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Abstract  

This paper exhibits some problematic cases of defeasible or nonmonotonic reasoning 
that tend to be handled incorrectly by all of the theories of defeasible and nonmonotonic 
reasoning in the current literature. The paper focuses particularly on default logic, 
circumscription, and the author's own argument-based approach to defeasible reasoning. A 
proposal is made for how to deal with these problematic cases. The paper closes with a 
demonstration that the proposed solution is able to differentiate, in a congenial way, 
between cases having the structure of the lottery paradox and cases having the structure of 
the paradox of the preface. The algorithm proposed for computing justificational status has 
been implemented in the automated defeasible reasoner OSCAR. 

1. I n t r o d u c t i o n  

The purpose  of this paper  is to exhibit some problematic  cases of defeasible or 
nonmonoton ic  reasoning that tend to be handled incorrectly by all of the theories 
of  defeasible and nonmonotonic  reasoning in the current literature, and then to 
p ropose  a way of dealing with these cases. The paper  will focus on my own 
argument-based  approach to defeasible reasoning, 1 together  with default  logic 2 
and circumscription. 3 The problems,  however,  are general ones that seem to recur 
within all extant  theories. 

I will assume a familiarity with default logic and circumscription. By contrast  
with either,  my own argument-based approach to defeasible reasoning emphasizes 
that  the subject is reasoning. For  present  purposes,  the most  convenient  

* E-mail: pollock@ccit.arizona.edu. 
1The most recent formulation of this theory is in [16-18]. It has been developed over a period of 
twenty-five years. See also [7-10, 12, 13, 15]. 
2 See particularly [19, 20]. 
3 See particularly [5, 6] 
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Fig. 1. An  inference graph. 

representation of arguments is as graphs, where the nodes represent steps of 
inference. I will call these inference graphs. A simple example is given in Fig. 1. 
The exact structure of the arguments and the nodes will not be important for the 
purposes of this paper. For instance, we can accommodate suppositional reason- 
ing (conditionalization, reasoning by cases, reductio an absurdum, etc.) by 
incorporating suppositions into the nodes, but whether we do that is not germane 

4 to this paper. 
When a reasoner reasons, it is natural to regard it as producing a number of 

separate arguments aimed at supporting different conclusions. But we can also 
combine all of the reasoning into a single inference graph that records the overall 
state of the reasoner's inferences, showing precisely what inferences have been 
made and how inferences are based upon one another. This comprehensive 
inference graph can provide the central data structure used in evaluating a 
reasoner's beliefs. Accordingly, we can think of the function of reasoning to be 
that of building the inference graph. 

The inference relations between nodes of the inference graph are recorded in 
inference links. Where v and ~/ are nodes, (v, ~7) is an inference link iff v was 
inferred (in one step) from a set of nodes one of which was ~7. If (v,~7) is an 
inference link, then ,7 is an immediate inference ancestor of v. A reasoner might 
construct more than one argument supporting a single conclusion. It will simplify 
the discussion if we keep the inference links embodied in the different arguments 
separate. That can be done by having a different node for each argument. Nodes 
and their inference links then become unambiguous. This will allow us to regard 
the different nodes as defeated by different defeaters. An inference branch is a 
finite sequence of nodes each of which is an immediate inference ancestor for the 
next. Let us say that T/is an inference ancestor of  v iff there is an inference branch 
connecting 7/ to v. 

Justified beliefs are those mandated by the rules for belief updating. What an 
agent is justified in believing is a function of both what input premises have been 
supplied and how far the agent has got in its reasoning. A necessary condition for 
a belief to be justified is that the agent has engaged in reasoning that produced an 
argument supporting the belief, but that is not a sufficient condition because the 
agent may also have produced an argument that defeats the first argument. 

4 For more  on supposit ional reasoning,  see [16]. 
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Justification is defeasible in the sense that a belief may be justified at one time 
and become unjustified later as a result of further reasoning producing a new 
argument that defeats the first. This leads to a distinction between justification 
and warrant,  where the latter is "justification in the limit", i.e., justification when 
all possible relevant reasoning has been completed. 5 This paper will not be 
concerned with warrant, but rather with the question of what beliefs are justified 
at any given time given the current state of the agent's inference graph. 

The agent's reasoning is encoded in the inference graph, the nodes of which 
correspond to inferences. Defeat  relations can also be encoded in the inference 
graph by introducing a new set of links. Where /z  and v are nodes of the inference 
graph, (/x, v } is a defeat link iff v defeats/z.  These defeat relations will result in 
some of the nodes being defeated and others undefeated. A justified belief is one 
corresponding to an undefeated node of the inference graph. To complete this 
account, we need a characterization of the circumstances under which a node is 
defeated or undefeated.  

The defeat status of a node is a function of its defeat relations to other  nodes. 
The  theory that will be proposed here will be independent of the exact nature of 
these defeat relations, but for illustrative purposes I will sketch my preferred 
account. According to that account, reasoning proceeds by constructing argu- 
ments,  where reasons provide the atomic links in arguments. Conclusive reasons 
are deductive reasons, and they logically entail their conclusions. Defeasibility 
arises from the fact that not all reasons are conclusive. Those that are not are 
prima facie reasons. Prima facie reasons create a presumption in favor of their 
conclusions, but it is defeasible. I will encode a reason as an ordered pair (F, p ),  
where F is the set of premises of the reason and p is the conclusion. I will 
occasionally refer to the premises as a "reason for"  the conclusion. Considera- 
tions that defeat prima facie reasons are defeaters. There  are two importantly 
different kinds of defeaters. Where P is a prima facie reason for Q, R is a 
rebutting defeater iff R is a reason for denying Q. All work on nonmonotonic  logic 
and defeasible reasoning has recognized the existence of rebutting defeaters,  but 
it has sometimes been overlooked that there are other defeaters too. 6 For  
instance, rx looks red 1 is a prima facie reason f o r  rx is red ! . But if I know not 
only that x looks red but also that x is illuminated by red lights and red lights can 
make things look red when they are not, then it is unreasonable for me to infer 
that x is red. Consequently,  rx is illuminated by red lights and red lights can make 
things look red when they are not 1 is a defeater,  but it is not a reason for thinking 
that x is not red, so it is not a rebutting defeater.  Instead, it attacks the 
connection between rx looks red 1 and rx is red 1 , giving us a reason for doubting 
that x wouldn' t  look red unless it were red. The preceding indicates that if P is a 
prima facie reason for Q, then the negation of rp  wouldn't  be true unless Q were 
true 1 is a defeater.  I will abbreviate this as r ( p Q Q ) l .  Such defeaters are 

s For  more  on this distinction, see [12, 14, 18]. 
6 The  existence of defeaters  o ther  than  undercut t ing defeaters  was first pointed out  in [9]. 
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undercutting defeaters. I have argued elsewhere that rebutting defeaters and 
undercutt ing defeaters suffice for describing all defeat relations] I will use 
rebutting defeaters and undercutting defeaters to illustrate the problems that will 
be discussed below, but this account of defeat relations will not be presupposed 
by my proposal for dealing with the problematic inferences I will describe. 

Note the close parallel between prima facie reasons and defaults in default 
logic. A prima facie reason ({P},  Q)  with defeaters R 1 . . . . .  R n corresponds 
closely to a default 

P : - R 1  . . . . .  - R n  
Q 

The same relationship might be expressed in circumscription by adopting the 
axioms: 

( P & - a b )  D Q ,  

R~ D a b .  

R n D ab ,  

and circumscribing ab. 

2. Computing defeat status 

Justified conclusions are those supported by undefeated nodes. Let us turn to 
the question of how the defeat status of a node of the inference graph is 
determined by its defeat relations to other nodes. I will begin by giving a 
preliminary account which captures much of the structure of the computation of 
defeat  status, and then I will explain why it must be made more complex. 

It is initially plausible that there are just two ways a node can come to be 
defeated.  This can happen (1) by its being defeated by some other node that is 
itself undefeated or (2) by its being inferred from a node that is defeated. Let us 
say that a node is d-initial iff neither it nor any of its inference ancestors are 
defeated by any nodes (that is, they are not the termini of any defeat links). 
D-initial nodes are guaranteed to be undefeated. Then we might try the following 
recursive definition: 

Principle 1. 
(1) D-initial nodes are undefeated. 
(2) If the immediate ancestors of a node ~7 are undefeated and all nodes 

defeating 77 are defeated, then 7/ is undefeated. 

7 The argument consists of showing that large blocks of reasoning can be reconstructed using only 
these tools. See [10, 12, 15]. 



J.L. Pollock / Artificial Intelligence 67 (1994) 377-407 

E 'V 

; 1 
8 X ~" 

Fig. 2. An inference graph. 

381 

(3) If 7/has a defeated immediate ancestor, or there is an undefeated node that 
defeats ~7, then 7/is defeated. 

To illustrate, suppose we have the inference graph diagrammed in Fig. 2, where 
defeasible inferences are indicated by dashed arrows, deductive inferences by 
solid arrows, and defeat links by arrows of the form " ~ " .  a,/3, e, v,/z, K, 
and h are d-initial nodes, so they are undefeated. By Principle 1(3), ~, ~, and X 
are then defeated. By Principle 1(2), because/3 is undefeated and ~ is defeated, 3' 
and 8 are then undefeated. 

In simple cases, all standard theories of defeasible reasoning and nonmonotonic 
logic will yield results that are in agreement with Principle 1, but as we will see 
below, the different theories diverge on some complicated cases. 

3. Collective 'and provisional defeat 

I take it that Principle 1 is an initially plausible proposal for computing defeat 
status. However, the operation of this recursive definition is not as simple as it 
might at first appear. In Fig. 2, Principle 1 assigns either "defeated" or 
"undefeated" to each node of the inference graph, but that will not always be the 
case. In particular, this will fail in cases of "collective defeat", where we have a 
set of nodes each of which is defeated by other members of the set and none of 
which is defeated by undefeated nodes outside the set. Consider the simple 
inference graph diagrammed in Fig. 3. In this case, a and e are again d-initial 
nodes and hence undefeated. But neither/3 nor ff will be assigned any status at all 
by Principle 1, and then it follows that no status is assigned to any of 3', 8, ~, or g 
either. 

In order to evaluate this result, we must first decide what should happen in 
cases of collective defeat. Collective defeat is familiar in AI from the discussion of 
skeptical and credulous reasoners (see Touretzky, Horty and Thomason [21]). 
Roughly, skeptical reasoners withhold belief when they have equally good reasons 
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Fig. 3. Collective defeat. 

for and against a conclusion, and credulous reasoners choose a conclusion at 
random. It has sometimes been urged that the choice between skeptical and 
credulous reasoners is more a matter  of taste than a matter  of logic, but my own 
view is that credulous reasoners are just wrong. Suppose you have two friends, 
Smith and Jones, that you regard as equally reliable. Smith approaches you in the 
hall and says, "I t  is raining outside." Jones then announces, "Don ' t  believe him. 
It is a fine sunny day."  If you have no other  evidence regarding the weather,  what 
should you believe? It seems obvious that you should withhold belief, believing 
neither that it is raining nor that it is not. If you were to announce, "I  realize that 
I have no bet ter  reason for thinking that it is raining than for thinking that it is 
not,  but I choose to believe that it is raining", no one would regard you as 
rational. 

I have heard credulous reasoners defended on the grounds that if an agent is 
making practical decisions, it is better  to do something rather than nothing. 8 
Sometimes this seems right. For instance, if the agent is deciding where to have a 
picnic and the considerations favoring two sites are tied, it seems reasonable to 
choose at random. 9 But there are other situations in which such a policy could be 
disastrous. If the agent is performing medical diagnosis, and the evidence favoring 
two diseases is tied, we do not want the agent to decide randomly to treat the 
patient for one disease rather than the other.  It could happen that the diseases are 
not serious if left untreated,  but if the patient is treated for the wrong disease, 
that t reatment  will gravely exacerbate his condition. In such a case we want the 
agent to reserve judgment on the matter  and not proceed blindly. 

The difference between these two examples is that in the case of the picnic, the 
agent's epistemic ignorance makes the expected values of both plans for where to 
hold the picnic equal, and either plan is preferable to not holding the picnic at all. 
But in the medical diagnosis case, the agent's ignorance makes the expected value 
of doing nothing higher than the expected value of either plan for treatment.  If 

8 Both Jon Doyle and Richmond Thomason have argued this way in conversations. 
This example is due to Jon Doyle (in conversation). 
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the agent resolved its ignorance by resolving epistemic ties at random and then 
acting on the basis of the conclusions thus drawn, it could not distinguish between 
these two kinds of cases. Instead, a rational agent should acknowledge its 
ignorance and take that into account in computing the expected values of plans. 

The preceding considerations suggest that the controversy over skeptical and 
credulous reasoning stems from a confusion of epistemic reasoning (reasoning 
about what to believe) with practical reasoning (reasoning about what to do). In 
practical reasoning, if one has no basis for choosing between two alternative 
plans, one should choose at random. The classical illustration of this is the 
medieval tale of Buridan's ass who starved to death standing midway between two 
equally succulent bales of hay because he could not decide from which to eat. 
This marks an important difference between practical reasoning and epistemic 
reasoning. An agent making practical decisions must first decide what to believe 
and then use that in deciding what to do, but these are two different matters. If 
the evidence favoring two alternative hypotheses is equally good, the agent should 
record that fact and withhold belief. Subsequent practical reasoning can then 
decide what to do given that epistemic conclusion. In some cases it may be 
reasonable to choose one of the hypotheses at random and act as if it is known to 
be true, and in other cases more caution will be prescribed. But what must be 
recognized is that the design of the system of practical reasoning is a separate 
matter from the design of the system of epistemic reasoning that feeds in- 
formation to the practical reasoner. The theory of epistemic reasoning should 
acknowledge ignorance rather than drawing conclusions at random. This is 
captured formally by the principle of collective defeat: 

The Principle of Collective Defeat. If X is a set of nodes of the inference graph, 
each member of X is defeated by another member of X, and no member of X is 
defeated by an undefeated node that is not a member of X, then every node in X 
is defeated. 

Even apart from the dispute about skeptical and credulous reasoners, this way 
of handling collective defeat is not uncontroversial. Another example of collective 
defeat occurs in the lottery paradox. 1° Suppose you hold one ticket in a fair lottery 
consisting of one million tickets, and suppose it is known that one and only one 
ticket will win. Observing that the probability is only 0.000001 of a ticket being 
drawn given that it is a ticket in the lottery, it seems reasonable to infer defeasibly 
that your ticket will not win. 11 But by the same reasoning, it will be reasonable to 
believe, for each ticket, that it will not win. These conclusions conflict jointly with 
something else we are warranted in believing, namely, that some ticket will win. 
Assuming that we cannot be warranted in believing each member of an explicitly 
contradictory set of propositions, it follows that we are not warranted in believing 

10 The lottery paradox is due to Kyburg [2]. 
H This reasoning proceeds in terms of the statistical syllogism. See my [15] for a book-length 
discussion of the statistical syllogism. 
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of each ticket that it will not win. This is in accordance with the principle of 
collective defeat. But not everyone agrees with this diagnosis of the lottery 
paradox. Kyburg [2] and Etherington, Kraus, and Perlis [1] both urge that it is 
reasonable to conclude of any individual ticket that it will not be drawn. 
However,  there is a simple argument that seems to show that this is wrong. If I 
am justified in believing that ticket n will definitely not be drawn, and not just 
that it is improbable that ticket n will be drawn, then if I am presented with the 
opportunity of purchasing ticket n, it is unequivocally true that I should not 
purchase it .  However, this conclusion would be unreasonable. No matter how 
improbable it is that ticket n will be drawn, if the payoff is sufficiently great, then 
I s h o u l d  buy the ticket. For instance, if the probability of ticket n being drawn is 
one in a million but the ticket costs one dollar and the payoff is one billion 
dollars, then rationality clearly dictates that I should buy the ticket. On the other 
hand, if I am justified in believing that the ticket will not be drawn, and not just 
that it is improbable that it will be drawn, then I am precluded from reasoning in 
this way. I t  would be irrational for me to buy the ticket, no matter what the 
payoff, if I am justified in believing that it will not be drawn. Accordingly, that 
cannot be a justified belief in the case of a fair lottery. My conclusion is that the 
principle of collective defeat handles the lottery paradox correctly. 

This becomes an immediate criticism of a number of standard approaches to 
defeasible or nonmonotonic reasoning, because systems like default logic and 
autoepistemic logic are credulous in their standard formulations. We can, 
however, generate skeptical versions of these systems. For instance, we can take 
skeptical default logic to require that a conclusion hold in every minimal 
extension. Henceforth, when I refer to default logic, I will be talking about this 
skeptical variant of the standard theory. Circumscription is already skeptical, so 
no changes are required in circumscription to deal with collective defeat. There 
are a number of varieties of circumscription, however, and I will not be careful 
about distinguishing between them. 12 What I have to say about circumscription 
should be applicable to all the different varieties. 

Collectively defeated inferences are defeated, in the sense that it is unreason- 
able to accept their conclusions. But principle 1 does not rule them defeated. This 
may be less of a problem for Principle 1 than it seems. We can regard the 
assignment of defeat statuses in Fig. 3 as correct, provided we go on to say that/3 
and ~" should be assigned a third status distinct from both "defeated" and 
"undefeated" .  The need for a third defeat status is best illustrated by contrasting 
Fig. 2 with Fig. 4. In Fig. 2, ~" and ~: are defeated, and ~ thereby loses the ability 
to render ~/ defeated. In Fig. 4, both ~" and k~ are defeated (it would not be 
reasonable to accept their conclusions), but ~ retains the ability to render /3 
defeated, because it would not be reasonable to accept the conclusion of/3 either. 
This is an unavoidable consequence of the symmetry of the inference graph. The 
relationship between/3 and ~" is precisely the same as the relationship between 

1: See, for example, [3]. 
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and/z .  We must regard both as cases of collective defeat. The order in which the 
arguments are produced, or the nodes considered by the recursion, cannot affect 
their defeat status. 

We can handle this by distinguishing between two kinds of defeat---outright 
defeat and provisional defeat. If a node undergoes outright defeat, it loses the 
ability to affect other nodes, but if a node undergoes provisional defeat, it can still 
render other nodes provisionally defeated. Provisionally defeated nodes are still 
"infectious".  Provisional defeat can propagate, in two ways. First, as illustrated 
by Fig. 4, if a provisionally defeated node defeats a node that would not otherwise 
be defeated, this can render the latter node provisionally defeated. Second, if a 
node is inferred from a provisionally defeated node, and its other immediate 
ancestors are undefeated, then that node may be provisionally defeated as well. 
That is, a node inferred from a provisionally defeated node is defeated, but may 
still be infectious. This is illustrated by making structures like Fig. 4 more 
complicated so that the collective defeat of ~ and/x involves extended reasoning, 
as in Fig. 5. Here,  v and p are inferred from ~, so they are defeated, but they 
must remain infectious in order to defeat /z and thus generate the provisional 

Ct $ "V 

8 X X 

Fig. 5. The extended propagation of provisional defeat. 
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defeat of ff and p~. If v and p were defeated outright rather than provisionally, 
then/x  would be undefeated, which would render ~" defeated outright, but that is 
intuitively wrong. 

Outright defeat and provisional defeat are both defeat, in the sense that it is not 
reasonable to accept the conclusion of a node with either status. But the two 
defeat statuses are importantly different in that a node is rendered impotent if it is 
defeated outright, but if it is only provisionally defeated, it retains the ability to 
render other nodes. 

The examples considered thus far can be handled by adding a fourth clause to 
Principle 1: 

Principle 2. 
(1) D-initial nodes are undefeated. 
(2) If the immediate ancestors of a node 7/ are undefeated and all nodes 

defeating -,7 are defeated outright, then r / is  undefeated. 
(3) If 77 has an immediate ancestor that is defeated outright, or there is an 

undefeated node that defeats r/, then 77 is defeated outright. 
(4) Otherwise, ~7 is provisionally defeated. 

This has the automatic consequence that otherwise undefeated nodes inferred 
from provisionally defeated nodes are provisionally defeated, and otherwise 
undefeated nodes defeated by provisionally defeated nodes are provisionally 
defeated. Principle 2 is equivalent to the analysis of defeat I have given 
elsewhere. 13 However, I now believe that this account is inadequate, for the 
reasons that will be explored next. 

4. Self-defeating arguments 

The inadequacy of Principle 2 can be illustrated by a wide variety of examples. 
The simplest is the following. Suppose P is a prima facie reason for R, Q is a 
prima facie reason for - R ,  S is a prima facie reason for T, and we are given P, Q, 
and S. Then we can do the reasoning encoded in the inference graph diagrammed 
in Fig. 6. The nodes supporting R and - R  (henceforth ({R)) and ((-R)))  

@ q) 

! V 
@ © 

Fig. 6. A simple inference graph. 

13 First in [11], and then in my [12, 13]. 
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collectively defeat one another, but ((T)) should be independent of either and 
undefeated. The difficulty is that we can extend the inference graph as in Fig. 7. 
Here I have used a standard strategy for deriving an arbitrary conclusion from a 
contradiction. The problem is now that ((-T)) rebuts ((T)). According to 
Principle 2, ((~R)), and hence ((-T)),  are provisionally defeated, but then it 
follows that ((T)) is also provisionally defeated. The latter must be wrong. There 
are no constraints on T, so it would have the consequence that all conclusions are 
defeated. What this example shows is that nodes inferred from provisionally 
defeated nodes are not always provisionally defeated. In Fig. 7, ((~T)) must be 
defeated outright. There is no way to get this result from Principle 2. My 
diagnosis of the difficulty is that the argument supporting ((~T)) is "internally 
defective". It is self-defeating in the sense that some of its steps are defeaters for 
others. By Principle 2, this means that those inferences enter into collective defeat 
with one another, and hence ((~T)) is provisionally defeated, but my suggestion 
is that this should be regarded as a more serious defect--one which leaves ((~ T)) 
defeated outright and hence unable to defeat other inferences. Taking the 
inclusive inference ancestors of a node to be its inference ancestors together with 
itself, let us define: 

Definition 1. A node ~ is self-defeating iff some of its inclusive inference ancestors 
defeat others. 

Principle 2 should be modified so that self-defeating nodes are defeated outright 
rather than just provisionally. 

It is noteworthy that neither (skeptical) default logic nor circumscription has 
any difficulty with the inference graph of Fig. 7. In default logic, there is one 
minimal extension containing R, and another containing - R ,  but no minimal 
extension containing both and so none containing - T .  Similarly, in circumscribing 
abnormality, either the inference to R or the inference to mR will be blocked by 
abnormality, and in either case the inference to ~ T  will be blocked. 
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However, circumscription does not fare so well when we turn to a second 
example of self-defeat that has a somewhat different structure. This concerns 
what appears to be a paradox of defeasible reasoning, and involves the lottery 
paradox again. The lottery paradox is generated by supposing that a proposition 
R describing the lottery (it is a fair lottery, has one million tickets, and so on) is 
justified. Given that R is justified, we get collective defeat for the proposition that 
any given ticket will not be drawn. But Principle 2 makes it problematic how R 
can be justified. Normally, we will have only a defeasible reason for believing R. 
For instance, we may be told that it is true, or read it in a newspaper. Let T i be 
the proposition that ticket i will be drawn. In accordance with the standard 
reasoning involved in the lottery paradox, we can generate an argument 
supporting --R by noting that the --T i jointly entail - R .  This is because if none of 
the tickets is drawn then the lottery is not fair. This is diagrammed in Fig. 8. The 
difficulty is now that ((-R)) rebuts ((R)). Thus by Principle 2, these nodes defeat 
one another, with the result that neither is defeated outright. In other words, the 
inference to R is provisionally defeated. Again, this result is intuitively wrong. 
Obviously, if we consider examples of real lotteries (e.g., this week's New York 
State Lottery), it is possible to become justified in believing R on the basis 
described. I propose once more that the solution to this problem lies in noting 
that the node ((-R)) is self-defeating. 

Default logic gets the example of Fig. 8 right, but circumscription gets it wrong. 
In circumscribing abnormality, all we can conclude is that one of the defeasible 
inferences is blocked by abnormality, but it could be the inference to R, so 
circumscription does not allow us to infer R. 

On the argument-based approach, the difficulties diagrammed in Figs. 7 and 8 
can be avoided by ruling that self-defeating nodes are defeated outright--not just 
provisionally. As they are defeated outright, they cannot enter into collective 
defeat with other nodes, and so the nodes ((-R)) and ((-T)) in the preceding 

.... ::;;( II̧  ̧ ! 

® ......... ,'"®i 

Fig. 8. The lottery paradox paradox. 
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two examples are defeated outfight, as they should be. This can be accomplished 
by revising Principle 2 as follows: 

Principle 3. 
(1) D-initials nodes are undefeated. 
(2) Self-defeating nodes are defeated outfight. 
(3) If ~7 is not self-defeating, its immediate ancestors are undefeated,  and all 

nodes defeating 77 are defeated outright, then ~7 is undefeated. 
(4) If ~/ has an immediate ancestor that is defeated outright, or there is an 

undefeated node that defeats ~7, then ~/is defeated outright. 
(5) Otherwise, , / i s  provisionally defeatedl 

This is equivalent to one of the preliminary proposals made in my [17]. 
However ,  as will be seen, it is still inadequate. An interesting problem arises 
when the last step of an argument constitutes an undercutting defeater for an 
earlier step. Consider the inference graph diagrammed in Fig. 9. The node 
( ( P Q  Q)} is self-defeating, because it defeats one of its own ancestors. Thus by 
Principle 3, it is defeated outright. It then follows from Principle 3 that the 
remaining nodes are undefeated. But this is most peculiar, because ((P Q Q)) is a 
deductive consequence of ((R}). If a node is undefeated,  its deductive conse- 
quences should also be undefeated. Conversely, if a node is inferred deductively 
from a set of nodes (its nearest defeasible ancestors), then if the node is defeated,  
at least one of its nearest defeasible ancestors should also be defeated. It follows 
that at least ((R)) should be defeated. What about ((Q))? Intuitions are unclear in 
such an abstract example, so let us turn to a concrete example. 

Suppose we know (i) that people generally tell the truth, (ii) that Rober t  says 
that the elephant beside him looks pink, and (iii) that Rober t  becomes unreliable 
in the presence of pink elephants, rx looks pink 1 is a prima facie reason for rx is 
pink1. Then Robert ' s  statement gives us a prima facie reason for thinking that the 
elephant does look pink, which gives us a reason for thinking that it /s pink, 
which, when combined with Robert ' s  unreliability in the presence of pink 

® 

Fig. 9. No  nearest  defeasible ancestor  is defeated.  
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#3 (evidence) 
/ . .  

fRobert becomes unreliable in-"~ 
#5 ~he  presence of pink 

he elephant beside Robert-") 
pink, and Robert becomes I 

nreliable in the presence of I 
ink elephants. 1,) 

Fig. 10. Argument with a self-defeating conclusion. 

elephants, gives us a defeater for our reason for thinking that the elephant looks 
pink. These relations can be diagrammed as in Fig. 10. Node #7 is self-defeating, 
so one of its nearest defeasible ancestors ought to be defeated. These are nodes 
#5 and #6. Of these, it seems clear that #6 should be defeated by having #4 
defeated. That is, in this example, it would not be reasonable to accept the 
conclusion that the elephant beside Robert looks pink. This strongly suggests that 
we should similarly regard ((Q)) as defeated in Fig. 9. Neither of these 
conclusions is forthcoming from Principle 3. In earlier publications I tried to 
resolve these problems by generalizing the notion of self-defeat, but I no longer 
believe that those attempts were successful. 

It turns out that circumscription gives the right result in Figs. 9 and 10. In Fig. 
9, circumscribing abnormality has the consequence that either the inference to Q 
or the inference to R is blocked, and hence Q does not follow from the 
circumscription. On the other hand, default logic gives an outlandish result in Fig. 
9. It turns out that there are no extensions in this case, and hence either nothing 
is justified (including the given premise P) or everything is justified, depending 
upon how we handle this case. This seems to be a fairly clear counterexample to 
default logic. 

5. A new approach 

Summing up the previous discussion, we find that default logic and circumscrip- 
tion handle some of the problem cases correctly and some incorrectly. The cases 
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in which they fail tend to be cases in which they are not sufficiently sensitive to 
the structure of the arguments For example, in Fig. 8, circumscription gets 
self-defeat wrong, and in Fig. 9, default logic gets self-defeat wrong. This suggests 
that the argument-based approach should be superior, but as we have seen, the 
formulations of the argument-based approach that are contained in Principles 2 
and 3 fail to deal adequately with at least one of the examples that default logic 
and circumscription get right. The attempts to salvage the argument-based 
approach by building in restrictions become increasingly ad hoc as the examples 
become more complex. I think it is time to abandon the search for such 
restrictions and look for another way of handling the problems. Here, I think that 
the argument-based approach has a lesson to learn from default logic and 
circumscription. Consider the first example of collective defeat--Fig. 7. Default 
logic and circumscription get this example right, but Principle 2 gets it wrong, 
necessitating the explicit appeal to self-defeat in Principle 3. It is illuminating to 
consider why default logic and circumscription have no difficulty with this 
example. This is because they take account of the relationship between the 
provisionally defeated conclusions R and mR instead of just throwing them all 
into an unstructured pot of provisionally defeated conclusions. This allows us to 
observe that when R is "acceptable", - R  is not, and hence there are no 
circumstances under which - T  is "acceptable". Principle 2, on the other hand, 
washes these relationships out, just assigning a blanket status of "provisionally 
defeated" to all provisionally defeated propositions. 

The conclusion I want to draw from this is that the argument-based approach 
gets things partly right and default logic and circumscription get things partly 
right. What is needed is a single theory that combines the insights of both. In 
order to take account of the structure of arguments, this will have to be an 
argument-based theory, but in assessing defeat statuses it must take account of 
the interconnections between nodes and not just look at the defeat statuses of the 
nodes that are inference ancestors or defeaters of a given node. There is a way of 
taking account of such interconnections while remaining within the spirit of 
Principles 1 and 2. Let us define a status assignment to be an assignment of defeat 
status that is consistent with the rules of Principle 1. When nodes are either 
undefeated or defeated outright, then every status assignment will accord them 
that status, but when nodes are provisionally defeated, some status assignments 
will assign the status "defeated" and others will assign the status "undefeated". 
Links between nodes will be reflected in the fact that, for example, every status 
assignment making one undefeated may make another defeated. This is made 
precise as follows: 

Definition 2. An assignment o" of "defeated" and "undefeated" to the nodes of an 
inference graph is a status assignment iff: 

(1) o- assigns "undefeated" to all d-initial nodes; 
(2) o- assigns "undefeated" to a node a iff o- assigns "undefeated" to all the 

immediate ancestors of a and all nodes defeating a are assigned "de- 
feated"; and 

(3) tr assigns "defeated" to a iff either a has an immediate ancestor that is 
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assigned "defeated", or there is a node fl that defeats a and is assigned 
"undefeated". 

The proposal is then: 

Principle 4. A node is undefeated iff every status assignment assigns "unde- 
feated" to it; otherwise it is defeated. Of the defeated nodes, a node is defeated 
outright iff no status assignment assigns "undefeated" to it; otherwise, it is 
provisionally defeated. 

This simple proposal deals adequately with all but one of the examples we have 
considered. In Fig. 7, there is one status assignment assigning "defeated" to ((R)) 
and "undefeated" to ((-R)), and another status assignment assigning the 
opposite statuses. On both assignments, ((-T)} is assigned "defeated", so by 
Principle 4, ((~ T)) is defeated outright. Fig. 8 is analogous. In Fig. 8, for each i 
there is a status assignment assigning "defeated" to ((~T)) but assigning 
"undefeated" to ((R)) and all the other ((~T))'s. Every such status assignment 
assigns "defeated" to ((~R)). Thus by Principle 4, ((R)) is undefeated and ((~R)) 
is defeated outright, while all of the ((-T)}'s are provisionally defeated. 

Of the examples from the first part of the paper, Principle 4 is able to handle all 
but that of Fig. 9. In Fig. 9, something unexpected happens. Any status 
assignment assigning "undefeated" to ((Q)) will also assign "undefeated" to ((R)) 
and to ((P@ Q)), but then it must instead assign "defeated" to ((Q}). Thus no 
status assignment can assign "undefeated" to ((Q)). However, no status assign- 
ment can assign "defeated" to ((Q)} either, because then it would have to assign 
"defeated" to ((R)) and ((P@Q)} as well, from which it follows that it must 
instead assign "undefeated" to ((Q)). What this shows is that no status assign- 
ments are possible for the inference graph of Fig. 9. We can construct other 
examples of this same phenomenon. The simplest involve odd-length defeat 
cycles. Consider the inference graph diagrammed in Fig. 11. For example, we 
might let P be "Jones says that Smith is unreliable", Q be "Smith is unreliable", 
R be "Smith says that Robertson is unreliable", S be "Robertson is unreliable", 
T be "Robertson says that Jones is unreliable", U be "Jones is unreliable", and 
let A be "Smith says that it is raining" and B be "It is raining". Intuitively, ((Q)), 
((S)), and ((U)) ought to collectively defeat one another, and then because ((Q)) 
is provisionally defeated, ((B)) should be provisionally defeated. That is precisely 

@ ® ® ® 

Fig. 11. A three-membered defeat cycle. 
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the result we get if we expand the defeat cycle to four nodes. However, in the 
inference graph containing the three-membered defeat cycle, there is no way to 
assign defeat statuses consistent with Principle 1. For example, if ((Q)) is assigned 
"undefea ted" ,  ((S)) must be assigned "defeated",  and then ((U)) must be 
assigned "undefeated" ,  with the result that ((Q)) must be assigned "de fea ted" - -a  
contradiction. Every other way of trying to assign defeat statuses yields a similar 
contradiction. Consequently, there is no status assignment for the inference graph 
in Fig. 11. But surely, it should make no difference that the defeat cycle is of odd 
length rather than even length. We should get the same result in either case. 

This can be rectified by allowing status assignments to be partial assignments. 
They can leave gaps, but only when there is no consistent way to avoid that. 
Accordingly, let us revise the earlier definition as follows: 

Definition 3. An assignment or of "defeated" and "undefeated" to a subset of the 
nodes of an inference graph is a partial status assignment iff: 

(1) or assigns "undefeated"  to all d-initial nodes; 
(2) or assigns "undefeated"  to a node a iff tr assigns "undefeated"  to all the 

immediate ancestors of t~ and all nodes defeating t~ are assigned "de- 
feated";  and 

(3) o- assigns "defeated" to a node a iff either a has an immediate ancestor 
that is assigned "defeated" ,  or there is a node /3 that defeats a and is 
assigned "undefeated".  

Status assignments are then maximal partial status assignments: 

Definition 4. tr is a status assignment iff or is a partial status assignment and o" is 
not properly contained in any other partial status assignment. 

With this modification, Principle 4 handles the examples of Figs. 9 and 11 
properly. In Fig. 9, nodes ((Q)), ((R)), and ((PQQ)) turn out to be defeated, 
and in Fig. 11, nodes ((B)), ((Q)), ((S)), and ((U)) are defeated. This is my final 
proposal for the analysis of defeat for nodes of the inference graph. 14 

This analysis entails that defeat statuses satisfy a number of intuitively desirable 
conditions: 

(1) A node a is undefeated iff all immediate ancestors of a are undefeated and 
all nodes defeating a are defeated outright. 

(2) If some immediate ancestor of a is defeated outright, then oL is defeated 
outright. 

14 In a number of earlier publications [11-13, 15, 16], I proposed that defeat could be analyzed as 
defeat among arguments rather than inference nodes, and I proposed an analysis of that relation in 
terms of "levels of arguments". I now feel that obscured the proper treatment of self-defeat. I see no 
way to recast the present analysis in terms of a defeat relation between arguments (as opposed to 
nodes, which are argument steps rather than complete arguments). 
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(3) If some immediate ancestor of a is provisionally defeated, then a is either 
provisionally defeated or defeated outright. 

(4) If some node defeating a is undefeated, then a is defeated outright. 
(5) If ct is self-defeating, then a is defeated outright. 

6. The paradox of the preface 15 

Much of my work on the analysis of defeat has been driven by an attempt to 
deal adequately with the lottery paradox and the paradox of the preface. The 
difficulty is that these two paradoxes seem superficially to have the same form, 
and yet they require different resolutions. I have discussed the lottery paradox 
above, and maintained that it can be regarded as a straightforward case of 
collective defeat. Contrast that with the paradox of the preface (due to David 
Makinson [4]), which can be presented as follows (see [17]): 

There  once was a man who wrote a book. He was very careful in his 
reasoning, and was confident of each claim that he made. With some display 
of pride, he showed the book to a friend (who happened to be a probability 
theorist).  He  was dismayed when the friend observed that any book that long 
and that interesting was almost certain to contain at least one falsehood. 
Thus it was not reasonable to believe that all of the claims made in the book 
were true. If it were reasonable to believe each claim then it would be 
reasonable to believe that the book contained no falsehoods, so it could not 
be reasonable to believe each claim. Furthermore,  because there was no way 
to pick out some of the claims as being more problematic than others, there 
could be no reasonable way of withholding assent to some but not others. 
"There fo re , "  concluded his friend, "you are not justified in believing 
anything you asserted in the book."  

This is the paradox of the preface (so named because in the original version the 
author  confesses in the preface that his book probably contains a falsehood). This 
paradox is made particularly difficult by its similarity to the lottery paradox. In 
both paradoxes,  we have a set F of propositions each of which is supported by a 
defeasible argument,  and a reason for thinking that not all of the members of F 
are true. But in the lottery paradox we want to conclude that the members of F 
undergo collective defeat,  and hence we are not justified in believing them, 
whereas in the paradox of the preface we want to insist that we are justified in 
believing the members of F. How can the difference be explained? 

There  is, perhaps, some temptation to acquiesce in the reasoning involved in 
the paradox of the preface, and conclude that we are not justified in believing any 
of the claims in the book after all. That would surely be paradoxical, because a 
great deal of what we believe about the world is based upon books and other 

15 This section is based upon [17], but concludes by giving a different diagnosis of the paradox--one 
based upon the new analysis constituted by Principle 4. 
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sources subject to the same argument. For instance, why do I believe that Alaska 
exists? I have never been there. I believe it only because I have read about it. If 
the reasoning behind the paradox of the preface were correct, I would not be 
justified in believing that Alaska exists. That cannot be right. 

The paradox of the preface may seem like an esoteric paradox of little more 
than theoretical interest. However, the form of the paradox of the preface is of 
fundamental importance to defeasible reasoning. That form recurs throughout 
defeasible reasoning, with the result that if that form of argument were not 
defeated, virtually all beliefs based upon defeasible reasoning would be un- 
justified. This arises from the fact that we are typically able to set at least rough 
upper bounds on the reliability of our prima facie reasons. For example, color 
vision gives us prima facie reasons for judging the colors of objects around us. 
Color vision is pretty reliable, but surely it is not more than 99.9% reliable. Given 
that assumption, it follows that the probability that out of 10,000 randomly 
selected color judgments, at least one is incorrect, is 99.99%. By the statistical 
syllogism, that gives us a prima facie reason for thinking that at least one of them 
is false. By reasoning analogous to the paradox of the preface, it seems that none 
of those 10,000 judgments can be justified. And as every color judgment is a 
member of some such set of 10,000, it follows that all color judgments are 
unjustified. The same reasoning would serve to defeat any defeasible reasoning 
based upon a prima facie reason for which we can set at least a rough upper 
bound of reliability. Thus it becomes imperative to resolve the paradox of the 
preface. 

What will be shown now is that the paradox of the preface can be resolved by 
appealing to the analysis of defeat proposed above. 16 The paradox has the 
following form. We begin with a set F = { P l , .  • • , P N }  of propositions, where F 
has some property B (being the propositions asserted in a book of a certain sort, 
or being a set of propositions supported by arguments employing a certain prima 
facie reason). We suppose we know that the probability of a member of such a set 
being true is high, but we also know that it is at least as probable that such a set of 
propositions contains at least one false member. Letting T be the property of 
being true, we can express these probabilities as: 

prob(Tz l z E X & B(X))  = r ,  

prob((3z)(z E X & --Tz) I B(X))  >>- r . 

The latter high probability, combined with the premise B(F) ,  gives us a defeasible 
reason for (3z)(z ~ F & - T z ) .  This, in turn, generates collective defeat for all the 
arguments supporting the members of F. The collective defeat is generated by 
constructing the argument scheme diagrammed in Fig. 12 for each - T P r  

A resolution of the paradox of the preface must consist of a demonstration that 
node #6 is defeated outright. A subproperty defeater for the reasoning from #1 

16 This  corrects the  discussion in my [15, 17]. 
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#1 B(I-') & prob((Bz)(z~_X & - T z )  / BOO) = r 

#4 

#2 (az)(z r & -Tz) r - (p, ,..., IN} #3 

r p ,  & ... & rp,. ,  & Tp,+, ... - ( T p ,  & ... & Tpu ) #5 

#6 ~Tp, 

Fig.  12. The  p a r a d o x  of  the  preface .  

to #2 arises from establishing anything of the following form (for any property 
c): 

C ( F )  & prob((3z)(z E X & ~ Tz )  [ B ( X )  & c O ( ) )  < r .17 

It is shown in [15, p. 251] that 

prob((3z)(z E X & - T z )  I B ( X  ) & X = { x l ,  . . . , xN} & 

x 1 . . . . .  x u are distinct 18 & 

Tx 1 & .  •. & Txi_ 1 & Txi+ l & .  . . & TXN) 

= p r o b ( ~ T x i [ B ( X  ) &X = { X l , . . . ,  xN} & x l , . . . ,  x N are distinct & 

Tx  1 & .  . . & T x i _  1 & Txi+ 1 & "  . .  & T X N )  • 

Now we come to the point at which the paradox of the preface differs from the 
lottery paradox. In the lottery paradox, knowing that none of the other tickets has 
been drawn makes it likely that the remaining ticket is drawn. By contrast, 
knowing that none of the other members of F is false does not make it likely that 
the remaining member of F is false. In other words, 

p r o b ( ~  Txi [ B ( X  ) &X = { x  I . . . . .  XN}  ¢~L X 1 . . . . .  X N are distinct & 

Tx 1 & " • . & T x i _  1 & Txi+ 1 & " • . & TXN)  

~< prob(--Txi I B(X) & S  = (xl . . . . .  XN} & X l  . . . . .  X N are distinct). 

In other words, the different claims in F are not negatively relevant to one 
another. For example, the 10,000 color judgments were assumed to be in- 

17 See [15] for  m o r e  de ta i l s  on s u b p r o p e r t y  de fea te r s .  

~8 " x ~ , . . . ,  x,, are  d i s t inc t "  m e a n s  " x  I . . . .  , x ,  are  n d i f fe ren t  ob j ec t s " .  
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dependent of one another, so these two probabilities are equal in that case. In the 
case of the book, the various claims would normally be taken to support one 
another if anything, and so be positively relevant rather than negatively relevant. 
There is no reason to believe that the condition tX = {x 1 . . . . .  xN} &Xl . . . .  , xs 
are distincO alters the probability, so it is reasonable to believe that the last 

19 mentioned probability is just 1 -  r, which, of course, is much smaller than r. 
Thus we have 

prob((3z)(z ~ X & - T z )  IB (X)  & x  = {x  I . . . . .  XN} ~ff. 

x l , . . . , x  u are distinct & 

Tx I & ' "  • & T x i _  1 & Txi+ 1 &"  • • & T X N )  < r .  

Accordingly, the conjunction 

prob((3 z) (z E X & - Tz) I B (X) & X = {x 1 . . . . .  X N } 

x ~ , . . . , x  u are distinct & 

Tx I & . . .  & Txi_ 1 & Txi+ 1 & . . .  & Txu) < r 

& P l , . . . ,  Pu are distinct 

is warranted. Combining this with nodes #3 and #4 generates a subproperty 
defeater for the defeasible inference from #1 to #2, as diagrammed in Fig. 13. 
Consequently, node #8 defeats node #2. 

In computing defeat statuses, it is difficult to see the structure of this problem 
because there isn't room on a page to draw the entire inference graph. Fig. 13 is 
only a partial diagram, because it does not take account of how the different Tpi's 
are related to one another. The structure can be made clearer by considering a 
simpler problem having the same structure but with only three propositions 
playing the role of Tpi's rather than a large number of them. Consider the 
inference graph diagrammed in Fig. 14. The pie-shaped regions are drawn in to 
emphasize the symmetry. The nodes supporting P~, P2, P3, S, T, and R are 
d-initial and hence undefeated. In evaluating the other nodes, note first that there 
is a status assignment assigning "undefeated" to the nodes supporting Q1, Q2, 
and Q3. This assigns "undefeated" to the nodes supporting S~, S 2, and S 3, and 
"defeated" to the nodes supported ~Q1, --02, --03, and - (Q1 & a2 & Q3)- On 
the other hand, there can be no status assignment assigning "defeated" to the 
nodes supporting two different Q/s,  say Qa and Q2, because if the latter were 
defeated, all nodes defeating the former would be undefeated, and vice versa. 
(Note that this would still be true if there were more than three Qi's.) Suppose 
instead that a status assignment assigns "defeated" to just one Qi, and "unde- 
feated" to the others. Then the node supporting S~ must be assigned "unde- 
feated", and so the node supporting ~(Q1 & Q2 &Q3) must be assigned "de- 
feated". This has the result that the node supporting ~Q~ must be assigned 

19 This  inference proceeds by non-classical direct inference. See [15]. 
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#4 
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#1 B(F) & prob((3z)(z~_X & ~Tz) / B(X)) = r 

~ -  F {Pl, , PN} # 2 0 z ) ( z ~ r  e~ ~Tz) . . . .  

r? , ,~  ... ~ rp,, & rp , ,  & .,. a: rp~ ~(rp, ~ ... &rp~) #5 

&pp ,& aredistincXT~~ x~"&'''&TxN) <r ~ / i 
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& pp...,p~ are distinct 
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Fig. 13. Resolution of the paradox of the preface. 

"defeated". That is the only node defeating that supporting Qi, so the latter must 
be assigned "undefeated" after all. Hence there can be no node assigning 
"defeated" to a single Oi" The result is that there is only one status assignment, 
and it assigns "undefeated" to the nodes supporting Q1, Qz, Q3, $1, $2 and $3, 
and "defeated" to the nodes supporting - Q1, -Q2,  ~Q3, and 
- (Q1 & Q2 & Q3). Consequently, the former nodes are undefeated, and the latter 
are defeated outright. 

This computation of defeat status can be applied to the paradox of the preface 
by taking the Qi's to correspond to the nodes supporting each Tpi. The nodes 
supporting the S:s correspond to node #8 in Fig. 13. The nodes supporting the 
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Fig. 14. The structure of the paradox of the preface. 

~Qi ' s  correspond to node #6, the node supporting - ( Q I & Q z & Q 3 )  corre- 
sponds to nodes #2 and #5,  and the node supporting T corresponds to node #1, 
the node supporting R corresponds to node #7, and the nodes supporting the 
conjunctions of the form (Qi & Q)) correspond to node #4. Then a diagnosis 
analogous to that given for Fig. 14 yields the result that node #2, and hence node 
#6,  are both defeated outright, while the nodes supporting the Tp/s are 
undefeated. It follows that the conjunction (Tpl & ' "  &TPN) is justified. In other 
words, in the paradox of the preface, we are justified in believing that all the 
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propositions asserted in that particular book are true, despite the fact that this is a 
book of a general type which usually contains some falsehoods. 2° 

What this rather complex analysis shows is that the difference between the 
paradox of the preface and the lottery paradox lies in the fact that the truth of the 
other propositions asserted in the book is not negatively relevant to the truth of 
the remaining proposition, but the other tickets in the lottery not being drawn is 
negatively relevant to the remaining ticket's not being drawn. This difference 
makes it reasonable to believe all the propositions asserted in the book but 
unreasonable to believe that none of the tickets will be drawn. This is also what 
makes it reasonable for us to believe our eyes when we make judgments about 
our surroundings. It is the analysis of defeat embodied in Principle 4 that enables 
us to draw these congenial conclusions. 

7. Implementation 

The automated defeasible reasoner OSCAR was described in [18]. The present 
version of OSCAR uses Principle 4 for the computation of what beliefs are 
justified. A direct implementation of Principle 4 would have us look at all possible 
partial assignments of "defeated" and "undefeated" to the nodes of the inference 
graph, determine which are status assignments by checking them for consistency 
and maximality (which will eliminate most of them), and then compute defeat 
status on that basis. That approach is combinatorially impossible for large 
inference-graphs. For an inference graph with n nodes, we would have to 
generate and check 3" assignments. OSCAR employs a more efficient algorithm 
for generating the status assignments used for computing defeat status. 

For purposes of implementation, it is convenient to regard partial status 
assignments as three-valued functions, assigning either "defeated", "undefeated", 
or "unassigned" to every member of the inference graph. Given an assignment to 
a subset of the nodes of an inference-graph, define the assignment-closure of that 
assignment to be the assignment that results from recursively applying the 
following three rules until no further nodes receive values or some node receives 
inconsistent values (i.e., it is assigned both "defeated" and "undefeated"): 

• if all members of the basis of a node have been assigned "undefeated" and all 
defeaters for the node have been assigned "defeated", assign "undefeated" to 
the node; 

• if some member of the basis of a node has been assigned "defeated" or some 

zo If this still seems paradoxical, it is probably because one is overlooking the fact that "Books of this 
general sort usually contain falsehoods" formulates an indefinite probability, but "This book probably 
contains a falsehood" expresses a definite (single case) probability. The relationship between indefinite 
probabilities and definite probabilities is one of "direct inference",  which is a defeasible relation. In 
this case it is defeated by the fact that every proposition in the book is warranted, and hence the 
probability of this book containing a falsehood is zero. For more on direct inference, see [15]. 
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defeater for the node has been assigned "undefeated", assign "defeated" to 
the node; 

• if all members of the basis of a node and the node-defeaters of a node have 
received assignments, no member of the node-basis has been assigned 
"defeated", no member of the node-defeaters has been assigned "unde- 
feated", and some member of either the node-basis or node-defeaters has 
been assigned "unassigned", then assign "unassigned" to the node; 

• if some node is assigned two different values, the assignment-closure is 
empty. 

If we did not have to worry about the fact that some maximal assignments may be 
partial assignments, a reasonably efficient algorithm for generating status assign- 
ments for inference graphs would be as follows: 

Algorithm 1. 
(1) Let o" 0 be the assignment-closure of the partial assignment that assigns 

"undefeated" to all initial nodes, and let P-ass = {tr0}. 
(2) Let A ss  = ~). 
(3) Repeat (a)-(c) until no new assignments are generated: 

(a) If P-ass is empty, exit the loop. 
(b) Let or be the first member of P-ass: 

• Delete o- from P-ass. 
• Let n be a node which has not been assigned a status but for which all 

members of the node-basis have been assigned "undefeated". 
• If there is no such node as n, insert (o-, A) into Ass.  
• If there is such an n then: 

• Let S be the set of all assignments that result from extending o- by 
assigning "defeated" and "undefeated" to n. 

• Insert all non-empty assignment-closures of members of S into 
P-ass. 

(c) If Ass  is unchanged, exit the loop. 
(4) Return Ass  as the set of assignments. 

This algorithm generates all total assignments by building them up recursively 
from below (ordering nodes in terms of the "inference-ancestor" relation). When 
this leaves the status of a node undetermined, the algorithm considers all possible 
ways of assigning values to that node, and later removes any combinations of such 
"arbitrary" assignments whose assignment-closures prove to be inconsistent. The 
general idea is that assignments are generated recursively insofar as possible, but 
when that is not possible a generate-and-test procedure is used. 

To modify the above algorithm so that it will generate all maximal partial 
assignments, instead of just deleting inconsistent arbitrary assignments, we must 
look at proper sub-assignments of them. When such a proper sub-assignment has 
a consistent assignment-closure, and it is not a proper sub-assignment of any other 
consistent assignment, then it must be included among the maximal partial 
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assignments. To manage this, the algorithm must keep track of what arbitrary 
assignments have been made in the course of constructing an assignment. Let  cr 0 
be the assignment-closure of the partial assignment that assigns "undefea ted"  to 
all initials nodes. Let  us take an "annotated assignment" to be a pair (cr, A)  
where A is a set of arbitrary assignments and o" is the assignment-closure of 
o- o tO A. 

Algorithm. COMPUTE-ASSIGNMENTS. 
(1) Let  cr 0 be the assignment-closure of the partial assignment that assigns 

"undefea ted"  to all initial nodes, and let P-ass = {(o-0, ~ )} .  
(2) Let  Ass  = f~. 
(3) Repeat  (a) and (b) until an exit instruction is encountered:  

(a) If P-ass is empty,  exit the loop. 
(b) Let  (o-, A)  be the first member  of P-ass; 

• Delete  (o-, A)  from P-ass. 
• Let  n be a node which has not been assigned a status but for which all 

members of the node-basis have been assigned "undefeated" .  
• If there is no such node as n, insert (or, A)  into Ass. 
• If there is such an n then: 

• Let  Ass* be the set of all A U X* such that X* is an arbitrary 
assignment of "defea ted"  or "undefea ted"  to n. 

• Let  S be the set of all maximal sub-assignments S* of members of 
Ass* such that the assignment-closure of S* tO cr 0 is non-empty. 

• For each member  A of S*: 
• If any member  of P-ass is a sub-assignment of A, delete it from 

P-ass. 
• If any member  of Ass is a sub-assignment of A, delete it from 

Ass. 
• If A is not a sub-assignment of any member  of P-ass or Ass,  

insert A into P-ass. 
(4) Return as the set of assignments the set of all or such that for some A, 

(or, A)  is in Ass.  

The correctness of this algorithm turns on the following observations: 
(1) Every partial assignment can be generated as the assignment-closure of the 

assignment to the initial nodes and an arbitrary assignment to some 
otherwise undetermined nodes. 

(2) If a partial assignment is inconsistent, so is every extension of it. 
The  algorithm makes use of (1) in the same way the previous algorithm did. In 
light of (2) in ruling out inconsistent assignments, we can shrink the search space 
by ruling out inconsistent sub-assignments and then only test for consistency the 
extensions of the remaining consistent sub-assignments. 

To illustrate the algorithm, the following is a trace of its application to Fig. 14 
(the paradox of the preface): 
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Problem #14 
Base assignment: 
((R undefeated) (P1 undefeated) (P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 

- - - new loop - - - 
Contents of P-ass: 
( 
((R undefeated) P1 undefeated) (P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 
arbitrary part of assignment: 0 
) 

Extending the following partial assignment: 
( 
((R undefeated) (P1 undefeated) (P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 
arbitrary part of assignment: 0 
) 

Extending assignment by looking at node ~(Q1 & Q2 & Q3) 
Maximal consistent assignments to new node: 
( 
((S3 undefeated) ($2 undefeated) (Sl undefeated) ((Q2 & Q3) undefeated) ((Q1 & Q3) undefeated) 
((Q1 & Q2) undefeated) (Q1 undefeated) (Q2 undefeated) (Q3 undefeated) (~Q3 defeated) 
(~Q2 defeated) (-Q1 defeated) (~(Q1 & Q2 & Q3) defeated) (R undefeated) (P1 undefeated) 
(P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((~(Q1 & Q2 & Q3) defeated)) 
) 
( 
((-(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) (P3 undefeated) 
(S undefeated) (T undefeated)) 

arbitrary part of assignment: ((~(Q1 & Q2 & Q3) undefeated)) 
) 

Considering: 
( 
((S3 undefeated) ($2 undefeated) ($1 undefeated) ((Q2 & Q3) undefeated) ((Q1 & Q3) undefeated) 
((Q1 & Q2) undefeated) (Q1 undefeated) (Q2 undefeated) (Q3 undefeated) (~Q3 defeated) 
(-Q2 defeated) (-Q1 defeated) (~(Q1 & Q2 & Q3) defeated) (R undefeated) (P1 undefeated) 
(P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((~(Q1 & Q2 & Q3) defeated)) 
) 

Adding to P-ass: ( 
((S3 undefeated) ($2 undefeated) (St undefeated) ((Q2 & Q3) undefeated) ((Q1 & Q3) undefeated) 
((Q1 & Q2) undefeated) (Q1 undefeated) (Q2 undefeated) (Q3 undefeated) (-Q3 defeated) 
(-Q2 defeated) (~Q1 defeated) (-(Q1 & Q2 & Q3) defeated) (R undefeated) (P1 undefeated) 
(P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((-(Q1 & Q2 & Q3) defeated)) 
) 

Considering: 
( 
((-(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) (P3 undefeated) 
(S undefeated) (T undefeated)) 
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arbitrary part of assignment: ((-(Q1 & Q2 & Q3) undefeated)) 
) 

Adding to P-ass: ( 
((~(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) (P3 undefeated) 
(S undefeated) (T undefeated)) 

arbitrary part of assignment: ((-(Q1 & Q2 & Q3) undefeated)) 
) 

- - - new loop - - - 
Contents of P-ass: 
( 
((-(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) (P3 undefeated) 
(S undefeated) (T undefeated)) 

arbitrary part of assignment: ((~(Q1 & Q2 & Q3) undefeated)) 
) 
( 
((S3 undefeated) (S 2 undefeated) ($1 undefeated) ((Q2 & Q3) undefeated) ((Q1 & Q3) undefeated) 
((Q1 & Q2) undefeated) (Q1 undefeated) (Q2 undefeated) (Q3 undefeated) (~Q3 defeated) 
(-Q2 defeated) (~Q1 defeated) (-(Q1 & Q2 & Q3) defeated) (R undefeated) (P1 undefeated) 
(P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((~(Q1 & Q2 & Q3) defeated)) 
) 

Extending the following partial assignment: 
( 
((-(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) (P3 undefeated) 
(S undefeated) (T undefeated)) 

arbitrary part of assignment: ((~(Q1 & Q2 & Q3) undefeated)) 
) 

Extending assignment by looking at node Q3 
Maximal consistent assignments to new node: 
( 
((Q3 undefeated) (-(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) 
(P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((Q3 undefeated) (~(Q1 & Q2 & Q3) undefeated)) 
) 

Considering: 
( 
((Q3 undefeated) (-(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) 
(P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((Q3 undefeated) (~(Q1 & Q2 & Q3) undefeated)) 
) 

Adding to P-ass: ( 
((Q3 undefeated) (-(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) 
(P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((Q3 undefeated) (-(Q1 & Q2 & Q3) undefeated)) 
) 

= = = new loop= = = 
Contents of P-ass: 
( 
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((Q3 undefeated) (-(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) 
(P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((Q3 undefeated) (~(Q1 & Q2 & Q3) undefeated)) 
) 
( 
(($3 undefeated) ($2 undefeated) ($1 undefeated) ((Q2 & Q3) undefeated) ((Q1 & Q3) undefeated) 
((Q1 & Q2) undefeated) (Q1 undefeated) (Q2 undefeated) (Q3 undefeated) (~Q3 defeated) 
(-Q2 defeated) (~Q1 defeated) (-(Qt & Q2 & Q3) defeated) (R undefeated) (P1 undefeated) 
(P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((~(Q1 & Q2 & Q3) defeated)) 
) 

Extending the following partial assignment: 
( 
((Q3 undefeated) (-(Q1 & Q2 & Q3) undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) 
(P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((Q3 undefeated) (-(Q1 & Q2 & Q3) undefeated)) 
) 

Extending assignment by looking at node Q2 
Maximal consistent assignment to new node: 
( 
(($1 undefeated) ((Q2 & Q3) undefeated) (-(Q1 & Q2 & Q3) defeated (Q2 undefeated) 
(Q3 undefeated) (R undefeated) (P1 undefeated) (P2 undefeated) (P3 undefeated) 
(S undefeated) (T undefeated)) 

arbitrary part of assignment: ((-(Q1 & Q2 & Q3) defeated) (Q2 undefeated) (Q3 undefeated)) 
) 

Considering: 
( 
(($1 undefeated) ((Q2 & Q3) undefeated) (-(Q1 & Q2 & Q3) defeated) (Q2 undefeated) 
(Q3 undefeated) R undefeated) (P1 undefeated) (P2 undefeated) (P3 undefeated) 
(S undefeated) (T undefeated)) 

arbitrary part of assignment: ((-(Q1 & Q2 & Q3) defeated) (Q2 undefeated) (Q3 undefeated)) 
) 
This is a sub-assignment of a member of P-Ass. 

- - - new loop - - - 
Contents of P-ass: 
( 
(($3 undefeated) (S2 undefeated) ($1 undefeated) ((Q2 & Q3) undefeated) ((Q1 & Q3) undefeated) 
((Q1 & Q2) undefeated) (Q1 undefeated) (Q2 undefeated) (Q3 undefeated) (~Q3 defeated) 
(-Q2 defeated) (~Q1 defeated) (~(Q1 & Q2 & Q3) defeated (R undefeated) (P1 undefeated) 
(P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 

arbitrary part of assignment: ((-(Q1 & Q2 & Q3) defeated)) 
) 

Assignment found: 
(($3 undefeated) ($2 undefeated) ($1 undefeated) ((Q2 & Q3) undefeated) ((Q1 & Q3) undefeated) 
((Q1 & Q2) undefeated) (Q1 undefeated) (Q2 undefeated) (Q3 undefeated) (~Q3 defeated) 
(~Q2 defeated) (~Q1 defeated) (~(Q1 & Q2 & Q3) defeated) (R undefeated) (P1 undefeated) 
(P2 undefeated) (P3 undefeated) (S undefeated) (T undefeated)) 

1 assignment 
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The algorithm employed by the present version of OSCAR is a refinement of 
the preceding algorithm. 

8. Conclusions 

The main conclusion of this paper is that familiar theories of defeasible and 
nonmonotonic reasoning fail to deal adequately with some kinds of complicated 
argument structures. This has been demonstrated by looking at default logic, 
circumscription, and my own argument-based theory of defeasible reasoning. 
What is required is a new analysis of defeat that combines insights from both the 
argument-based approach and default logic and circumscription. Such an analysis 
is proposed in Principle 4. It was shown that, among other things, this new 
analysis is able to discriminate between cases having the structure of the lottery 
paradox and cases having the structure of the paradox of the preface. The defeat 
algorithm described by Principle 4 has been incorporated into the general 
defeasible reasoner OSCAR, with the result that OSCAR is able to reason 
correctly in connection with all of the examples discussed in this paper. (OSCAR 
can be obtained at no cost from the author.) 
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