T1” are now much better, being based upon a probability of 0.999989. They are still not
strong enough to defeat the argument for “∼T1” outright, but they seem to weaken the
justification. Thus the degree of justification for “∼T1” is lower in lottery 3 than it is in
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Fig. 3. Lottery 3.

Fig. 4. Statistical induction.

lottery 2. The difference between lottery 2 and lottery 3 seems to illustrate that defeaters
that are too weak to defeat a conclusion outright may still lower the degree of justification.
In other words, they act as diminishers.

In [26] I argued that reasoning similar to this treatment of biased lotteries is what
underlies statistical induction. In statistical induction, having observed a sample of A’s and
found that the proportion of members of the sample that are B’s is r , we infer defeasibly
that the probability of an arbitrary A being a B is approximately r , i.e., lies in an interval
[r − δ, r + δ] around the observed relative frequency r . The logic of the reasoning that
allows us to conclude this is the same as that involved in reasoning about biased lotteries.
We know that the actual probability p is in the interval [0,1]. This is like knowing that
some ticket will be drawn. If the sample is large, then for each choice of p the probability
of getting the observed relative frequency is low given that p is the actual probability, but
for some choices of p (those further from r) it is lower than for others. So we can reason
as in the biased lottery that the actual probability does not lie on the tails of the bell curve.
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Biased lotteries and statistical induction illustrate that given an undefeated argument
for P and an otherwise undefeated weaker argument for ∼P , the degree of justification
for P should be the argument strength of the first argument decremented by an amount
determined by the argument strength of the second argument. That is, there should be a
function J such that given two arguments that rebut one another, if their strengths are x

and y , the degree of justification for the conclusion of the former is J (x, y). J must satisfy
the following conditions:

(3) J (x, y)� x.

(4) J (x,0)= x.

(5) If y � x then J (x, y)= 0.

(6) If x � z and w � y then J (x, y)� J (z,w).

This leaves undetermined how J (x, y) and J (z,w) compare in cases in which x � z and
w < y . To resolve these cases, let us replace (3) and (6) by a stronger assumption:

(7) If ε � 0, J (x + ε, y + ε)= J (x, y).

This is a “linearity assumption”. It tells us that increasing the argument strength and the
defeat strength by the same amount ε leaves the resulting degree of justification unchanged.
With this further assumption, it becomes determinate how J (x, y) and J (z,w) compare,
for any choice of x, y, z,w. Let us define:

x ∼ y =
{
x − y if y < x,
0 otherwise.

Then we have in general:

Theorem 1. If (4), (5), and (7) hold, J (x, y)= x ∼ y .

Proof. If x � y , then by (5) J (x, y) = 0 = x ∼ y . Suppose instead that x � y . Then by
(7) and (4), J (x, y)= J (x − y,0)= x − y = x ∼ y . ✷

So I will assume:

(8) Given an otherwise undefeated argument of strength x supportingP , and an
otherwise undefeated argument of strength y supporting ∼P , and no other
relevant arguments, the degree of justification of P is x ∼ y.

The argument for diminishers is based on intuitive examples. In particular, I have
appealed to biased lotteries. If one ticket is much more improbable than the others, it seems
reasonable to conclude that it will not be drawn. But if it is only minutely less probable, that
does not seem reasonable. In general, if the argument for a defeater is only minutely weaker
than the argument for a conclusion, it does not seem reasonable to regard the conclusion
as unscathed. These observations seem to me to be unassailable.
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7. Computing defeat statuses

How should diminishers affect our defeat status computation? I assume that rather
than merely assigning “defeated” or “undefeated”, a status assignment should now assign
numerical degrees of justification j (P ) to nodes. How is j (P ) determined? In the
following examples, unless I explicitly say otherwise, I assume throughout that the reason-
strengths are at least as great as the degrees of justification of the initial nodes so that
they can be ignored in computing degrees of justification. If we consider a very simple
inference-graph like (0), it seems clear that we should have j (Q)= j (P ), j (S)= j (R)∼
j (Q). This is in accordance with principle (8). So if j (P )� j (R), S is defeated, otherwise
it is diminished.

Consider the marginally more complicated inference-graph (1). Here there seem to be
two possibilities regarding how the degrees of justification are to be computed:

(a) We could have j (Q)= j (P )∼ j (∼Q) and j (∼Q)= j (R)∼ j (Q).
(b) We could have j (Q)= j (P )∼ j (R) and j (∼Q)= j (R)∼ j (P ).

These seem to be the only two possibilities for this simple inference-graph. However, (a)
is not a genuine possibility. We have the following theorem:

Theorem 2. If j (P ) > j (R), j (Q) = j (P ) ∼ j (∼Q) and j (∼Q) = j (R) ∼ j (Q) then
j (Q)= j (P ) and j (∼Q)= 0.

Proof. Suppose j (Q) �= j (P ). As j (Q)= j (P ) ∼ j (∼Q), j (Q) < j(P ), so j (∼Q) �= 0.
Then as j (∼Q) = j (R) ∼ j (Q), j (∼Q) = j (R) − j (Q) � R. By assumption, j (P ) >
j (R), so j (P ) > j (∼Q), and hence

j (Q)= j (P )∼ j (∼Q)= j (P )− j (∼Q)= j (P )− j (R)+ j (Q).

Thus j (R) = j (P ), which is impossible given the assumption that j (P ) > j (R). So by
reductio, j (Q) = j (P ). As j (P ) > j (R), j (P ) > 0. But j (Q) = j (P ) ∼ j (∼Q), so
j (∼Q)= 0. ✷

Thus (a) is incompatible with diminishing. That leaves only (b) as a possible
computation of defeat statuses in inference-graph (1). That is,

j (Q)= j (P )∼ j (R) and j (∼Q)= j (R)∼ j (P ).

This means that in computing j (Q), we take the strength of the argument supporting it, in
this case determined by j (P ), and then subtract the strength of the argument supporting
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the defeater, i.e., j (R). We do not subtract the strength of the defeater itself, i.e., we do not
subtract j (∼Q).

If we apply (b) to the case in which j (P ) = j (R), we get a single status assignment
in which j (Q) = j (∼Q) = 0. This has a surprising consequence. The semantics for
defeasible reasoning described in section one, as well as default logic, the stable model
semantics, circumscription, and almost all standard semantics for defeasible reasoning and
nonmonotonic logic, support what I have called [25] “presumptive defeat”. 12 For example,
consider inference-graph (10). A defeated conclusion like Q that is assigned “defeated” in
some status assignment and “undefeated” in another retains the ability to defeat. In the case
of inference-graph (10) this has the consequence that S is assigned “defeated” in those
status-assignments in which Q is assigned “defeated”, but S is assigned “undefeated”
and ∼ S is assigned “defeated” in those status-assignments in which Q is assigned
“undefeated”. Touretzky, Horty, and Thomason [40] called this “ambiguity propagation”,
and Makinson and Schlechta ([16] called such arguments “Zombie arguments” (they are
dead, but they can still get you). However, computation (b) precludes presumptive defeat.
It entails that there is a single status assignment in which j (S)= j (Q)= j (∼Q)= 0, and
j (∼S) = j (A). So Q, ∼Q, and S are all defeated, and ∼S is undefeated. Is this the right
answer? Consider an example: Jones and Smith hear one weather forecast, but disagree
about whether rain was predicted (Q). Q gives one reason to believe it will rain (S). You
didn’t hear the first forecast, but you hear another forecast (A), which says it will not rain.
Should you believe ∼ S? I have some inclination to think you should, but I don’t find the
answer obvious, nor have I ever found another example of presumptive defeat where the
answer is obvious. At a recent workshop on defeasible reasoning held at the University of
Georgia, I found there to be no consensus among the participants as to the intuitive status
of presumptive defeat.

In the absence of clear intuitions, how can we decide whether presumptive defeat is
a genuine phenomenon of defeasible reasoning, or an undesirable artifact of existing
semantics? The preceding considerations constitute a rather strong argument for the
conclusion that presumptive defeat is incompatible with diminishing. If it is granted that
a correct semantics must accommodate diminishing, this means in turn that most standard
semantics for defeasible reasoning produce incorrect assessments of inference-graph (10)

12 The only semantics I know about that does not support presumptive defeat are certain versions of Nute’s [19]
defeasible logic. See also Covington, Nute, and Vellino [5], and Nute [20].
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even when all premises have the same degree of justification and all reason-strengths are
the same. It is generally assumed that by ignoring variations in degrees of justification and
reason-strengths we are simplifying the problem of constructing a semantics for defeasible
reasons, but the present considerations indicate that by doing so we may also obscure
phenomena that have important implications for the semantics even in this simplified case.

The fact that we get a single assignment of defeat statuses in inference-graph (1) suggests
that we are not really computing status assignments. Rather, we are computing degrees
of justification directly. The appeal to status assignments was motivated by the thought
that we could not compute degrees of justification recursively because a node P of an
inference-graph can have P -dependent defeaters (i.e., defeaters that are inference/defeat-
descendants of P ). But what the present approach may yield is a way of doing a different
kind of recursive computation of degrees of justification. In inference-graph (1), we cannot
compute j (Q) without having a value for ∼Q, and we cannot compute j (∼Q) without
having a value for Q. So we cannot do a straightforward recursive computation of degrees
of justification. However, the values required for Q and ∼Q need not be their degrees of
justification. Indeed, they cannot be because those would be zero for each. In computing
j (Q), what we want to subtract from j (P ) is not j (∼Q) but rather a measure of the
strength of the argument for ∼Q. The value of the latter should be j (R). This measure can
be obtained by removing the mutual defeat between the two arguments, as in inference-
graph (1∗), and computing j (Q) and j (∼Q) in the new inference-graph. Call those values
j∗(Q) and j∗(∼Q). Then returning to inference-graph (1), the values we subtract when we
compute j (Q) and j (∼Q) are j∗(∼Q) and j∗(Q). That is, j (Q) = j∗(Q) ∼ j∗(∼Q) =
j (P )∼ j (R), and j (∼Q)= j∗(∼Q)∼ j∗(Q)= j (R)∼ j (P ). In constructing inference-
graph (1∗), we remove two defeat-links. Each link has the characteristic that removing it
results in Q no longer having a Q-dependent defeater, and also in ∼Q no longer having a
∼Q-dependent defeater.

Now consider inference-graph (2). Again, there seem to be two ways the computation
of degrees of justification might go. Presumably j (R⊗ S)= j (Q) and j (P ⊗Q)= j (S).
Then we might have either:

(a) j (S)= j (R)∼ j (R⊗S)= j (R)∼ j (Q) and j (Q)= j (P ) ∼ j (P ⊗Q)= j (P ) ∼
j (S); or

(b) j (S)= j (R)∼ j (P ) and j (Q)= j (P ) ∼ j (R).
As in Theorem 1, (a) is incompatible with diminishing, so (b) seems to be the only
possibility. This means that in computing j (S) we begin with the strength of the argument
supporting S, i.e., j (R), and then subtract the strength of the argument supporting the
defeater R ⊗ S would have in the absence of the defeater P ⊗ Q that is obtained from
S. We compute j (Q) analogously. This is the same thing as computing j (R ⊗ S) and
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j (P ⊗ S) in inference-graph (2∗) (call the resulting values j∗(R ⊗ S) and j∗(P ⊗ Q))
and then setting j (Q) = j∗(Q) ∼ j∗(P ⊗ Q) and j (S) = j∗(S) ∼ j∗(R ⊗ S). Again,
the defeat-links we remove in constructing inference-graph (2∗) are those such that if we
remove either, Q no longer has a Q-dependent defeater, and similarly for S.

Consider inference-graph (3). Presumably j (P ⊗ Q) = j (R) = j (Q) = 0. We can
get that by ruling that j (Q) = j (P ) ∼ j (P ). So here we begin with the strength of the
argument supporting Q, i.e., j (P ), and then subtract the strength the argument supporting
P ⊗Q would have in the absence of the defeater (itself) that is obtained from Q. This is
the value assigned to (P ⊗Q) in inference-graph (3∗). Again, the defeat-link we remove
in constructing (3∗) is the only defeat-link whose removal results in Q no longer having a
Q-dependent defeater.

Inference-graph (4) is analogous. In (4) we compute j∗(P ⊗Q) by removing the defeat-
link between P ⊗ Q and Q. So j∗(P ⊗ Q) = j (P ) ∼ j (A). That has the result that if
j (A)= j (P ) then j∗(P ⊗Q)= j∗(R)= 0 and so j (Q)= j∗(Q)∼ j∗(P ⊗Q)= j (P ).
I will continue to refer to j∗(P ⊗ Q) as the argument-strength of (P ⊗ Q), but note
that this is a somewhat more complex notion than the argument-strength discussed in
section four. In the present sense, argument-strengths take account not only of the strengths
of the premises and inference-schemes but also of the effect of those defeaters that are
independent of the node being evaluated.

Finally, consider the lottery paradox paradox, in the guise of inference-graph (7).
We construct (7∗) by removing the only defeat-link whose removal results in R no
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longer having an R-dependent defeater. In (7∗), the triangle consisting of R, T 1 and
T 2 is analogous to inference-graph (1), and so j∗(T 1) = j∗(R) ∼ j∗(R) = 0, and
j∗(T 2) = j∗(R) ∼ j∗(R) = 0. j∗(∼R) = min{j∗(T 1), j∗(T 2)} = 0. Then j (R) =
j∗(R)∼ j∗(∼R)= j (P ).
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When we turn to the computation of j (T 1) and j (T 2) in (7), we encounter an additional
complication. Removing the defeat-links whose removal results in T 1 no longer having a
T 1-dependent defeater produces inference-graph (7∗∗). On the strength of the preceding
examples we might expect that j (T 1) = j∗∗(T 1) ∼ j∗∗(T 2). However, inference-graph
(7∗∗) is analogous to inference-graph (3). Accordingly, j∗∗(T 1)= j∗∗∗(T 2) = j∗∗(R) =
j∗∗(∼R) = 0. This produces the intuitively correct answer that j (T 1) = 0, but it seems
to do so in the wrong way. To see this, let us modify the example slightly by taking
it to represent a biased lottery. More precisely, let us suppose that the reason-strength
of the reason supporting the inference of T 1 from R is at least as great as the degree
of justification of P (and hence of R), but suppose the reason-strength ρ of the reason
supporting the inference of T 2 from R is less than the degree of justification of P .
In this case T 2 should be defeated, and hence ∼R should be defeated, but T 1 should
only be diminished. However, this change does not affect the computation of degrees
of justification in inference-graph (7∗∗). We still get that j∗∗(T 1) = j∗∗(T 2) = j (R) =
j∗∗(∼R)= 0.

The source of the difficulty is that the computation of degrees of justification is not
being done recursively. We should first compute the degree of justification of R, as
above. Then holding that degree of justification fixed we should go on to compute the
degrees of justification of its inference-children, in this case T 1 and T 2. This amounts to
regarding R as an initial node whose degree of justification is that computed in inference-
graph (7). This yields inference-graph (7∗∗∗). The degrees of justification for T 1 and
T 2 are then those computed in inference-graph (7∗∗∗). That computation proceeds by
constructing inference-graph (7∗∗∗∗) and computing j∗∗∗∗(T 1) = j (R), j∗∗∗∗(T 2) = r ,
and so j (T 1)= j∗∗∗(T 1) = j∗∗∗∗(T 1)∼ j∗∗∗∗(T 2)= j (R) ∼ ρ. Analogously, j (T 2) =
j∗∗∗∗(T 2)∼ j∗∗∗∗(T 1)= 0. Continuing recursively, j (∼R)= min{j (T 1), j (T 2)} = 0.

The defeat status computation that emerges from these examples proceeds in accordance
with two rules. We begin with an inference-graph G. Where ϕ is a node of G, let j (ϕ,G)
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be the degree of justification of ϕ in G. The first rule governs the case in which P has
no P -dependent defeaters. In that case, the computation proceeds in accordance with the
originally proposed rules (1)–(3). This has the effect of computing degrees of justification
in terms of the degrees of justification of the basis of P and the defeaters of P . The second
rule governs the case in which P has P -dependent defeaters. In that case the computation
of the degree of justification of P proceeds instead in terms of the argument-strength for P
and maximal argument-strength of the P -dependent defeaters. Those argument-strengths
are computed by constructing a new inference-graphGP by removing each defeat-link of G
whose removal results in P no longer having a P -dependent defeater. More generally, there
can be parallel routes from one node to another, with the result that we must delete multiple
defeat-links to ensure that P no longer has a P -dependent defeater. So let us define:

A defeat-link is P -critical in an inference-graph G iff it is a member of
some minimal set of defeat-links such that the removal of all the links in the
set results in P no longer having a P -dependent defeater.

Let GP be the inference-graph that results from removing all P -critical defeat-links from
G and making all P -independent nodes ϕ initial with j (ϕ,GP ) = j (ϕ,G). The argument
strengths in G are then the degrees of justification in GP .

Putting this altogether, the two rules are as follows (where max(∅)= 0):

(DJ1) If P is inferred from the basis {B1, . . . ,Bn} in an inference-graphG in accordance
with a reason-scheme of strength ρ, D1, . . . ,Dk are the defeaters for P , and no
Di is P -dependent, then

j (P,G) = min
{
ρ, j (B1,G), . . . , j (Bn,G)

}

∼ max
{
j (D1,G), . . . , j (Dk,G)

}
.

(DJ2) If P has P -dependent defeaters D1, . . . ,Dk in G and GP results from deleting all
P -critical defeat-links from G and making all P -independent nodes ϕ initial with
j (ϕ,GP )= j (ϕ,G), then

j (P,G) = j (P,GP )∼ max
{
j (D1,GP ), . . . , j (Dk,GP )

}
.

The general idea is that the computation of degrees of justification is made recursive
by appealing to argument strengths rather than degrees of justification in ungrounded
cases. Argument strengths are computed by computing degrees of justification in simpler
inference-graphs from which the source of ungroundedness has been removed. The result
is a recursive computation of degrees of justification.

8. Collaborative defeat

The rules (DJ1) and (DJ2) have the effect of dividing the defeaters of P into two sets—
those that are P -dependent and those that are not. These two sets of defeaters then affect
j (P,G) separately. Those that are P -independent will diminish the value of P in GP ,
reducing j (P,GP ), and then those that are P -dependent will further diminish the value of
P in G. So if D1 is the most strongly supported defeater that is P -independent, and D2 is
the most strongly supported defeater that is P -dependent, the result will be that
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j (P,G) = j (P,GP )∼ j (D2,GP )
= (

min{ρ, j (B1,GP ), . . . , j (Bn,GP )} ∼ j (D1,GP )
) ∼ j (D2,GP )

= (
min{ρ, j (B1,G), . . . , j (Bn,G)} ∼ j (D1,G)

) ∼ j (D2,GP )
= min

{
ρ, j (B1,G), . . . , j (Bn,G)

} ∼ (
j (D1,G)+ j (D2,G)

)
.

In this way, we can replace the sequential application of (DJ2) and (DJ1) by the application
of a single principle:

(DJ) If P is inferred from the basis {B1, . . . ,Bn} in an inference-graph G in accordance
with a reason-scheme of strength ρ, D1, . . . ,Dk are the P -independent defeaters
for P , Dk+1, . . . ,Dm are the P -dependent defeaters of P , and GP results from
deleting all P -critical defeat-links from G and making all P -independent nodes ϕ
initial with j (ϕ,GP )= j (ϕ,G), then

j (P,G) = min
{
ρ, j (B1,G), . . . , j (Bn,G)

}

∼ [
max

{
j (D1,G), . . . , j (Dk,G)

}

+ max
{
j (Dk+1,GP ), . . . , j (Dm,GP )

}]
.

This produces a kind of double counting of defeaters. It has the consequence that although
no single defeater may be sufficient to defeat the inference to P , two defeaters can
accomplish that by acting in unison. I will call this collaborative defeat. 13

Collaborative defeat might seem suspect. However, I will now argue that there
are examples which illustrate that it actually occurs in defeasible reasoning. As an
autobiographical note, I first became convinced of the need for collaborative defeat on
the basis of examples like those I will present below. This was long before I had a theory
of diminishers that entailed collaborative defeat. My expectation was that I would have
to construct an initial theory to accommodate diminishers, and then embellish it in some
rather ad hoc way to make it compatible with collaborative defeat. Thus I am delighted to
find that collaborative defeat simply falls out of my theory of diminishers without any ad
hoc treatment.

To set the stage, note that you cannot have two rebutting defeaters such that one is P -
dependent and the other is not. Rebutting defeaters of P are always P -dependent. This is
because rebutting defeat is symmetrical, so if you can follow defeat-links in one direction,
you can follow them back again. Thus you can have one defeater that is P -dependent
and another that is not only if one of them is an undercutting defeater. The general
form is that of inference-graph (11). To compute j (S,G11), we construct inference-graph
(11∗). j (S,G11)= j (Q,G11)∼ j (R,G11), and so j (S,G11)= (j (Q,G11)∼ j (S,G11))∼
j (P,G11)= j (Q,G11)∼ (j (P,G11)+ j (R,G11)).

To confirm that the computation in inference-graph (11) is correct, we must consider
examples that mix rebutting defeat and undercutting defeat. One place in which this
is common is in inferences involving a total-evidence requirement. Suppose the total

13 Normally, the collaborating defeaters will be reasons for different conclusions, viz., ∼P and (P ⊗Q). But in
some cases they can both be reasons for (P ⊗Q), in which case this has a similar flavor to the accrual of reasons.
It is not anything that simple, however, because each defeater is the strongest defeater (not a sum) from a whole
class of defeaters—the dependent and independent ones.
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evidence consists of P1, . . . ,Pn, and this supports the conclusionQ. Typically, some of our
evidence will be somewhat better justified than the rest. Suppose the maximally justified
subset of our evidence consists of P1, . . . ,Pk . This may support a conflicting conclusion
R. If the rest of the evidence is only slightly less justified, we will want to draw the
conclusion Q rather than R. The logic of this is that we will have three arguments. The
first argument infers Q from P1, . . . ,Pn. The second argument infers R from P1, . . . ,Pk .
The third argument appeals to the fact that we have the evidence {P1, . . . ,Pn} and it
is a larger set of evidence than {P1, . . . ,Pk}, and it infers an undercutting defeater for
the second argument. The first two arguments rebut one another, and the third argument
undercuts the second argument. However, the first and third arguments are weaker than the
second argument, because they depend upon all of P1, . . . ,Pn and hence depend upon a
weaker link than the second argument. Without collaborative defeat, the second argument
would defeat the first argument, and the first argument and third argument would each do
nothing but diminish the justification of the conclusion R of the second argument. Thus
we would be led draw the conclusion R on the basis of a subset of the evidence rather than
drawing the conclusion Q that is supported by the total evidence. That is the intuitively
wrong answer. Collaborative defeat, however, can produce the right answer. First, argument
three supports the R-independent undercutting defeater, which diminishes the degree of
justification of R. Then it is that weaker conclusion that squares off against the support
of Q by the first argument (i.e., the R-dependent rebutting defeater), and hence Q can be
justified and R unjustified.

To illustrate this general phenomenon, consider a case of direct inference. In direct
inference we reason from general probabilities (symbolized using “prob”) to single case
probabilities (symbolized using “PROB”). The basic idea behind direct inference was first
articulated by Hans Reichenbach [34]: in determining the probability that an individual
c has a property F , we find the narrowest reference class X for which we have reliable
statistics and then infer that PROB(Fc) = prob(Fx/x ∈ X). For example, insurance rates
are calculated in this way. Although there is general agreement that direct inference is
based upon some such principle as this, there is little agreement about the precise form
the theory should take. 14 In [26] I proposed reconstructing direct inference as defeasible
reasoning that proceeds primarily in terms of the following two principles:

(DI) “prob(F/G)= r & J(Gc)& J(P ↔ Fc)” is a defeasible reason for “PROB(P ) =
r”.

(SD) “prob(F/H) �= prob(F/G) & J(Hc)& �∀(H →G)” is an undercutting defeater
for (DI).

14 For instance, see Kyburg [14] and Levi [15].
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Here “JP ” means “P is justified”, ∀P is the universal closure of P , and � is logical
necessity. 15 The defeaters provided by (SD) are subproperty defeaters (reminiscent of
the subproperty defeaters for the statistical syllogism). To illustrate, suppose you are an
insurance actuary computing auto insurance rates for Helen. You know that Helen is
female, and the probability of a female driver having an accident within one year is 0.03.
This gives you a defeasible reason for concluding that the probability of Helen having an
accident is 0.03. But you also know that Helen is a reckless driver, and the probability of
a female reckless driver having an accident in a year is 0.1. This gives you a defeasible
reason for the conflicting conclusion that the probability of Helen having an accident
is 0.1. Because the latter inference is based upon more information, you will accept it
and reject the former inference. Formally, this is because the latter inference is based
upon information that provides a subproperty defeater for the former inference, so the
former inference is defeated and the latter is left undefeated. Let us examine this formal
reconstruction carefully. There are three arguments involved:

– Argument 1—for the conclusion that the probability of Helen having an accident is
0.03, based upon the fact that Helen is female.

– Argument 2—for the conclusion that the probability of Helen having an accident is
0.1, based upon the fact that Helen is female and a reckless driver.

– Argument 3—for the conclusion that Helen is a reckless driver, where the probability
of a female driver having an accident is different from the probability of a female
reckless driver having an accident.

Arguments 1 and 2 provide rebutting defeaters for each other. If they were of equal
strength and there were no other relevant arguments, then both would be defeated and you
would be unable to draw any conclusion about the probability of Helen having an accident.
However, the conclusion of argument 3 supports an undercutting defeater for argument 1.
So if all the arguments are of equal strength, argument 1 will be defeated, leaving argument
2 undefeated. The inference-graph representing all three arguments can be diagrammed as
in Fig. 5.

The preceding analysis of the problem assumes that we are equally justified in believing
that Helen is female and that Helen is a reckless driver, but typically we will be better
justified in believing the former (although adequately justified in believing the latter as
well). Arguments 2 and 3 both depend upon knowing that Helen is a reckless driver.
Argument 1 depends only upon knowing that Helen is female, which is more strongly
justified. This implies that the argument strengths for arguments 2 and 3 are both less
than the argument strength for argument 1. The result is that neither the rebutting defeater
provided by argument 2 nor the undercutting defeater provided by argument 3 should
be sufficient by itself to defeat argument 1. On the other hand, argument 2 would be
defeated outright by the more strongly supported argument 1. This is the intuitively wrong
result.

It appears that the only way to get argument 1 defeated and argument 2 undefeated
is to allow the rebutting defeater provided by argument 2 and the undercutting defeater
provided by argument 3 to work in unison rather than separately. That is precisely what
(DJ) accomplishes. Because the undercutting defeater is undefeated, it lowers the degree

15 These two principles do not by themselves provide a complete account, but see [26] for more details.
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Fig. 5. Direct inference.

of support for the conclusion of argument 1. It is that lowered support that should then
be compared with the support for the rebutting defeater provided by argument 2, and as
the latter is greater, argument 1 is defeated. So the intuitively correct answer is reached by
collaborative defeat.

There are numerous other cases in which the reasoning has an analogous structure
and variations in the degrees of justification of the premises cause similar prima facie
difficulties. In each case, collaborative defeat resolves the prima facie difficulties. For
example, the Yale Shooting Problem has played an important role in discussions of the
Frame Problem. 16 In the Yale Shooting Problem, we are given that a gun is initially loaded.
Then it is pointed at Jones and the trigger is pulled. We suppose we know (simplistically)
that if a loaded gun is pointed at someone and the trigger pulled, that person will shortly
become dead. The conclusion we are supposed to draw in this case is that Jones will
die. The Yale Shooting Problem is the problem of showing how this conclusion can be
justified. There are two problems. First, our reason for thinking that the gun is loaded
when the trigger is pulled is that it was loaded moments earlier when we checked it. So
we are employing temporal projection. Temporal projection provides a defeasible reason
for thinking that if something is true at one time then it will still be true later. Some form
of temporal projection has been endorsed by most recent authors discussing the frame
problem. 17 Using temporal projection, we can construct:

16 Hanks and McDermott [11].
17 This was proposed by Sandewall [36] and subsequently endorsed by McDermott [18], McCarthy [17] and

virtually all subsequent authors.
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Argument 1—for the conclusion that Jones will be dead after the shooting,
based upon causal knowledge and the temporal projection that the gun will
still be loaded when the trigger is pulled.

However, as Hanks and McDermott [11,12] were the first to note, with the help of temporal
projection we can also construct a second argument supporting a conflicting conclusion:

Argument 2—for the conclusion that Jones will still be alive after the
shooting, based upon temporal projection from the fact that Jones was
initially alive.

In the absence of further arguments, these arguments will defeat each other, leaving us
with no justified conclusion to draw about the state of Jones’ health. To get the intuitively
correct answer, we need a third argument:

Argument 3—supporting an undercutting defeater for argument 1.

The Yale Shooting Problem is resolved by explaining the details of argument 3. I have
proposed such a solution in [29]. For present purposes, the details are not important. Suffice
it to say that the undercutter gives inferences based upon causal knowledge priority over
those based upon temporal projection and turns on the premise that the gun is still loaded
when the trigger is pulled.

A problem derives from the fact that the strength of an inference by temporal projection
decreases as the time interval increases. That is, temporal projection gives us a reason for
thinking that things won’t change, but the greater the time interval the weaker the reason.
This is the temporal decay of temporal projection discussed at the beginning of section
three (see [29]). If we ignore the temporal decay of temporal projection, the foregoing
constitutes a solution to the Yale Shooting Problem. But now suppose, as will typically be
the case, that we observe Jones to be alive at a later time (normally, right up to the time
we pull the trigger) than we observe the gun to be loaded. I cannot observe the latter at
the time I pull the trigger without shooting myself in the face. In this case the strengths of
arguments 1 and 3, depending as they do on inferring that the gun is still loaded when the
trigger is pulled, may both be less than the strength of argument 2.

The temporal profile we should get is the following. If we observe the gun to be loaded
long before observing Jones to be alive (e.g., years ago), our justification for believing
Jones to remain alive might be somewhat weakened but not defeated. On the other hand, if
we observe the gun to be loaded just shortly before observing Jones to be alive, we should
be able to conclude that Jones will die. The intuitive rationale for this profile seems to
be as follows. First, we have the undefeated argument 3 for the undercutting defeater for
argument 2, but it is weaker than argument 2. Instead of defeating argument 2 outright, it
weakens it seriously. This leaves us with only a weak reason for thinking that Jones remains
alive. Then argument 1 provides a reason for thinking Jones is dead. If argument 1 turns
upon a temporal projection from the distant past, it will not be strong enough to defeat even
the weakened argument 2, but if the temporal projection is from a recent observation then
argument 1 will be strong enough to defeat the weakened argument 2. This is exactly the
computation that results from collaborative defeat.

The upshot is that what seemed initially like a suspicious consequence of (DJ1) and
(DJ2) turns out to be a very important logical phenomenon that is often crucial for
computing defeat statuses correctly.
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9. Measuring strengths

It has been assumed throughout that reason-strengths and degrees of justification can
be measured using the extended reals, although nothing has been said about how that is
done. If we are to take strength seriously, we must have some way of measuring it. One
way is to compare reasons with a set of standard equally good reasons that have numerical
values associated with them in some determinant way. I propose to do that by taking the
set of standard reasons to consist of instances of the statistical syllogism (SS). For any
proposition p, we can construct a standardized argument for ∼p on the basis of the pair of
suppositions “prob(F/G)� r & Gc” and “(p ↔ ∼Fc)”:

1. Suppose prob(F/G)� r & Gc;
2. Suppose (p ↔ ∼Fc);
3. Fc from 1;
4. ∼p from 2,3,

where the strength of the argument is a function of r . We can measure the strength of
a defeasible reason for p in terms of that value of r such that the conflicting argument
from the suppositions “prob(F/G) � r & Gc” and “(p ↔ ∼Fc)” exactly counteracts
it. The value r determines the reason-strength in the sense that the reason-strength is
some function dj(r) of r . It is tempting to identify dj(r) with r , but that will not work.
The difficulty is that by identifying J with ∼, we have required reason-strength to be a
cardinal measure that can be meaningfully added and subtracted. Adding and subtracting
reason-strengths may not be the same thing as adding and subtracting the corresponding
probabilities. To illustrate the general point, should it turn out (it won’t) that the reason-
strength corresponding to a probability r is given by log(r), then adding reason-strengths
would be equivalent to multiplying probabilities rather than adding them.

I do not have an a priori argument to offer regarding what function dj(r) produces
the reason-strength corresponding to r . The only way to determine this is to look for
proposals that work plausibly in concrete examples. Perhaps the most illuminating example
is that of the biased lotteries diagrammed in Figs. 2 and 3. Suppose reason-strengths
could be identified with the corresponding probabilities. In lottery 2, the probability of
ticket 1 being drawn is 0.000001, and the probability of any other ticket being drawn
is 0.111111. We wanted to conclude in this case that we are justified in believing that
ticket 1 will not be drawn. The probability corresponding to the argument-strength for this
conclusion is 0.999999, however the probability corresponding to the counter-argument
for the conclusion that ticket 1 will be drawn (because no other ticket will) is 0.888889.
The difference between these probabilities is 0.11111, which is a very low probability. If
probabilities and degrees of justification could be identified, i.e., dj(r) = r , this would
produce too low a degree of justification for it to be reasonable to believe that ticket 1 will
not be drawn. So apparently we cannot compute degrees of justification by adding and
subtracting probabilities.

There is statistical lore suggesting that in probabilistic reasoning degrees of justification
can be compared in terms of likelihood ratios. 18 When (as in the biased lotteries) we have

18 This is known as the likelihood principle. It is due to R.A. Fisher [9], and versions of it have been endorsed
by a variety of authors, including G.A. Barnard [1,2], Alan Birnbaum [3], A.W.F. Edwards [8] and Ian Hacking
[10].
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an argument for P based on a probability r , and a weaker argument for ∼P based on a
probability r∗, the likelihood ratio is (1 − r)/(1 − r∗). The suggestion is that the degree
of justification for ∼P is determined by the likelihood ratio. For example, in lottery 2
the likelihood ratio is 0.000009, while in lottery 3 it is 0.09. Note that likelihood ratios
are defined so that higher likelihood ratios correspond to lower degrees of justification.
An equivalent but more intuitive way of measuring degrees of justification is by using the
inverse of the likelihood ratios.

In [26] I argued that likelihood ratios seem to yield the intuitively correct answers
in many cases of statistical and inductive reasoning, and on that basis I am prepared
to tentatively endorse their use in measuring degrees of justification. If we take the
degree of justification dj(r) resulting from an application of the statistical syllogism
with probability r to be log(0.5) − log(1 − r), then the result of subtracting degrees of
justification is the same as taking the logarithm of the inverse of the likelihood ratio, i.e.,
dj(r)− dj(r∗) = log(1 − r∗)− log(1 − r) = log((1 − r∗)/(1 − r)). Thus this choice of
dj(r) yields congenial results. This will be my proposal:

If X is a defeasible reason for p, the strength of this reason is log(0.5)− log(1 −
r) where r is that real number such that an argument for ∼ p based upon
the suppositions “prob(F/G) � r & Gc” and “ (p ↔ ∼Fc)” and employing
the statistical syllogism exactly counteracts the argument for p based upon the
supposition X.

The reason for the “log(0.5)” term is that this produces the result that dj(0.5) = 0. An
application of the statistical syllogism based on a probability of 0.5 should produce no
justification for the conclusion, and this is captured by setting the degree of justification to
be 0. On the other hand, note that dj(1)= ∞. That is, the strongest reasons have infinite
reason-strength. This could create problems if we ever wanted to subtract the strengths of
such arguments from each other, because ∞ − ∞ is undefined, but in fact we will never
have occasion to do that.

10. Simplifying the computation

Principles (DJ1) and (DJ2) provide a recursive characterization of degrees of justifica-
tion relative to an inference-graph. However, this characterization does not lend itself well
to implementation because it requires the construction of modified inference-graphs. The
objective of this section is to produce an equivalent recursive characterization that appeals
only to the given inference-graph.

We defined a defeat-link to be ϕ-critical in an inference-graph G iff it is a member of
some minimal set of defeat-links such that the removal of all the links in the set results in
ϕ no longer having a ϕ-dependent defeater in G. Recall that a defeat-link or support-link
extends from its root to its target. The root of a defeat-link is a single node, and the root
of a support-link is a set of nodes. A node θ is an inference/defeat-descendant of a node
ψ iff θ can be reached by traveling along support-links and defeat-links from ϕ. Then a
necessary condition for a defeat-link L to be ϕ-critical is that L’s root is equal to or is
an inference/defeat-descendant of the node ϕ and ϕ is equal to or is an inference/defeat-
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Fig. 6. Parallel ϕ-critical defeat-links.

Fig. 7. Defeat link that is not ϕ-critical.

descendant of L’s target. But that is not a sufficient condition. For example, in inference-
graph (7) the defeat-links between T 1 and T 2 are not R-critical, but they satisfy this
condition. The reason these defeat-links fail to be R-critical is that there is another route
from R to ∼R that does not pass along the defeat-links. This route consists exclusively of
support-links.

An inference-defeat-path from a node ϕ to a node θ is a sequence of support-links and
defeat-links such that (1) if the first link is a defeat-link, its root is ϕ; and if it is a support-
link then ϕ is a member of its root; (2) the target of the last link in the path is θ ; (3) the last
link in the path is a defeat-link; (4) the root of each defeat-link after the first member of the
path is the target of the preceding link; (5) some member of the basis of each support-link
after the first member of the path is the target of the preceding link; and (6) the path does
not contain an internal loop, i.e., no two links in the path have the same root. A ϕ-critical
defeat-link must lie on an inference-defeat-path from ϕ to ϕ. There can be diverging and
reconverging paths with several “parallel” defeat-links, as in Fig. 6. The set of parallel
defeat-links may then be a minimal set of defeat-links such that the removal of all the
links in the set results in ϕ no longer having a ϕ-dependent defeater in G, in which case
the defeat-links are all ϕ-critical. The only way in which a defeat-link on an inference-
defeat-path can fail to be ϕ-critical is when there is a path around it consisting entirely
of support-links, as diagrammed in Fig. 7. This is what happens in inference-graph (7),
and it is crucial to the computation of degrees of justification that such defeat-links not be
regarded as ϕ-critical.

Let us say that a node α precedes a node β on an inference-defeat-path iff α and β

both lie on the path and either α = β or the path contains a subpath originating on α
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and terminating on β . Inference-descendants of a node are nodes that can be reached by
following support-links. We can characterize the ϕ-critical defeat-links as follows:

A defeat-link L is ϕ-critical in G iff (1) L lies on an inference-defeat-path
σ in G from ϕ to ϕ, and (2) there is no node α preceding the root of L on
σ and node β preceded by the target of L on σ such that β is an inference-
descendant of α in G.

This characterization makes it straightforward to search for ϕ-critical defeat-links in an
inference-graph.

Recall that (DJ) was formulated as follows:
(DJ) If P is inferred from the basis {B1, . . . ,Bn} in an inference-graph G in accordance

with a reason-scheme of strength ρ, D1, . . . ,Dk are the P -independent defeaters
for P , Dk+1, . . . ,Dm are the P -dependent defeaters of P , and GP results from
deleting all P -critical defeat-links from G and making all P -independent nodes ϕ
initial with j (ϕ,GP )= j (ϕ,G), then

j (P,G) = min
{
ρ, j (B1,G), . . . , j (Bn,G)

}

∼ [
max

{
j (D1,G), . . . , j (Dk,G)

}

+ max
{
j (Dk+1,GP ), . . . , j (Dm,GP )

}]
.

In most of the cases we have considered, Gϕ is an inference-graph in which no node θ has
a θ -dependent defeater. Thus j (θ,Gϕ) can be computed using just (DJ1) in Gϕ . This is
equivalent to applying (DJ1) in G but ignoring ϕ-critical defeat-links:

If ψ is inferred from the basis {B1, . . . ,Bn} in the inference-graphG in accordance
with a reason-scheme of strength ρ, D1, . . . ,Dk are the defeaters for ψ in G that
are not ϕ-critical, and no Di is ψ-dependent, then

j (ψ,Gϕ) = min
{
ρ, j (B1,G), . . . , j (Bn,G)

}

∼ max
{
j (D1,G), . . . , j (Dk,G)

}
.

So for this computation, it is unnecessary to modify the inference-graph.
In those cases in which there is a node θ having a θ -dependent defeater in Gϕ , we must

instead apply (DJ2):

If ψ has ψ-dependent defeaters D1, . . . ,Dk in Gϕ and Gψ,ϕ results from deleting
all ψ-critical defeat-links from Gϕ and making all ψ-independent nodes θ initial
with j (θ,Gψ,ϕ)= j (θ,Gϕ), then

j (ψ,Gϕ)= j (ψ,Gψ,ϕ)∼ max
{
j (D1,Gψ,ϕ), . . . , j (Dk,Gψ,ϕ)

}
.

Applying this computation recursively leads to a sequence of inference-graphs of the form
Gϕ1,...,ϕn . The inference-graph G is finite because it represents the actual state of an agent’s
reasoning. It follows that the computation eventually terminates because the inference-
graph G has only finitely many defeat-links, and each subsequent Gϕ1,...,ϕn has fewer
defeat-links than its predecessor. The sequence of inference-graphs constructed in this
way can be characterized as follows. Where ϕ1, . . . , ϕn are nodes of an inference-graph
G, define recursively:

Gϕ results from deleting all ϕ-critical defeat-links from G and making all
nodes θ that are ϕ-independent in G initial with j (θ,Gϕ)= j (θ,G);
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Gϕ1,...,ϕn results from deleting all ϕ1-critical defeat-links from Gϕ2,...,ϕn

and making all nodes θ that are ϕ1-independent in Gϕ2,...,ϕn initial with
j (θ,Gϕ1,...,ϕn)= j (θ,Gϕ2,...,ϕn ).

To reformulate the recursion so as to avoid constructing modified inference-graphs, we
define some new concepts. Where ϕ1, . . . , ϕn are nodes of an inference-graph G, define
recursively:

A defeat-link L of G is 〈ϕ1, . . . , ϕn〉-critical in G iff either (1) L is
〈ϕ2, . . . , ϕn〉-critical in G or (2a) L lies on an inference-defeat-path σ in
G from ϕ to ϕ containing no 〈ϕ2, . . . , ϕn〉-critical defeat-links and (2b) there
is no node a preceding the root of L on σ and node β preceded by the target
of L on σ such that β is an inference-descendant of α in G.

Where α,ϕ1, . . . , ϕn are nodes of an inference-graph G, define:

α is ϕ-dependent in G iff there is an inference-defeat-path σ in G from ϕ to α.

α is 〈ϕ1, . . . , ϕn〉-dependent in G iff there is an inference-defeat-path σ in G
from ϕ1 to α containing no 〈ϕ2, . . . , ϕn〉-critical defeat-links.

Theorem 3. L is ϕ1-critical in Gϕ2,...,ϕn iff L is 〈ϕ1, . . . , ϕn〉-critical in G but not
〈ϕ2, . . . , ϕn〉-critical in G.

Proof (By induction on n). For n= 1, this is true by definition. Suppose it is true for n−1.
Then:

L is 〈ϕ1, . . . , ϕn〉-critical in G but not 〈ϕ2, . . . , ϕn〉-critical in G
iff (1) L lies on an inference-defeat-path σ in G from ϕ1 to ϕ1 containing no
〈ϕ2, . . . , ϕn〉-critical defeat-links and (2) there is no node α preceding the root
of L on σ and node β preceded by the target of L on σ such that β is an
inference-descendant of α in G
iff (1) L lies on an inference-defeat-path σ in G from ϕ1 to ϕ1 containing no
〈ϕi, . . . , ϕn〉-critical defeat-links for i � 2 and (2) there is no node α preceding
the root of L on σ and node β preceded by the target of L on σ such that β is
an inference-descendant of α in G
iff (1) L lies on an inference-defeat-path σ in Gϕ2,...,ϕn from ϕ1 to ϕ1 (2) there
is no node α preceding the root of L on σ and node β preceded by the target
of L on σ such that β is an inference-descendant of α in G
iff (1) L lies on an inference-defeat-path σ in Gϕ2,...,ϕn from ϕ1 to ϕ1, and (2)
there is no node α preceding the root of L on σ and node β preceded by the
target of L on σ such that β is an inference-descendant of α in Gϕ2,...,ϕn

iff L is ϕ1-critical in Gϕ2,...,ϕn . ✷
Theorem 4. α is 〈ϕ1, . . . , ϕn〉-dependent in G iff α is ϕ1-dependent in Gϕ2,...,ϕn .

Proof (By induction on n). For n= 1, this is true by definition. Suppose it is true for n−1.
Then:

α is 〈ϕ1, . . . , ϕn〉-dependent in G
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iff there is an inference-defeat-path σ in G from ϕ1 to a containing no
〈ϕ2, . . . , ϕn〉-critical defeat-links

iff there is an inference-defeat-path σ in Gϕ2,...,ϕn from ϕ1 to α

iff ϕ1-dependent in Gϕ2,...,ϕn . ✷
The next three theorems follow immediately from (DJ1), (DJ2), and Theorems 3 and 4.

Theorem 5. If ψ is initial in G then j (ψ,Gϕ1,...,ϕn )= j (ψ,G).

Theorem 6. If ψ is 〈ϕ1, . . . , ϕn〉-independent in G then j (ψ,Gϕ1,...,ϕn )= j (ψ,Gϕ2,...,ϕn ).

Theorem 7. If ψ �= ϕ1 and ψ is 〈ϕ1, . . . , ϕn〉-dependent in G and ψ is inferred from
the basis {B1, . . . ,Bn} in an inference-graph G in accordance with a reason-scheme of
strength ρ, D1, . . . ,Dk are the 〈ψ,ϕ1, . . . , ϕn〉-independent defeaters for ψ that are not
〈ϕ1, . . . , ϕn〉-critical, and Dk+1, . . . ,Dm are the 〈ψ,ϕ1, . . . , ϕn〉-dependent defeaters of ψ
that are not 〈ϕ1, . . . , ϕn〉-critical, then

j (ψ,Gϕ1,...,ϕn ) = min
{
ρ, j (B1,Gϕ1,...,ϕn ), . . . , j (Bn,Gϕ1,...,ϕn )

}

∼ [
max

{
j (D1,Gϕ1,...,ϕn), . . . , j (Dk,Gϕ1,...,ϕn )

}

+ max
{
j (Dk+1,Gψ,ϕ1,...,ϕn ), . . . , j (Dm,Gψ,ϕ1,...,ϕn )

}]
.

Theorem 8. If ψ = ϕ1 and ψ is 〈ϕ1, . . . , ϕn〉-dependent in G and ψ is inferred from the
basis {B1, . . . ,Bn} in an inference-graphG in accordance with a reason-scheme of strength
ρ, D1, . . . ,Dk are the 〈ϕ1, . . . , ϕn〉-independent defeaters for ψ that are not 〈ϕ1, . . . , ϕn〉-
critical,then

j (ψ,Gϕ1,...,ϕn ) = min
{
ρ, j (B1,Gϕ1,...,ϕn ), . . . , j (Bn,Gϕ1,...,ϕn )

}

∼ max
{
j (D1,Gϕ1,...,ϕn ), . . . , j (Dk,Gϕ1,...,ϕn )

}
.

In computing j (ψ,Gϕ1,...,ϕn ), we can mirror the application of (DJ1) and (DJ2) by
applications of Theorems 5–8. However, in order to apply Theorems 5–8, we never have
to construct the modified inference-graphs Gϕ1,...,ϕn . This becomes obvious if we rewrite
j (ψ,Gϕ1,...,ϕn ) as jϕ1,...,ϕn(ψ,G). In light of Theorems 5–8, this function can be defined
recursively as follows, where ψ,ϕ1, . . . , ϕn are nodes of an inference-graph G and j0(θ,G)
is the assignment of values to initial nodes in G:

Theorem 9.
(a) If ψ is initial in G then j (ψ,G)= j0(ψ,G).
(b) If ψ is inferred from the basis {B1, . . . ,Bn} in an inference-graph G in accordance

with a reason-scheme of strength ρ, D1, . . . ,Dk are the ψ-independent defeaters
for ψ , and Dk+1, . . . ,Dm are the ψ-dependent defeaters of ψ , then

j (ϕ,G) = min
{
ρ, j (B1,G), . . . , j (Bn,G)

}

∼ [
max

{
j (D1,G), . . . , j (Dk,G)

}

+ max
{
jϕ(Dk+1,G), . . . , jψ(Dm,G)

}]
.
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(c) If ψ is 〈ϕ1, . . . , ϕn〉-independent in G then jϕ1,...,ϕn (ψ,G)= jϕ2,...,ϕn (ψ,G).
(d) If ψ �= ϕ1 and is 〈ϕ1, . . . , ϕn〉-dependent in G and ψ is inferred from the basis

{B1, . . . ,Bn} in an inference-graph G in accordance with a reason-scheme of
strength ρ, D1, . . . ,Dk are the 〈ψ,ϕ1, . . . , ϕn〉-independent defeaters for ψ that
are not 〈ϕ1, . . . , ϕn〉-critical, and Dk+1, . . . ,Dm are the 〈ψ,ϕ1, . . . , ϕn〉-dependent
defeaters of ψ that are not 〈ϕ1, . . . , ϕn〉-critical, then

jϕ1,...,ϕn(ψ,G) = min
{
ρ, jϕ1,...,ϕn (B1,G), . . . , jϕ1,...,ϕn (Bn,G)

}

∼ [
max

{
jϕ1,...,ϕn (D1,G), . . . , jϕ,ϕ1,...,ϕn (Dk,G)

}

+ max
{
jψ1,...,ϕn (Dk+1,G), . . . , jψ,ϕ1,...,ϕn (Dm,G)

}]
.

(e) If ψ = ϕ1 and ψ is 〈ϕ1, . . . , ϕn〉-dependent in G and ψ is inferred from the
basis {B1, . . . ,Bn} in an inference-graph G in accordance with a reason-scheme
of strength ρ, D1, . . . ,Dk are the 〈ϕ1, . . . , ϕn〉-independent defeaters for ψ that are
not 〈ϕ1, . . . , ϕn〉-critical, then

jϕ1,...,ϕn(ψ,G) = min
{
ρ, jϕ1,...,ϕn (B1,G), . . . , jϕ1,...,ϕn (Bn,G)

}

∼ max
{
jϕ1,...,ϕn (D1,G), . . . , jϕ,ϕ1,...,ϕn (Dk,G)

}
.

Alternatively, if we reconstrue Theorem 9 as the definition of jϕ1,...,ϕn (ψ,G) then we
have:

Theorem 10. Where ψ,ϕ1, . . . , ϕn are nodes of an inference-graph G, jϕ1,...,ϕn (ψ,G) =
j (ψ,Gϕ1,...,ϕn ).

Theorem 10 constitutes a recursive characterization of j (ϕ,G). To illustrate the
computation, consider inference-graph (13). Here we have two separate arguments for
C, from which A ⊗ B is inferred with reason-strength ρ. Nodes supporting the same
conclusions are distinguished by subscripting the conclusions. To compute j (B,G13) using
(DJ1) and (DJ2), we remove the B-critical link to get (13∗).

j (B,G13) = j0(A,G13)∼ [
j (A⊗B1,G13)+ j (A⊗B2,G∗

13)
]
,

j (A⊗B1,G13) = min
{
ρ, j (C1,G13)

} = min
{
ρ, j0(D,G13)

}
,

j (A⊗B2,G∗
13) = min

{
ρ, j (C2,G∗

13)
} = min

{
ρ, j (B,G∗

13)
}

= min
{
ρ,

(
j0(A,G13 ∼ min{ρ, j0(D,G13)}

)}
.

Thus

j (B,G13)= j0(A,G13) ∼ [
min{ρ, j0(D,G13)}
+ min

{
ρ, (j0(A,G13)∼ min{ρ, j0(D,G13)})

}]
.

For example, if j0(A,G13)= j0(D,G13), and ρ < 0.5 · j0(A,G13). Then

j (B)= j0(A,G13)∼ 2ρ.
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To repeat the computation using Theorem 9, by (b)

j (B,G13)= j0(A,G13)∼ [
j (A⊗B1,G13)+ jB(A⊗B2,G13)

]
,

j (A⊗B1,G13)= min
{
ρ, j (C1,G13)

} = min
{
ρ, j0(D,G13)

}
.

By (d),

jB(A⊗B2,G13)= min
{
ρ, jB(C2,G13)

} = min
{
ρ, jB(B,G13)

}
.

A⊗B1 is the only B-independent defeater of B , and it is not B-critical. Thus by (e),

jB(B,G13) = jB(A,G13)∼ jB(A⊗B1,G13)

= j0(A,G13)∼ j (A⊗B1,G13)

= j0(A,G13)∼ min{ρ, j0(D,G13)}.
Therefore,

jB(A⊗B2,G13)= min
{
ρ, j0(A,G13)∼ min{ρ, j0(D,G13)}

}
.

Hence once again,

j (B,G13)= j0(A,G13) ∼ [
min{ρ, j0(D,G13)}

+ min
{
ρ, j0(A,G13)∼ min{ρ, j0(D,G13)}

}]
.

Theorem 10 constitutes the desired recursive characterization of j (ϕ,G). This could be
implemented straightforwardly. However, as the next section shows, further improvements
are possible.

11. And/or inference-graphs

11.1. Two kinds of inference-graphs

In the interest of theoretical clarity, inference-graphs were defined in such a way that
different arguments for the same conclusion are represented by different nodes. This
made it clearer how the algorithm for computing defeat status works. However, for the
purpose of implementing defeasible reasoning, using different nodes to represent different
arguments for the same conclusion is an inefficient representation, because it leads to
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Fig. 8. Inference-graph with multiple arguments for a single conclusion.

Fig. 9. An and/or inference-graph.

needless duplication. If we have two arguments supporting a single conclusion, then any
further reasoning from that conclusion will generate two different nodes. If we have two
arguments for each of two conclusions, and another inference proceeds from those two
conclusions, the latter will have to be represented by four different nodes in the inference-
graph, and so on. This is illustrated in Fig. 8, where P and Q are each inferred in two
separate ways, and then R is inferred from P and Q.

A more efficient representation of reasoning would take the inference-graph to be
an and/or graph rather than a standard graph. 19 In an and/or graph, nodes are linked
to sets of nodes rather than individual nodes. This is represented diagramatically by
connecting the links with arcs. In an and/or inference-graph, when we have multiple
arguments for a conclusion, the single node representing that conclusion will be tied
to different bases by separate groups of links. (Note that this has nothing to do with
accommodating conjunction and disjunction in our language—there are no syntactical
restrictions on the formulas expressing the conclusions encoded in either simple inference-
graphs or and/or graphs.) This is illustrated in Fig. 9 by an and/or inference-graph encoding
the same reasoning as the standard inference-graph in Fig. 8. In an and/or inference-
graph, a support-link will be represented by a set of supporting-arrows connected with
an arc.

Although and/or graphs provide an efficient representation of reasoning, they complicate
the computation of degrees of justification. Using simple inference-graphs, we can use

19 This observation derives from [27]. This section adapts the approach taken there to the new definition of
“status assignment”.
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principles (DJ1) and (DJ2) to compute degrees of justification. If we are to use and/or
graphs in the implementation, we must find a computation for and/or graphs that is
equivalent to that for simple inference-graphs. A simple inference-graph can be rewritten
as an and/or graph in which each node of the and/or graph corresponds to a set of nodes
of the simple graph. A node of the simple inference-graph corresponds to an argument
in the and/or graph. An argument is a kind of connected sub-tree of the graph. More
precisely:

An argument in an and/or inference-graph G for a node ϕ is a minimal subset A
of the nodes and support-links of the graph such that (1) if a node in A has any
support-links in G, exactly one of them is in A, (2) if a support-link is in A then
the nodes in its support-link-basis are also in A, and (3) ϕ is in A.

Nodes in the simple inference-graph correspond one-one to arguments in the and/or
inference-graph.

11.2. Computing degrees of justification

It was argued in section five that the degree of justification of a conclusion should be the
maximum of the degrees of justification supplied by the different arguments supporting
that conclusion. Thus the result we want for and/or inference-graphs is the following
Correspondence Principle:

The degree of justification of a node of the and/or inference-graph is equal to
the maximum of the degrees of justification of the corresponding nodes of the
simple inference-graph.

To accomplish this, it helps to assign degrees of justification to support-links as well as
nodes. Some nodes will be initial, in which case they are simply assigned a degree of
justification j0(P,G) in an inference-graph G. I assume that such nodes have no support-
links. If a node is not initial, its degree of justification is the maximum of the degrees
of justification of its support-links. If a node is not initial and it has no support-links,
we stipulate that its degree of justification is zero. This cannot happen naturally, but
certain constructions that occur in the computation of degrees of justification can produce
inference-graphs having such nodes. Having characterized the degree of justification of
a node of the inference-graph in terms of the degrees of justification of its support-
links, the remaining problem is how to compute the degrees of justification of support-
links.

In an and/or inference-graph, undercutting defeat-links attach to support-links rather
than nodes. A rebutting defeat-link could be regarded as attaching to either a node or to
all defeasible support-links for the node. It will be more convenient to adopt the latter
convention so that both undercutting and rebutting defeaters can be treated uniformly.
Where λ is a support-link, let ⊗λ be its undercutting defeater. That is, if the root of λ
is {B1, . . . ,Bn} and the target is ϕ, ⊗λ is [(B1 & · · · & Bn)⊗ ϕ].
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In and/or inference-graphs, we can define inference-defeat-paths pretty much as we did
for simple inference-graphs. That is:

An inference-defeat-path from a node ϕ to a node θ is a sequence of support-
links and defeat-links such that (1) if the first link is a defeat-link, its root is
ϕ; and if it is a support-link then ϕ is a member of its root; (2) the target of
the last link in the path is a support-link for θ ; (3) the last link in the path is a
defeat-link; (4) the root of each defeat-link after the first member of the path is
the target of the preceding link; (5) some member of the basis of each support-
link after the first member of the path is either the target of the preceding link
or has a support-link that is the target of the preceding link; and (6) the path
does not contain an internal loop, i.e., no two links in the path have the same
root.

Let us say that a simple graph corresponds to an and/or graph iff the corresponding
nodes support the same conclusions and the support-links and defeat-links are analogous.
Representing links by ordered pairs, we can define precisely:

A simple inference-graph G corresponds to an and/or inference-graph &G iff there is a
function µ mapping the nodes of G onto the nodes of &G such that:

(a) if α is a node of G and β is a node of &G, µ(α)= µ(β) iff α and β support the same
proposition;

(b) if α is a node of G and Γ = {β | 〈β,α〉 is a support-link for a in G} then 〈{µ(γ ) |
γ ∈ Γ },µ(α)〉 is a support-link in &G;

(c) if 〈Γ,α〉 is a support-link in &G then for all nodes β,γ in G, if µ(β) ∈ Γ and
µ(γ )= α then 〈β,γ 〉 is a support-link in G;

(d) 〈β,α〉 is a defeat-link in G iff, if 〈γ1, α〉, . . . , 〈γn,α〉 are the support-links for α in G
then 〈µ(β), 〈{µ(γ1), . . . ,µ(γn)},µ(α)〉〉 is a defeat-link in &G.

Then given an inference-defeat-path in the simple graph, the corresponding sequence of
links in the and/or graph is a corresponding inference-defeat-path in the and/or graph.
Furthermore, given an inference-defeat-path in the and/or graph, every corresponding path
in the simple graph is an inference-defeat-path.

Inference-paths must be defined somewhat differently in and/or inference-graphs than
in simple inference-graphs. The difficulty is that if we simply define inference-paths to
be sets of linked support-links, they can be circular. E.g., suppose P and Q are logically
equivalent. Then if we have independent reasons for P and for Q, we can derive each
from the other. This makes perfectly good sense. If the independent argument for P

is subsequently defeated, the argument that derives P from Q will still support P as
long as the argument supporting Q is not defeated, and vice versa. Thus we can have
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an inference-graph like (12). In this inference-graph, we do not want to count paths like
A→ P →Q→ P as inference-paths. We can handle this by defining:

An inference-path from a node ϕ to a node θ is a sequence of support-links
such that (1) ϕ is a member of the root of the first link, (2) the target of the last
is θ , (3) some member of each support-link after the first is the target of the
preceding link, and (4) the path is non-circular, i.e., ϕ �= θ and no two links in
the path have the same root.

Recall that the target of a defeat-link is a support-link, so the target of the target of a defeat-
link is a node. Then we can define, for and/or graphs:

A defeat-link L is ϕ-critical in G iff (1) L lies on an inference-defeat-path σ
in G from ϕ to ϕ, and (2) there is no node α preceding the root of L on σ

and node β preceded by the target of the target of L on σ such that there is
an inference-path σ ∗ from α to β such that the path resulting from splicing
σ ∗ into σ in place of L (attaching it to the target of the target of L) is still an
inference-defeat-path.

The somewhat simpler definition (in terms of inference-descendants) employed in simple
inference-graphs no longer works, because it will not guarantee that the path resulting from
splicing σ ∗ into σ does not contain an internal loop.

Relating and/or inference-graphs to simple inference-graphs is complicated by the fact
that a defeat-link in an and/or inference-graph can correspond to several different defeat-
links in the simple inference-graph. Consider the simple inference-graph (13) again and
the corresponding and/or inference-graph (&13). Here ρ is the reason-strength for the
inference from C to A⊗ B . The defeat-link 〈A ⊗ B,B〉 in (&13) corresponds to the two
defeat-links 〈A ⊗ B1,B〉 and 〈A ⊗ B2,B〉 in (13). If a defeat-link L is ϕ-critical in the
and/or graph, then some corresponding defeat-link is ϕ-critical in the simple graph. More
precisely, if L is ϕ-critical in the and/or graph by virtue of lying on the inference-defeat-
path σ , then for every corresponding inference-defeat-path Σ in the simple graph, the
corresponding defeat-link in Σ is ϕ-critical in the simple graph. However, there can also
be corresponding defeat-links in the simple graph that do not lie on inference-defeat-paths
corresponding to σ . For example, 〈A⊗B,B〉 is B-critical in (&13), but only 〈A⊗B2,B〉,
not 〈A⊗B1,B〉, is B-critical in (13).
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Our objective is to find a way of computing degrees of justification in the and/or
inference-graph that agrees with the computation in the simple inference-graph. To
compute j (B,G13) we removed the B-critical link to get (13∗), and then computed that

j (B,G13)= j (B,G∗
13) ∼ j (A⊗B2,G∗

13)

= j (A,G13) ∼ [
min{ρ, j (D,G13)}
+ min

{
ρ, (j (A,G13)∼ min{ρ, j (D,G13)})

}]
.

For example, if j (A,G13) = j (D,G13), and ρ < 0.5 · j (A,G13), then j (B,G13) =
j (A,G13) ∼ 2ρ. It might be supposed that we can compute degrees of justification
analogously in the and/or inference-graph by deletingB-critical defeat-links. However, this
does not work. Removing B-critical defeat-links would produce inference-graph (&13∗).
The computation analogous to that employed in (13) would yield

j (B,G&13) = j (B,G∗
&13)∼ j (A⊗B,G∗

&13)= j (A,G&13)∼ min
{
ρ, j (C,G∗

&13)
}

= j (A,G&13)∼ min
{
ρ,max{j (A,G&13), j (D,G&13)}

}
.

If ρ < j(A,G&13) = j (D,G&13) then j (B,G&13) = j (A,G&13) ∼ ρ. So this does not
validate the Correspondence Principle.

This illustrates a general point. In an and/or inference-graph &G, if a defeat-link for
a support-link with target P has multiple arguments supporting it, some P -dependent
and others not, then it represents both P -dependent and P -independent defeaters in the
corresponding simple inference-graph G, and so by (DJ) it will be counted twice in
computing degrees of justification in G. The computation for &G must work similarly.
We must compute both a P -dependent and a P -independent degree of justification for
the defeat-link, and then subtract their sum from the argument-strength for P . The P -
independent degree of justification for a defeater D in &G should be the maximum
degree of justification of P -independent defeaters corresponding to D in G, and the P -
dependent degree of justification for a defeater D in &G should be the maximum degree of
justification in GP of P -dependent defeaters corresponding to D in G. The Correspondence
Principle will then follow.

Using simple inference-graphs we were able to compute the P -independent and P -
dependent values for nodes by modifying the inference-graph. The P -independent values
were computed in the original inference-graph G, and then the P -dependent values were
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computed in the inference-graph GP . However, the analogous strategy does not work for
and/or inference-graphs. For example, there is no way to represent the simple inference-
graph (13∗) as an and/or inference-graph. The best we can do is construct (&13), but that
corresponds to (13), not (13∗). This is because in an and/or inference-graph, there is no way
to remove just one of the two defeat-links between A⊗B and B . To get around this diffi-
culty, we must construct “hybrid” inference-graphs which are and/or inference-graphs ex-
cept that we allow undercutting defeaters to be represented by two separate nodes, one hav-
ing the P -independent value and the other having the P -dependent value. Let me explain.

We can compute P -independent values for nodes by deleting arguments containing
support-links having P -dependent defeaters. Thus in inference-graph (&13), the B-
independent strength of A⊗B can be computed by removing from the inference-graph all
support-links having B-dependent defeaters, producing (&13[〈A,B〉]). To compute the B-
dependent strength of A⊗B , we use the B-independent strength to attenuate the strength
of the support-link 〈A,B〉, as in (&13〈A,B〉). The latter inference-graph is constructed
from (&13) by (1) removing B-independent arguments for A⊗B , (2) removing B-critical
defeat-links, and (3) adding a dummy node A ⊗ B in that is treated as an initial node
whose value is inherited from inference-graph (&13[〈A,B〉]). By way of explanation, note
that separate B-independent arguments for A ⊗ B in (&13) correspond to separate B-
independent defeaters for B in the simple inference-graph (13), and the strength assigned
to A ⊗ Bin is then the maximum strength of those B-independent defeaters for 〈A,B〉.
The strength computed for A⊗B in (&13〈A,B〉) will then be the maximum strength of the
B-dependent defeaters for 〈A,B〉. It then follows by (DJ) that j (B,&13)= j (A,&13)∼
[j (A ⊗ B,&13[〈A,B〉]) + j (A ⊗ B,&13〈A,B〉)]. This should then be the value computed
for j (〈A,B〉,&13).

In constructing (&13[〈A,B〉]) we remove B-independent arguments for A ⊗ B . This is
done by removing support-links that occur in B-independent arguments but not also in
B-dependent arguments. Let us say that a support-link is a B-link iff it occurs in some
B-dependent argument. Precisely:

A support-path in an and/or inference-graph G is an inference-path in G from
an initial node to some other node.

A support-link is a B-link in an and/or inference-graph G iff it occurs in a
support-path in G some member of which has a B-dependent defeater.
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We can define analogously:

A support-link is a [B]-link in an and/or inference-graph G iff it occurs in a
support-path in G no member of which has a B-dependent defeater.

The B-links are the support-links included in (&13〈A,B〉) and the [B]-links are the
support-links included in (&13[〈A,B〉]). So, for example 〈C,A⊗B〉 is both a [B]-link and
a B-link, but 〈D,C〉 is only a [B]-link and 〈A,B〉 and 〈B,C〉 are only B-links.

Where G is an and/or inference-graph, λ is a support-link in G, and ϕ is the target of λ,
we can then define:

G[λ] results from removing all support-links that are not ϕ-links from G and
removing all non-initial nodes having no support-link that is a ϕ-link.

Gλ results from (1) removing all support-links that are not [ϕ]-links from
G and removing all non-initial nodes having no support-link that is a [ϕ]-
link, (2) removing ϕ-critical defeat-links, (3) adding an initial node ⊗λin with
j (⊗λin,Gλ)= j (⊗λ,G[λ]) and a defeat-link to λ, and (4) making all nodes θ
that are ϕ-independent in G initial with j (θ,Gλ)= j (θ,G).

We can then replicate the computation of degrees of justification in simple inference-
graphs by adopting the following principle for and/or inference-graphs (possibly contain-
ing extra “dummy” defeaters):

(DJ&) If λ is a support-link with basis {B1, . . . ,Bn}, target ϕ, and reason-strength ρ, U
and R are the undercutting and rebutting defeaters for λ, and D is the “dummy”
defeater for λ (if there is one in G) then

j (λ,G) = min{ρ, j (B1,G), . . . , j (Bn,G)}
∼ [

max{j (U,G[λ]), j (D,G[λ])} + max{j (R,Gλ), j (U,Gλ)}
]
.

(DJ&) is to be understood so that if any of U , D, or R is not present in G then their
contributions are omitted from the summation. Assuming that the initial nodes in the
inference-graph representing an agent’s cognitive state cannot be defeaters, the dummy
defeaters in the inference-graphs constructed by this computation can be detected easily
by the fact that they are initial nodes in the constructed inference-graphs.

To illustrate, consider the inference-graph (&13) again.

j (B,&13) = j (〈A,B〉,&13)

= j0(A,&13)∼ [
j (A⊗B,&13[〈A,B〉])+ j (A⊗B,&13〈A,B〉)

]
,

j (A⊗B,&13[〈A,B〉]) = j (〈C,A⊗B〉,&13[〈A,B〉])
= min{ρ, j (C,&13[〈A,B〉])} = min{ρ, j (〈D,C〉,&13[〈A,B〉])}
= min{ρ, j (D,&13[〈A,B〉])} = min{ρ, j (D,&13)}
= min{ρ, j0(D,&13)},

j (A⊗B,&13〈A,B〉) = j (〈C,A⊗B〉,&13〈A,B〉)
= min{ρ, j (C,&13〈A,B〉)} = min{ρ, j (〈B,C〉,&13〈A,B〉)}
= min{ρ, j (B,&13〈A,B〉)} = min{ρ, j (〈A,B〉,&13〈A,B〉)},
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j (〈A,B〉,&13〈A,B〉) = j (A,&13〈A,B〉)∼ j (A⊗Bin,&13〈A,B〉)
= j (A,&13〈A,B〉)∼ j (A⊗B,&13[〈A,B〉])
= j0(A,&13〈A,B〉)∼ min{ρ, j0(D,&13)}.

Thus

j (B,&13)= j0(A,&13) ∼ [
min{ρ, j0(D,&13)}
+ min

{
ρ, [j0(A,&13〈A,B〉)∼ min{ρ, j0(D,&13)}]}].

11.3. Refining the computation

To refine the recursive computation and make it more readily implementable we can
more or less repeat the analysis given earlier for simple inference-graphs. Where σ is a
sequence of support-links λ and bracketed support-links [λ], let σ1 be the first member of
σ and let σ ∗ be the rest of σ (its cdr). Where σ = 〈σ1, . . . , σn〉, let λ∧σ = 〈λ,σ1, . . . , σn〉.
Applying (DJ&) repeatedly generates inference-graphs Gσ that can be characterized
recursively. Where G is an and/or inference-graph, λ is a support-link in G, σ is a finite
sequence of support-links and/or bracketed support-links, and ϕ is the target of λ:

G∅ = G;
G[λ]∧σ results from removing all support-links that are not ϕ-links from Gσ
and removing all non-initial nodes having no support-link that is a ϕ-link;
Gλ∧σ results from (1) removing all support-links that are not [ϕ]-links from Gσ
and removing all non-initial nodes having no support-link that is a [ϕ]-link, (2)
removing defeat-links that are ϕ-critical in Gσ , (3) adding an initial node ⊗λin

with j (⊗λin,Gλ∧σ ) = j (⊗λ,G[λ]∧σ ) and a defeat-link to λ, and (4) making
all nodes θ that are ϕ-independent in Gσ initial with j (θ,Gλ∧σ )= j (θ,Gσ ).

To reformulate the recursion so as to avoid constructing modified inference-graphs, we
define some new concepts. Where ϕ1, . . . , ϕn are nodes of an inference-graph G, define
recursively:

A defeat-link L of G is σ -critical in G iff σ �= ∅ and either (1) L is σ ∗-critical
in G or (2a) σ1 is a support-link λ (not a bracketed support-link) and where
ϕ is the target of λ, L lies on an inference-defeat-path σ in G from ϕ to ϕ

containing no σ ∗-critical defeat-links and (2b) there is no node α preceding
the root of L on σ and node β preceded by the target of the target of L on σ

such that there is an inference-path σ ∗ from α to β such that the path resulting
from splicing σ ∗ into σ in place of L is still an inference-defeat-path.
Where σ1 is a support-link λ and ϕ is the target of λ, α is σ -independent in
G iff there is no inference-defeat-path in G from ϕ to α containing σ -critical
defeat-links.
A support-path µ in G is a σ -path iff (1) if σ ∗ �= ∅ then µ is a σ ∗-path and
(2a) if σ1 = λ then some member of µ has a σ -dependent defeater, and (2b)
and if σ1 = [λ] then no member of µ has a σ -dependent defeater.
A support-link is a σ -link iff it occurs in a σ -path.
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The import of these definitions is given by the following theorems (whose proofs are either
trivial or analogous to the proofs of the corresponding theorems for simple inference-
graphs):

Theorem 11. L is λ-critical in Gσ iff L is λ∧σ -critical in G but not σ -critical in G.

Theorem 12. α is σ -independent in G iff α is σ1-independent in Gσ ∗ .

Theorem 13. If ψ is initial in G then j (ψ,Gσ )= j0(ψ,G).

Theorem 14. If ψ is σ -independent in G then j (ψ,Gσ )= j (ψ,Gσ ∗).

Theorem 15. A support-path in G is a σ -path iff it occurs in Gσ .

Theorem 16. If ψ is not σ -independent in G then j (ψ,Gσ )= max{j (λ,Gσ ) | λ is a σ -link
for ψ}.

Theorem 17. If λ = σ1 and λ is a support-link with basis {B1, . . . ,Bn} and reason-
strength ρ, then

j (λ,Gσ )= min
{
ρ, j (B1,Gσ ∗), . . . , j (Bn,Gσ ∗)

} ∼ j (⊗λ,G[λ]∧σ ∗).

Theorem 18. If λ �= σ1 and λ is a support-link with basis {B1, . . . ,Bn}, target ϕ, and
reason-strength ρ, and U and R are the undercutting and rebutting defeaters for λ, then

j (λ,Gσ ) = min
{
ρ, j (B1,Gσ ), . . . , j (Bn,Gσ )

}

∼ [
j (U,G[λ]∧σ )+ max{j (R,Gλ∧σ ), j (U,Gλ∧σ )}

]
.

By virtue of Theorem 17, rather than talking about dummy defeaters in Gσ we can talk
about real nodes in G[λ]∧σ .

Now let us define:

jσ (ϕ,G)= j (ϕ,Gσ ), jσ (λ,G)= j (λ,Gσ ).
Then we have:

Theorem 19.
(a) If ψ is initial in G then jσ (ψ,G)= j0(ψ,G).
(b) If ψ is not initial in G then jσ (ψ,G)= max{jσ (λ,G) | λ is a support-link for ψ}.
(c) If ψ is σ -independent in G then jσ (ψ,G)= jσ ∗(ψ,G).
(d) If ψ is not σ -independent in G then jσ (ψ,G)= max{jσ (λ,G) | λ is a σ -link for ψ}.
(e) If λ is a support-link with basis {B1, . . . ,Bn}, target ϕ, and reason-strength ρ, and

U and R are the undercutting and rebutting defeaters for λ, then
(i) if λ= σ1 then jσ (λ,G)= min{ρ, jσ ∗(B1,G), . . . , jσ ∗(Bn,G)} ∼ j[λ]∧σ ∗(⊗λ,G);

(ii) if λ �= σ1 then jσ (λ,G)= min{ρ, jσ (B1,G), . . . , jσ (Bn,G)} ∼ [j[λ]∧σ (U,G)+
max{jλ∧σ (R,G), jλ∧σ (U,G)}].
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Theorem 19 constitutes a recursive definition of jσ (ψ,G). Because j (ψ,G)= j∅(ψ,G),
this also constitutes a recursive definition of j (ψ,G).

To illustrate the recursive computation, consider the and/or inference-graph (&13)
again. Let G be this inference-graph. By Theorem 19(a), j (D,G) = j0(D,G) and
j (A,G) = j0(A,G). Writing support-links and defeat-links as ordered pairs of nodes,
by Theorem 19(e.ii), j (〈D,C〉,G) = j (D,G) = j0(D,G). By Theorem 19(d), j (B,G) =
j (〈A,B〉,G). By Theorem 19(e.ii),

j (〈A,B〉,G) = j (A,G)∼ [
j[〈A,B〉](A⊗B,G)+ j〈A,B〉(A⊗B,G)

]

= j0(A,G)∼ [
j[〈A,B〉](A⊗B,G)+ j〈A,B〉(A⊗B,G)

]
.

〈A ⊗B,B〉 is not the root of an 〈[〈A,B〉]〉-critical defeat-link, so A⊗B is 〈[〈A,B〉]〉-
independent. Thus by Theorem 19(c),

j[〈A,B〉](A⊗B,G)= j (A⊗B,G)= max
{
j (λ,G) | λ is asupport-link for A⊗B

}
.

The only support-link for A⊗B is 〈C,A⊗B〉, so j[〈A,B〉](A⊗B,G)= j (〈C,A⊗B〉,G).
〈C,A⊗B〉 has no defeaters, so by Theorem 19(e.ii), j (〈C,A⊗B〉,G) = min{ρ, j (C,G)}.
By Theorem 19(e.ii), j (C,G) = max{j (λ,G) | λ is a support-link for C}. The only
support-link for C is 〈D,C〉, so j (C,G)= j (〈D,C〉,G) = j0(D,G) (by Theorems 19(e.ii)
and 19(a)). Thus j[〈A,B〉](A⊗B,G)= min{ρ, j0(D,G)}.

〈A⊗B,B〉 is a 〈〈A,B〉〉-critical defeat-link, so A⊗B is not 〈〈A,B〉〉-independent. Thus
by Theorem 19(d),

j〈A,B〉(A⊗B,G)= max
{
j〈A,B〉(λ,G) | λ is an 〈〈A,B〉〉-link for A⊗B

}
.

The only support-link for A ⊗ B is 〈C,A ⊗ B〉 and it is a 〈〈A,B〉〉-link, so j〈A,B〉(A ⊗
B,G) = j〈A,B〉(〈C,A ⊗ B〉,G). 〈C,A ⊗ B〉 has no defeaters, so by Theorem 19(e.ii),
j〈A,B〉(〈C,A⊗B〉,G)= min{ρ, j〈A,B〉(C)}. By Theorem 19(d),

j〈A,B〉(C,G)= max
{
j〈A,B〉(λ,G) | λ is a 〈〈A,B〉〉-link for C

}
.

The only 〈〈A,B〉〉-link for C is 〈B,C〉, so

j〈A,B〉(C,G)= j〈A,B〉(〈B,C〉,G) = j〈A,B〉(B,G).

By Theorem 19(d),

j〈A,B〉(B,G)= max
{
j〈A,B〉(λ,G) | λ is an 〈〈A,B〉〉-link for B

} = j〈A,B〉(〈A,B〉,G).
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By Theorem 19(e.i),

j〈A,B〉(〈A,B〉,G) = j0(A,G)∼ j[〈A,B〉](A⊗B,G)= j0(A,G)∼ min{ρ, j0(D,G)}.
It follows that

j (B,G)= j0(A,G) ∼ [
min

{
ρ, [j0(A,G)∼ min{ρ, j0(D,G)}]}

+ min{ρ, j0(D,G)}].

12. Conclusions

The topic of degrees of justification resulting from defeasible reasoning is virtually
unexplored in AI. There is a massive literature on degrees of probability (and the related
Dempster–Shafer theory), but this paper partly argues and partly assumes (referring to
arguments given elsewhere) that degrees of justification are not probabilities, in the sense
that they do not conform to the probability calculus.

The starting point of the present theory is the observation that defeaters that are too
weak to defeat an inference may nevertheless diminish the degree of justification of
its conclusion. The search for a semantics for defeasible reasoning that is compatible
with diminishing leads to a new way of computing degrees of justification recursively.
A consequence of this analysis is the principle of collaborative defeat, wherein a pair of
defeaters can defeat an inference when they are individually too weak to do that. Work
is currently underway to implement this new computation of degrees of justification in
OSCAR.
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