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Abstract 

Pollock, J.L., How to reason defeasibly, Artificial Intelligence 57 (1992) 1-42. 

This paper describes the construction of a general-purpose defeasible reasoner that is 
complete for first-order logic and provably adequate for the argument-based conception of 
defeasible reasoning that I have developed elsewhere. Because the set of warranted 
conclusions for a defeasible reasoner will not generally be recursively enumerable, a 
defeasible reasoner based upon a rich logic like the predicate calculus cannot function like a 
traditional theorem prover and simply enumerate the warranted conclusions. An alternative 
criterion of adequacy called i.d.e.-adequacy is formulated. This criterion takes seriously the 
idea that defeasible reasoning may involve indefinitely many cycles of retracting and 
reinstating conclusions. It is shown how to construct a reasoner that, subject to certain 
realistic assumptions, is provably i.d.e.-adequate. The most recent version of OSCAR 
implements this system, and examples are given of OSCAR's operation. 

1. Introduction 

The aim of the OSCAR project is the construction of a general theory of 
rationality and its implementation in a computer system, thus producing an 
artificial rational agent named "OSCAR". This is of central relevance to AI. 
At least for most purposes, a general constraint on AI systems should be that 
they draw conclusions and make decisions that we, as human beings, regard as 
rational. As long as their reasoning remains simple, we can evaluate the 
rationality of AI systems just by using our intuitions about rationality and 
without appeal to a general theory of rationality. But as the reasoning of AI 
systems gets more complicated and the objectives of the systems more am- 
bitious, the reasoning outstrips our uninformed intuitions. Eventually, complex 
AI systems are going to have to be developed against the background of a 
theory of rationality. 
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This paper  addresses an aspect of rationality that is of central importance to 

much current work in AI - -de feas ib le  (nonmonotonic) reasoning. Most reason- 

ing is defeasible, in the sense that it can lead not only to the adoption of new 

conclusions but also to the retraction of previously adopted conclusions. The 

structure of defeasible reasoning has been a topic of interest in both philosophy 

and AI,  although until recently researchers in the two fields were largely 

oblivious of each other. 1 The purpose of this paper  is not to construct a new 

theory of defeasible reasoning, but to ask a new question about an old 

t h e o r y - - t h e  theory that can probably be regarded as the dominant  model in 

phi losophy for the last fifteen years. The question is, how can an automated 

reasoner  be constructed so that it can, in some reasonable sense, be regarded 

as an implementat ion of the theory? 

Although the general form of the philosophical theory of defeasible reason- 
ing has remained constant since the early 1970s, it has recently undergone 

considerable refinement in detail, motivated largely by its encounter  with AI.  

These refinements are recounted in [27, 28, 31, 32]. Rather  than repeat  all of 

the details and arguments  here, I will just give enough of a sketch of the theory 

to enable the reader  to understand its structure, and refer the reader  to those 

earlier publications for the details and for the defense of the theory. 

1.I. Reasons and arguments" 

Defeasible reasoning is, afortiori ,  reasoning. Reasoning proceeds by con- 

structing arguments,  where reasons provide the atomic links in arguments.  

Conclusive reasons logically entail their conclusions. Defeasibility arises from 

the fact that not all reasons are conclusive. Those that are not are prima facie 
reasons. Prima facie reasons create a presumption in favor of their conclusion, 
but it is defeasible. To illustrate, we often judge the colors of objects on the 

basis of what color they look to us, taking apparent  color to provide a prima 
facie reason for a judgment  about  actual color. Thus, for example,  rx looks red 
to me ~ is a pr ima facie reason for me to believe rx is red 1 . Similarly, rMost 
A's  are B 's ,  and this is an A 1 is a pr ima facie reason for rThis is a B 1 . I will 

represent  a reason as an ordered pair { F, p ) ,  where F is the set of premises of 
the reason and p is the conclusion. The simplest kind of defeater  for a pr ima 

facie reason { F, p } is a reason for denying the conclusion. Let us define " ~ "  
as follows: if for some 0, q~ = r - 0 ~ ,  let -n~ = 0, and let ~ ¢  = r_¢1  otherwise. 
Then we have: 

Definition 1.1. If (F, p} is a prima facie reason, (A, q) is a rebutting defeater 
for (F ,  p )  iff (A,  q)  is a reason and q = r--npl. 

~The work on defeasible reasoning in philosophy stems mainly from the publications of 
Roderick Chisholm and myself. See [2-4, 21-24, 26, 27, 29]. See also Kyburg's [12, 13]. 
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For instance, if something looks red to me, that gives me a prima facie 
reason for thinking it is red; but if Jones, whom I regard as reliable, insists that 
it is not red, that gives me a rebutting defeater. There are also defeaters that 
are not rebutting defeaters. They attack a prima facie reason without attacking 
its conclusion. They accomplish this by instead attacking the connection 
between the premises and the conclusion. They do this by giving us a reason 
for denying that the premises wouldn't be true unless the conclusion were true. 
Suppose again that I judge an object to be red on the basis of its looking red to 
me. If I subsequently learn that the object is illuminated by red lights and such 
illumination can make things look red when they are not, it is unreasonable for 
me to maintain my belief that it is red. In other words, this is a defeater. But it 
is not a reason for denying that the object is red, so it is not a rebutting 
defeater. It is instead a reason for denying that the object would not look red 
unless it were red. Symbolizing rit is false that P wouldn't be true unless Q 
were true 1 as r p ®  Q~, and letting HFbe the conjunction of the members of a 
set F, we can define: 

Definition 1.2. If (F,  p} is a prima facie reason, (A, q ) is an undercutting 
defeater for (F,  p )  iff (A, q) is a reason and q = r(HF@p) 7 . 

It is of interest to inquire about the logical properties of "®" ,  but that will 
not be relevant to the present paper. For now it can be taken as an undefined 
primitive. It is my conviction that rebutting defeaters and undercutting defea- 
ters constitute the only kinds of defeaters necessary for describing the structure 
of defeasible reasoning. The basis for this claim is the success I have had over 
the years in using them as tools in epistemological analysis (see [24, 26, 29]). 

Reasoning starts with premises that are input to the reasoner. (In human 
beings, they are provided by perception.) The input premises comprise the set 
input. (I assume throughout that input is finite.) The reasoner then makes 
inferences (some conclusive, some defeasible) from those premises using 
reason schemata. Reasons are combined in various patterns to form argu- 
ments. The simplest arguments are linear arguments. These can be viewed as 
finite sequences of propositions each of which is either a member of input or 
inferable from previous members of the sequence in accordance with some 
reason schema. But it is important to realize that not all arguments are linear. 
We engage in various kinds of suppositional reasoning. In suppositional 
reasoning we "suppose" something that we have not inferred from input, draw 
conclusions from the supposition, and then "discharge" the supposition to 
obtain a related conclusion that no longer depends upon the supposition. The 
simplest example of such suppositional reasoning is conditionalization. When 
using conditionalization to obtain a conditional (p  D q), we suppose the 
antecedent p, somehow infer the consequent q from it, and then discharge the 
supposition to infer (p  D q) independently of the supposition. Similarly, in 
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reductio ad absurdurn reasoning, to obtain ~ p  we may suppose p, somehow 
infer -qp on the basis of the supposition, and then discharge the supposition 

and conclude -np independently of the supposition. Another  variety of supposi- 
tional reasoning is dilemma (reasoning by cases). 

In suppositional reasoning, we cannot think of arguments as finite sequences 
of propositions, because each line of an argument may depend upon supposi- 
tions. We can instead think of lines of arguments as ordered triples ( X, p , /3  ), 
where X is the set of propositions comprising what is supposed on that line, p is 
the proposition obtained on that line, and/3 describes the basis" for the line,/3 
will be taken to be an ordered pair (A, R) ,  where R is the rule of inference 
used to obtain the line and A is the set of line numbers of the lines from which 
the present line is inferred by using R. X is the supposition set of the line. An 
argument cr supports the proposition p relative to the supposition X iff one of 
its lines has the form (X,  p, /3 ). or supports p iff ~ supports p relative to the 
empty supposition. The conclusion of an argument is its last line. For further 
details about the structure of arguments, see [31, 32]. 

Arguments defeat other arguments by supporting rebutting or undercutting 
defeaters for some of their defeasible steps. If we make the simplifying 
assumption that all reasons are of equal strength, this is described as follows: 

Definition 1.3. An argument ~r rebuts an argument rj iff: 

(1) some line of ~/has the form ( Y, q, (a, reason )), where the propositions 
supported on the lines in a constitute a prima facie reason for q; and 

(2) some line of ~ has the form (X,--nq,/3),  where XC_ Y. 

Definition 1.4. An argument o- undercuts an argument rt iff: 
(1) some line of r t has the form ( Y, q, ( a, reason)), where the propositions 

Pl . . . . .  Pk supported on the lines in a constitute a prima facie reason 
for q; and 

(2) some line of cr has the form ( X , ( ( p l & . . . & p k ) ® q ) , / 3 ) ,  where 
X C Y .  

If we do not assume that all reasons are of equal strength, then this account 
must be complicated somewhat. A proposal is made in [31] for how to do this, 
and it has been implemented in OSCAR,  but to keep the current presentation 
as simple as possible, I will ignore variations in reason-strength in this paper. 
We can then define: 

An argument o- defeats an argument r/ iff ~ either rebuts or undercuts "O. 

1.2. Justified beliefs and warranted propositions 

Theories  of reasoning are basically procedural theories. They are concerned 
with what a reasoner should do next when it finds itself in any particular 
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epistemological situation. Correct reasoning can involve numerous false starts, 
wherein a belief is adopted, retracted, reinstated, retracted again, and so forth. 
At each stage of reasoning, if the reasoning is correct then a belief held on the 
basis of that reasoning is justified, even if subsequent reasoning will mandate its 
retraction. Epistemic justification, in this sense, is a procedural notion consist- 
ing of the correct rules for belief updating having been followed by the system 
up to the present time in connection with the belief being evaluated. 

We can think of a reasoner as a belief-updater, i.e., an effectively comput- 
able set function update that operates repeatedly on sets of beliefs to generate 
new sets of beliefs. The reasoner starts with the set input, and each cycle of the 
reasoner constitutes the application of update to the previous set of beliefs. Let 
us define the function J recursively by stipulating 

J(O) = input,  

J ( n  + 1) = update(¢(n)) .  

Then J ( i )  is the set of beliefs justified at the ith stage of reasoning. 
In contrast to justification, warrant is what the system of reasoning is 

ultimately striving for. A proposition is warranted in a particular epistemic 
situation iff (if and only if), starting from that epistemic situation, an ideal 
reasoner unconstrained by time or resource limitations would ultimately be led 
to believe the proposition. Warranted propositions are those that would be 
justified "in the long run" if the system were able to do all possible relevant 
reasoning. A proposition can be justified without being warranted, because 
although the system has done everything correctly up to the present time and 
that has led to the adoption of the belief, there may be further reasoning 
waiting to be done that will mandate the retraction of the belief. Similarly, a 
proposition can be warranted without being justified, because although reason- 
ing up to the present time may have failed to reveal adequate reasons for 
adopting the proposition, further reasoning may provide such reasons. Analog- 
ously, reasoning up to the present may mandate the adoption of defeaters 
which, upon further reasoning, will be retracted. So justification and warrant 
are two importantly different notions, although they are closely related. 

A characterization of what ought to be believed given all possible relevant 
arguments is a characterization of the set of warranted propositions. Such an 
account can be given fairly easily in terms of the notion of one argument 
defeating another. Suppose we have an argument a supporting a conclusion P, 
and an argument /3 that defeats a. If these are the only relevant arguments, 
then P is not warranted. But now suppose we acquire a third argument y that 
defeats/3. This situation is diagrammed as in Fig. 1. The addition of y should 
have the effect of reinstating a,  thus making P warranted. We can capture this 
kind of interplay between arguments by talking about arguments being in or 
out at different levels. Let us provisionally define: 
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c¢ ~ 't 

P 

Fig. 1. Interacting arguments. 

Definition 1.5. 
• All arguments  are in at level O. 
• An argument  is in at level n + 1 iff it is in at level 0 and it is not defeated 

by any argument  in at level n. 
• An argument  is ultimately undefeated iff there is an m such that for every 

n ~> m, the argument  is in at level n. 

My proposal  is then that a proposit ion is warranted iff it is supported by some 

ult imately undefeated argument. '- 

1.3. Collective and provisional defeat 

Suppose you have two friends, Smith and Jones, that you regard as equally 

reliable. Smith approaches  you in the hall and says, " I t  is raining outside."  

Jones  then announces,  " D o n ' t  believe him. It is a fine sunny day."  If you have 
no other  evidence regarding the weather,  what should you believe? It seems 
obvious that you should withhold belief, believing neither that it is raining nor 

that it is not. If  the state of the weather  is important  to you then you should 
seek more  evidence rather  than deciding at random to hold one or the other of 

these beliefs. This is an illustration of the phenomenon  of collective defeat. 

Consider  a simple scenario in which i n p u t = { p , q } ,  and ( { p } , r )  and 
({ q}, ~ r )  are pr ima facie reasons of the same strength. Then we can construct 

two simple arguments:  

a: p - - - > r ,  

¢3: q - - -  > ~ r  . 

It follows f rom our analysis that each argument  defeats the other. Accordingly, 
they are in at level 0, out at level 1, in again at level 2, out again at level 3, and 
so on. Hence  neither is ultimately undefeated,  and hence neither r nor ~ r  is 

warranted.  
Collective defeat  operates  in accordance with the following general principle: 

: I first made this proposal in [25]. It was first published in [26]. A similar proposal was made by 
Horty, Thomason, and Touretzky in [10]. 
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The Principle of Collective Defeat. If X is a set of arguments such that (1) each 
argument in Y, is defeated by some other argument in X and (2) no argument in 

is defeated by any argument not in ~, then no argument in ~ is ultimately 
undefeated.  

This is because each argument in X will be in at every even level, but then it 
follows that each will be out at every odd level. We can define: 

Definit ion 1.6. 
• An argument o" is ultimately defeated iff there is a level n such that o" is out 

at all higher levels. 

• An argument o- is provisionally defeated iff there is no level n such that or 
is in at all higher levels or out at all higher levels. 

Collective defeat is familiar in AI from the discussion of skeptical and 
credulous reasoners (see [35]). Roughly, skeptical reasoners withhold belief 
when they have equally good reasons for and against a conclusion, and 
credulous reasoners choose a conclusion at random. It has been urged that the 
choice between skeptical and credulous reasoners is more a matter  of taste 
than a matter  of logic, but my own view is that credulous reasoners are just 
wrong. In the above example, if I announced "I  realize that I have no better  
reason for thinking that it is raining than for thinking that it is not, but I choose 
to believe that it is raining", no one would regard me as rational. I have argued 
in [28, p. 129] that this controversy stems from a confusion of theoretical 
reasoning (reasoning about what to believe) with practical reasoning (reasoning 
about what actions to perform). In practical reasoning, if one has no basis for 
choosing between two alternative actions, one should choose at random. The 
classical illustration of this is the medieval tale of Buridan's ass who starved to 
death standing midway between two equally succulent bales of hay because he 
could not decide from which to eat. This marks an important difference 
between practical reasoning and theoretical reasoning. But regardless of what 
one thinks about all this, the theory of reasoning being implemented in this 
paper  is skeptical. 

Collectively defeated arguments are provisionally defeated, but it turns out 
that an argument can be provisionally defeated without entering into collective 
defeat with other  arguments. This results from the fact that, although an 
ultimately defeated argument cannot defeat another argument, provisionally 
defeated arguments can still provisionally defeat other arguments. To illus- 
trate,  suppose a and/3  defeat one another  collectively. In this case, a is in at 
every even level and out at every odd level. Now suppose a supports a defeater  
for a third argument y. This will have the effect that y is out at every odd level 
and back in at every even level, so y is also provisionally defeated, even though 
it may not in turn defeat the arguments at whose hands it suffers provisional 
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defeat. This observation will turn out to be extremely important in the design 
of a defeasible reasoner. 

1.4. Self-defeating arguments 

In [32], 1 showed that if the only source of defeat among arguments were the 
rebutting and undercutting relations defined in Section 1.1, purely formal 
manipulations would produce arguments defeating virtually any defeasible 
argument,  with the result that the whole structure of defeasible reasoning 
would collapse. For example, suppose P is a prima facie reason for R, Q is an 
equally good prima facie reason for - R ,  S is a prima facie reason for T, and 
input = {P, Q, S}. Then we can construct the following three arguments 
(where defeasible inferences are indicated by dashed arrows): 

o~: P - - - >  R ,  

/3: Q - - - > - R ,  

o-: S - - - >  T ;  

a and/3  collectively defeat one another,  but o- should be independent of u and 
/3 and ultimately undefeated. The difficulty is that we can construct a fourth 
argument (where deductive inferences are indicated by solid arrows): 

P - - - >  R--+(R v - T )  ,}  
71: ( 2 - - - > - - R  , ~ - T "  

rl uses a standard strategy for deriving an arbitrary conclusion from a con- 
tradiction. The problem is now that rl rebuts ~r. Of course, "q itself is defeated 
by either ~ or /3 ,  or for that matter, by itself (it supports defeaters for its own 
defeasible steps). But that only results in rl being provisionally defeated, and as 
I pointed out above, a provisionally defeated argument can still provisionally 
defeat  another  argument, r I is out at every even level, but it is still in at every 
odd level. Consequently,  it still forces ¢r to be out at every even level, and 
hence o~ is provisionally defeated too. But ~ should not be provisionally 
defea ted- - i t  should be ultimately undefeated. 

To handle self-defeat correctly, the theory of defeasible reasoning must be 
made more complicated, and in [32] I made a proposal regarding how this 
should be done. As a start, the definition of being in at a level is modified so 
that self-defeating arguments are ruled out at every level. But it turns out that 
additional complications must be added to the theory to adequately handle 
collective defeat. The proposal of [32] is incorporated into OSCAR,  but to 
simplify the account, I am going to ignore these complications in the present 
paper. The justification for this is that they turn out not to affect the overall 
structure of the automated reasoner. All they do is make it a bit more difficult 
to compute which arguments defeat which. 
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1.5. Comparison with A I  theories of  nonmonotonic reasoning 

Although in general outline this theory predates the most familiar theories of 
nonmonotonic reasoning in AI, it will seem unfamiliar to many researchers in 
AI because of the past isolation of philosophy and AI from each other. 
Accordingly, it is useful to compare this theory to theories more familiar in AI. 
The comparison will be brief, because the point of this paper is not to defend 
this theory (that has been done elsewhere), but to ask how an automated 
reasoner could implement it. In spirit, the theory of defeasible reasoning seems 
close to Reiter's default logic [34], with prima facie reasons and defeaters 
corresponding to Reiter's defaults. But there are also profound differences 
between the two theories. First, prima facie reasons are supposed to be logical 
relationships between concepts. It is a necessary feature of the concept red that 
something's looking red to me gives me a prima facie reason for thinking it is 
red. (To suppose we have to discover such connections inductively leads to an 
infinite regress, because we must rely upon perceptual judgments to collect the 
data for an inductive generalization.) By contrast, Reiter's defaults often 
represent contingent generalizations. If we know that most birds can fly, then 
the inference from being a bird to flying may be adopted as a default. In the 
theory of defeasible reasoning, the latter inference is instead handled in terms 
of the following prima facie reason schema: 

rMost A's are B's, and this is an A ~ is a prima facie reason for 
rThis i sa  B 7 . 

This is the statistical syllogism, and constitutes the central topic of discussion of 
[29]. 

A second contrast between the present theory of defeasible reasoning and 
Reiter's approach is that the latter is semantical (proceeding in terms of an 
unspecified deductive-consequence relation), whereas the former is argument- 
theoretic. Argument-based approaches to defeasibility can be found in the 
work of Loui [16] and also in that of Lin and Shoham [15]. The work of Horty, 
Thomason, and Touretzky [35] can also be viewed as an argument-based 
theory of defeasible reasoning, where the arguments are represented as trees. 
However, these theories are all based upon much simpler conceptions of 
argument, confining their attention to linear arguments, and they do not 
investigate the phenomena of collective defeat or self-defeat. None of the AI 
theories of nonmonotonic reasoning appear to be sensitive to the importance of 
suppositional reasoning, but suppositional reasoning seems to be essential in 
any reasoner that is capable of performing deductive and defeasible reasoning 
simultaneously. In addition, the systems of Horty, Thomason, and Touretzky 
accommodate only rebutting defeaters. 

It is easily proven that if we identify prima facie reasons with defaults, 
confine our attention to linear arguments, consider only cases in which there is 
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no collective defeat or self-defeat, and identify the deductive-consequence 
relation with deductive provability using the linear arguments, then the set of 
warranted conclusions generated by the present theory will be the same as the 
unique extension generated by Reiter's default logic. In situations in which 
collective defeat occurs, the two theories yield completely different results, 
because default logic is credulous and the present theory is skeptical. A 
skeptical version of default logic can be generated by requiring that default 
consequences be members of the intersection of all extensions, and I conjec- 
ture (but have not proven) that this brings the two theories back into 
agreement if there is no self-defeat and we consider only linear arguments. 
Once we allow suppositional reasoning, the two theories diverge again. For 
instance, if we consider a default theory with the normal default 

P : - O  
Q 

and the corresponding defeasible theory in which P is a prima facie reason for 
Q and there are no undercutting defeaters, then from the empty set of 
premises the present theory of defeasible reasoning will generate the warranted 
conclusion (P D Q),  but skeptical default logic will not. 

No theories of nonmonotonic reasoning handle self-defeat in the same way 
as the present theory of defeasible reasoning. For example, suppose we are 
given P, and P is a prima facie reason for Q, Q is a prima facie reason for R, 
and R is a prima facie reason for ( P ®  Q). Then the following argument is 
self-defeating: 

P - - - > Q - - - > R - - - > ( P ® Q ) .  

On the theory of defeasible reasoning (as further developed in [32]), Q and 
R will be warranted, but ( P ®  Q) will not be warranted. If we try to represent 
this in default logic, we find that the only extension is the logical closure of 
{P, ( P ®  (2)}. This has the perverse consequence that although Q and R are 
unwarranted,  (P ® Q) is warranted. I take this to be an intuitive counterexam- 
pie to default logic. 

2. Cri ter ia  of  adequacy  for a defeasible reasoner  

In designing an automated defeasible reasoner, one is faced with the 
problem of how to evaluate the reasoning that the reasoner performs. We want 
the reasoning to be "correct",  but what is the criterion for correctness? The 
desideratum is not necessarily to build a reasoner that replicates human 
reasoning in all respects, because there may be more efficient ways of doing it. 
However,  before we can decide whether a particular procedure is a more 
efficient way of doing it, we have to determine what the " i t"  is that we want 
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the reasoner to do. The analysis of warrant constitutes an "argument-based 
semantics" for defeasible reasoning, but what exactly is the connection be- 
tween warrant and what we want a reasoner to accomplish? The simplest 
proposal  would be that we want the reasoner to "compute  warrant".  But if this 
is understood as requiring that the reasoner implement an effective procedure 
for deciding warrant, then it is an impossible desideratum. All theorems of 
logic are automatically warranted because the arguments supporting them are 
non-defeasible. This includes all theorems of the predicate calculus. If we give 
the system no non-logical reasons, these are the only warranted propositions. 
Thus a decision procedure for warrant would give us a decision procedure for 
the predicate calculus. However ,  by Church's theorem, the set of theorems of 
the predicate calculus is not decidable. Thus no reasoner can compute warrant 
in this sense. A weaker proposal would be that we want the reasoner to 
systematically generate all warranted propositions in some effective way, 

analogous to the manner  in which a complete theorem prover generates all 
theorems of the predicate calculus. But this desideratum is also provably 
unsatisfiable, because the set of warranted propositions can fail to be recursive- 

ly enumerable  (henceforth " r . e . " ) .  This is because, as has been observed by 
numerous  authors, 3 on any theory of defeasible reasoning, the ultimate correct- 
ness of a piece of reasoning (i.e., whether the conclusion of the reasoning will 
survive an indefinite amount  of further reasoning and hence be warranted) will 
always turn upon something else being unprovable. Making this more precise, 
we have the following theorem: 

Theorem 2.1. There are finite sets o f  input premises and finite sets o f  non-logical 
reasons such that the set of  conclusions warranted with respect to them is not r.e. 

Proof. Suppose otherwise. Then for any finite set input and finite set of 
non-logical reasons, there is a way of mechanically generating the list of 
formulas warranted relative to them. Given any first-order formula P, choose a 
sentence letter Q not occurring in P, let input= {Q}, and let the only 
non-logical reason be the prima facie reason ({Q} ,  P ) .  We have a prima facie 
reason for P, so P is warranted iff there is no ultimately undefeated or 
provisionally defeated argument defeating this inference. Because Q is logically 
unrelated to P, and there are no other prima facie reasons, the only possible 
defeating argument would be a deductive argument for - P .  Thus in this 
situation, P is warranted iff - P  is not a theorem of the predicate calculus. 
Consequently,  the mechanical procedure for listing warranted conclusions will 
list P iff - P  is not a theorem. This would constitute a recursive enumerat ion of 
the non-theorems of the predicate calculus, but that is impossible by Church's 
theorem.  It follows that the set of defeasible consequences of a set of premises 

I think that the first were David Israel [11] and Raymond Reiter [34]. 
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may not be r.e. ,  and there can be no effective procedure  for generating the set 
of warranted consequences of an arbitrary set of input premises and non-logical 

reasons. [] 

If the desideratum for an automated  reasoner is neither that of computing 

warrant  nor recursively enumerat ing the set of warranted conclusions, what is 

it? We should take seriously the idea that defeasible reasoning is defeasible. 
That  is, a defeasible reasoner  may have to adopt a belief, and then retract it in 

the face of defeaters,  and then reinstate the belief because the defeaters are 

themselves retracted. This cycle may be repeated an indefinite number  of 

times. The most we can require of the reasoner is that its rules for reasoning 
guarantee  that it will systematically modify its belief set so that it comes to 

approximate  the set of warranted propositions more and more closely. We 
want  the set of beliefs to "approach  the set of warranted propositions in 

the limit". In [28, 31], I proposed that we understand this in the following 

sense: 

Proposition 2.2. The rules for reasoning should be such that: 
(1) if a proposition p is" warranted, then the reasoner will eventually reach a 

stage where p is" adopted and stays adopted; 
(2) if p is unwarranted, then the reasoner will eventually reach a stage where 

p is not adopted and stays unadopted. 

So the task of a reasoner is not to compute warrant. It is to generate 

successive sets of beliefs that approximate  warrant  more and more closely, in 

the above sense. We can make this mathematical ly precise as follows. 

Definition 2.3. A set A is defeasibly enumerable (henceforth " d . e . " )  iff there is 

an effectively computable  set function o- and a recursive set Ao such that if we 
define Ai+ ~ = o-(Ai) then: 

(1) (Vx) if x E A then (3n) (Vm > n) x E A,,,; 
(2) (Vx) if x ~ A  then ( 3 n ) ( V m  > n) xf~A,, , .  

I will say that the pair ( A  o, ~r) is a d.e. approximation of A, and the 

sequence A i of recursive sets is a defeasible enumeration of A. An equivalent 
definition is: 

Definition 2.4. A set A is defeasibly enumerable iff there is an effectively 
computable  function f such that for each n, f (n)  is a recursive set, and 

(1) (Vx) if x E  A then ( 3 n ) ( V m  > n) x ~ f ( m ) ;  
(1) (Vx) if x ~ A  then ( 3 n ) ( V m  > n) x ~ f ( m ) .  

Defeasibly enumerable  sets are the same as the sets that Gold [9] calls 
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"limiting recursive" and Putnam [33] calls "trial and error". Both authors 
establish that a set is of this type iff it is za 2 in the arithmetic hierarchy. 

The intuitive difference between recursively enumerable sets and defeasibly 
enumerable sets is that recursively enumerable sets can be "systematically 
approximated from below", while defeasibly enumerable sets that are not 
recursively enumerable can only be systematically approximated from above 
and below simultaneously. More precisely, if A is r.e., then there is an 
effectively computable sequence of sets A i such that 

(1) (Vx) if x E A then (3n)(Vm > n) x E  Am; 
(2) (Vx) if x ~ A  then (Vm) x ~ m  m. 

The sets A i approximate A from below in the sense that they are all subsets of 
A and they grow monotonically, approaching A in the limit. If A is defeasibly 
enumerable,  however, the sets A i need not be subsets of A. They may only 
approach A from above and below simultaneously, in the sense that they may 
contain elements not contained in A. Every such element must eventually be 
taken out of the Ai's, but there need not be any point at which they have all 
been removed. The process of defeasible enumeration can be pictured by 
thinking of A as a spherical region of space and the A~'s as representing 
successive stages of a reverberating elastic ball whose center coincides with the 
center of A. As the reverberations dampen out, the outer surface of the ball 
will come to approximate that of the spherical surface more and more closely, 
but there will never be a point at which the ball is contained entirely within the 
spherical surface. 

The reverberating sphere metaphor can be used to give a precise mathemati- 
cal characterization of the difference between A being r.e. (approximation 
from below) and d.e. (approximation from above and below simultaneously). 
If A is r.e. then 

A =  L_.J A , .  
n e w  

On the other hand, if A is d.e. then what we have is: 

A= (-] ~J Am= ~J ("~ A m. 
n e w  m ~ n  n e r o  m ~ n  

My proposal regarding reasoning and warrant is that the set of warranted 
propositions is defeasibly enumerable, and the rules for reasoning are rules for 
successively approximating warrant in this way, i.e., they are rules for con- 
structing a d.e. approximation. More accurately, thinking of a reasoner as an 
effective set function update that starts with the set input and operates 
repeatedly on sets of beliefs to generate new sets of beliefs, we have: 

Definition 2.5. A reasoner update is d.e.-adequate iff, for any set input of 
inputs, ( input,update) is a d.e. approximation of the set of propositions that 
are warranted given that set of inputs. 
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Equivalently: 

Definition 2.6. If J ( i )  is the set of propositions justified after i applications of 
update to input, the reasoner is d.e.-adequate iff J is a defeasible enumeration 
of the set of warranted propositions. 

I propose d.e.-adequacy as the primary criterion of adequacy for a reasoner, 
and the objective of this paper is to investigate the question of how to construct 
a reasoner that is d.e.-adequate.  4 

In actual practice, an automated reasoner does not strive to do all possible 
reasoning. Instead, it is constrained to construct arguments built using only 
limited resources for argument formation. For instance, it might construct only 
arguments that can be formulated within a certain system of first-order logic. 
These arguments will comprise a class ~/. The preceding adequacy condition 
must be relativized to ~ to make it applicable to such reasoners. Given any 
class ,~/of arguments, we can relativize all our argument-based concepts to ~/ 
by relativizing all quantification over arguments to the class ,ft. In particular: 

Definition 2.7. P is warranted relative to ~l iff P is supported by some argument 
in ~ / t h a t  is ultimately undefeated relative to M. 

Definition 2.8. A reasoner update is d.e.-adequate relative to ~l iff, for any set 
input of inputs, (input,update) is a d.e. approximation to the set of proposi- 
tions that are warranted relative to ~ given that set of inputs. 

Our actual objective will be to construct reasoners that are d.e.-adequate 
relative to particular classes of arguments. 

The requirement  that a reasoner provide a d.e. approximation to warrant is 
a minimal criterion of adequacy. Other  criteria must also be involved in the 
choice of a reasoner. At the very least we must consider efficiency. But there is 
a different kind of adequacy condition that must also be met. If a reasoner is 
d .e . -adequate ,  there will be cases in which it will never stop reasoning. Any 
given proposition may be adopted,  retracted, and reinstated many times. Every 
warranted proposition will eventually be adopted without subsequently being 
retracted, and every unwarranted proposition will eventually become un- 
adopted without subsequently being adopted, but the reasoner may never 
know that a given proposition has reached this stable state. It can inform us 
that "so far" a certain conclusion is justified, but it may have to continue 

4 It can be observed that d .e . -adequate  reasoners might also be constructed for other  theories of  
defeasible and nonmonotonic  reasoning. I have not pursued that,  because it is my conviction that 
insofar as such theories disagree with the present  theory they give incorrect accounts of rationality. 
But ,  of  course,  others will disagree with me on this. 
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forever  in a possibly fruitless search for defeating arguments. This, of course, is 
just the way people work. This highlights a distinction between two concepts of 
defeasibility. The sense in which correct human reasoning is defeasible is that 

we regard such reasoning as "innocent until proven guilty". Once a conclusion 
becomes justified, it is reasonable to accept it provisionally and act upon it. By 
contrast,  AI theories of nonmonotonic reasoning (default logic, circumscrip- 
tion, etc.) have usually focused on a stronger notion of defeasibility according 

to which a defeasible conclusion is acceptable only if it has been established 
that it is objectively devoid of faults. The latter amounts to proving that the 
conclusion is warranted. This has made it seem mysterious how nonmonotonic  
reasoning can possibly function in a finite agent. The solution is to instead 
adopt  the "innocent  until proven guilty" construal of defeasibility, and allow a 
rational agent to act on its defeasible conclusions even though it has not 
conclusively established that there are no defeaters and even though, in the 
absence of more pressing tasks, it will continue to search for defeaters. 

The reasoning employed by such a rational agent must be interruptible, 5 in 
the sense that if at some point the agent must stop reasoning and act, it is 
reasonable to act on the conclusions drawn to that point. This is not ensured by 

d.e.-adequacy.  For example, let R 1 be a reasoner that is both interruptible and 
d.e .-adequate.  Let  R 2 be just like R I except that for the first million steps it 
draws conclusions purely at random, and then after one million steps it 
withdraws all those randomly drawn conclusions and begins reasoning as in 
R 1. Clearly, it would be unreasonable to make use of any of the conclusions 
drawn by R 2 during its first one million inference steps, so it is not interruptible. 
On the other  hand, R~ is still d.e .-adequate,  because that concerns only 
its behavior in the limit, and its behavior in the limit is the same as that 

of R l . 
It is not clear how to construct a formal criterion of adequacy that will 

ensure interruptibility. It is tempting to at least require that the conditional 

probability that a conclusion is warranted given that it is drawn at a certain 
stage of the reasoning is (1) high, and (2) a monotonic increasing function of 
the number  of the stage. But this is still insufficient to insure interruptibility. 
For example,  a reasoner satisfying this condition will continue to satisfy it if we 
modify it to draw conclusions at random when it is dealing with a certain 
isolated subject matter.  

Because of the difficulty in formulating a mathematically precise characteri- 
zation of interruptibility, I am going to ignore that condition in this paper, but 
it is a topic that must eventually be addressed with care. My objective here will 
be merely to design a reasoner that is d.e.-adequate.  I will return to inter- 
ruptibility briefly in Section 7. 

5 This point and the terminology are due to George Smith. 
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3. Bui lding a defeasible reasoner  

3.1. The monotonic reasoner 

In constructing a defeasible reasoner,  we need rules governing the adoption 

of beliefs, the retraction of beliefs in response to the adoption of defeaters,  and 

the re ins ta tement  of beliefs in response to the retraction of defeaters. I propose 

to begin with the construction of a reasoner that ignores defeaters. This 

monotonic reasoner will be analogous to a deductive reasoner in that it 

constructs arguments  and adopts as beliefs any conclusions supported by any of 

the arguments  it constructs, but it will differ from a deductive reasoner in that 
it will use pr ima facie reasons as well as conclusive reasons as links in 

arguments .  For the most part,  it need not distinguish between prima facie and 

conclusive reasons. 

3.2. Defeasible reasoning without collective defeat or self-defeat 

If we did not have to contend with collective defeat or self-defeat, it would 
be quite easy to build a defeasible reasoner  by modifying the monotonic 

reasoner .  A defeasible reasoner  must perform three kinds of operations: belief 
adopt ion,  retraction, and reinstatement.  These proceed as follows: 

(1) The reasoner  must adopt beliefs in response to constructing arguments,  
provided no defeaters have already been adopted for any step of the 

argument .  This can be handled just as in the monotonic reasoner,  except 

that when a defeasible inference occurs, there must be a check to 

ascertain whether  a defeater  for it has already been adopted as a belief. 

(2) The reasoner  must keep track of the bases upon which its beliefs are 
held. When a new belief is adopted that is a defeater  for a previous 

inference step, then the reasoner  must retract that inference step and all 

beliefs inferred from it. 
(3) The reasoner  must keep track of defeated inferences, and when a 

defeater  is itself retracted (in accordance with (2)), this should reinstate 

the defeated inference. The reasoner  can then either repeat  the reason- 
ing that followed from that defeated inference, or the reasoner can be 
constructed in such a way that it keeps track of that reasoning and 

reinstates it en block. 

It is simple to build a reasoner  that performs these functions, and in fact such 
a reasoner  is described in [27]. Let  us call a reasoner  performing these 
functions a stage-I reasoner.  One of the salient characteristics of a stage-I 
reasoner  is that once a defeasible inference step is defeated,  the reasoner  
ceases exploring its consequences. The reasoner expends its resources inves- 
tigating the consequences of a defeated inference only if the inference is 
reinstated. This seems like the only sensible way to proceed in defeasible 
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reasoning. Why put effort into developing the consequences of an inference 
you already know to be defeated? But as we will see, this seemingly obvious 
design feature leads to apparently insuperable difficulties when we begin to 

worry about collective defeat. 

3.3. Collective defeat and provisional defeat 

Some special device must be adopted for handling collective defeat. For 
example,  suppose input = {P, Q}, and P is a prima facie reason for R while Q 
is an equally good prima facie reason for - R .  The stage-I reasoner will fail to 
discover the collective defeat. It will adopt P and Q, and then infer R. The 
next move would be to infer - R ,  but it has already adopted a defeater for that 
inference (namely, R), so it will refrain from making that inference. It will thus 
never  adopt a defeater for the inference to R, and hence that belief will remain 

adopted,  whereas it should be provisionally defeated. 
A first stab at handling collective rebutting defeat might have the reasoner 

note that - R  is a defeater for the inference to R, and so in addition to 
refraining from inferring - R ,  the reasoner will also retract the belief in R. 

However ,  the reasoner cannot stop there,  because upon retracting R, it will no 
longer have a defeater for the inference to - R ,  and hence that inference would 
be reinstated according to the rules governing the stage-I reasoner. To block 
this, the reasoner must maintain a special database recording the essential facts 
governing any collective defeat that has occurred. By appealing to the data- 
base, the reasoner can avoid repeating collectively defeated reasoning unless it 
is reinstated, and it can also use the database to govern reinstatement. In 
collective rebutting defeat,  a set X of prima facie reasons all of whose premises 
are adopted as beliefs is shown to deductively entail a contradiction. A 
convenient  way to record such collective rebutting defeat is to have the 
database be a list of such sets X. If one of the reasons in X is subsequently 
defeated in some other  way, or if its premises are retracted on the basis of 

defeat  elsewhere, that should reinstate the other reasons in X. Let us call a 
reasoner handling collective rebutting defeat in this way a stage-H reasoner. 
The reasoner of [27] was also a stage-II reasoner. Note that stage-II reasoners 
are like stage-I reasoners in that it is still true that once a defeasible inference 
step is defeated,  the reasoner ceases exploring its consequences. 

In [27], I observed that the reasoner described there did not handle some 
cases of collective undercutting defeat correctly. At the time, I supposed this 
could be corrected by adding a special database and rules for processing it 
analogous to the above treatment of rebutting defeaters. But I have sub- 
sequently come to realize that this is incorrect, and furthermore that the 
stage-II reasoner handles some cases of collective rebutting defeat incorrectly. 
The  problem stems from the seemingly desirable feature that once a defeasible 
inference step is defeated,  the reasoner ceases exploring its consequences. 
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O~: P > Q - - >  ... ---->(A ® B )  

~: A ----> B ----> ... -----> ( p  ® Q)  

Fig. 2. Collective undercutting defeat. 

The cases in which collective rebutting defeat is handled incorrectly arise 
from the fact noted in Section 1.3 that collectively defeated arguments can still 
render  other  arguments provisionally defeated. However,  such provisional 
defeat will not be discovered by a stage-II reasoner. If it simply retracts beliefs 
in the face of collective defeat,  this will prevent their provisionally defeating 
other  beliefs. For instance, suppose we have an argument ~ for - ( P  & Q),  
and /3 for (P  & Q).  c~ and /3 are collectively defeated. If the reasoner then 
constructs an argument 3' for - P ,  it will not notice the conflict between that 
and ( P &  Q),  because the latter was retracted before the reasoner had a 
chance to infer P from it. Consequently, the reasoner will not take 3, to be 
provisionally defeated. In order to discover the provisional defeat of 3', it 
would have to continue reasoning from (P  & Q) to P, even after/3 has been 
provisionally defeated. (I am assuming here that without some special reason 
for doing so, the reasoner will not automatically infer - ( P  & Q) from - P .  I 
believe that this is true of all existing monotonic reasoners. The alternative is 
combinatorially explosive.) It appears that the only way to handle this correctly 
is to flag provisionally defeated beliefs as provisionally defeated, and have the 
reasoner continue to reason from them instead of simply discarding them as in 
the stage-II reasoner. 

An analogous problem occurs in collective undercutting defeat. Suppose a 
and/3 are long arguments each of which undercuts an early defeasible inference 

in the other.  This is diagrammed in Fig. 2. If the reasoner first discovers the 
defeat  of /3  by a,  it will stop reasoning from propositions supported by/3 and 
never discover the defeat of a and/3. The only way to handle this is to continue 
reasoning with beliefs even when they are defeated outright (not just provision- 
ally defeated).  Again, the reasoner must flag them as defeated, and continue 
reasoning with them. 

3.4. Flag-based reasoners 

The preceding considerations seem to indicate that the production of argu- 
ments by the monotonic reasoner must be relatively insensitive to their defeat 
status, because the reasoner must continue reasoning from conclusions even 
when they are defeated. This suggests building a defeasible reasoner out of two 
relatively autonomous modules. The first is the monotonic reasoner,  which 
systematically makes inferences (generates arguments) without concern for 
their defeat  status, and the second is a module that computes the defeat status 
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of all the arguments produced at each stage of reasoning relative to the set of 
all arguments so far produced.  The reasoner will then be a simple loop: 

(loop 
(make-an-inference) 
(recompute-defeat-statuses)) 

Each time the reasoner makes an inference, it thereby produces a new 
argument.  Let  Mi be the set of arguments produced after i inferences. It is 
assumed that the set ~ / o f  arguments relative to which we assess warrant is the 

union of the s~ i. 

Definition 3.1. 
• An argument a is ultimately undefeated at stage i iff a is ultimately 

undefeated relative to ~/i. 
• An  argument c~ is ultimately defeated at stage i iff a is ultimately defeated 

relative to ~/i. 
• An argument a is provisionally defeated at stage i iff a is provisionally 

defeated relative to ~/i. 
• A proposition P is justified at stage i iff P is supported by some argument 

ultimately undefeated at stage i. 

The function recompute-defeat-status determines which of the arguments in 
~/i are ultimately defeated, which are ultimately undefeated,  and which are 
provisionally defeated,  at stage i. To avoid confusion, the reader should bear in 
mind that the levels of arguments employed in the recursive definition of 
warrant  are unrelated to the stages of inference employed here. I will refer to 
the latter as stages o f  the monotonic reasoner. Let J ( i )  be the set of all 
propositions justified at stage i of the monotonic reasoner. These will be taken 
to be the interim conclusions (the current beliefs) of the reasoner. The hope is 
that the sequence of justification sets ~ ( i )  will constitute a defeasible enumera- 
tion of the set of warranted conclusions. I will call a reasoner of this sort a 
flag-based reasoner. Whether  this approach will actually work remains to be 
seen, but the principal result of this paper will be that flag-based reasoners can 

be made to work. 
Flag-based reasoners mark a serious divergence from stage-II reasoners. 

Flagging beliefs as provisionally defeated or defeated outright, and then 
continuing to reason with them, seems outrageously expensive. But there 
appears to be no alternative. It is worth at least noting that human reasoners 
are not totally insensitive to the consequences of defeated beliefs, even if they 
do not usually expend a large amount of effort in developing those con- 
sequences. In Section 6, I will mention possibilities for minimizing this cost. 
But first, in Sections 4 and 5, I will address theoretical issues concerning the 
possibility of constructing a d.e.-adequate flag-based reasoner. 
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4. The defeat graph 

The main result of this section will be a theorem to the effect that, given 
certain reasonable assumptions, it is possible to construct a d.e.-adequate 
flag-based reasoner for a class of arguments M. Such a reasoner consists of a 
monotonic  reasoner and an algorithm for computing defeat status. Initially, the 
only assumption that will be made about the monotonic reasoner is that it 
systematically generates every argument in ~/. An algorithm will be con- 
structed for computing defeat status, and then we will consider what additional 
constraints must be imposed on the monotonic reasoner in order to ensure that 
the resulting flag-based reasoner is d.e.-adequate.  

The algorithm for computing defeat status will be based rather directly upon 
the argument-based semantics. This will facilitate understanding how it works, 
but it would be impractical to try to implement it directly because of the 
inordinate demands it would make on memory. To surmount this difficulty, a 
second algorithm will be described in Section 5. The second algorithm is 
derived from the first by adopting a different representation of arguments, and 
it can be implemented in a more practical way. However,  a d.e.-adequate 
flag-based reasoner based on either algorithm can be seen to require an 

unreasonable assumption about the monotonic reasoner. In order  to relax this 
assumption, we must modify the criterion of d.e.-adequacy to make it interest- 
relative. Section 6 will address the task of constructing a truly practical 
defeasible reasoner based upon an interest-driven monotonic reasoner. 

The first algorithm is based upon the defeat graph, which represents defeat 
information in a graphical form. 

Definition 4.1. The defeat graph for a set ary of arguments is a graph whose 
nodes are the members of a T and which is such that if a,/3 C a T, (a,13) is a 
link iff 13 defeats a. 

I will construe the directionality so that it is the parents of a node that defeat 
it. In diagramming defeat graphs, I will write " a  ~--/3" when/3 is a parent of 
(defeats) a. It will be useful to talk about the defeat graphs both for the infinite 
set M and the finite sets ~/g. 

As usual, a branch is any finite or infinite sequence { G} such that for each i, 
(¢g,¢i+1) is a link. A circular branch is an infinite branch that repeats, i.e., 
there is a k such that for every i />k ,  there is a j < k  such that ~:g=¢j. 
Collective defeat gives rise to circular branches. For example, the collective 
defeat  diagrammed in Fig. 3 gives rise to the circular branch 
(c~,/3,y,/3,3,,/3,y . . . .  ). Unless they are defeated by other nodes not on the 

Fig. 3. Circular branches. 
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branch,  the nodes of a circular branch are all provisionally defeated. This is 
because they will all be in at level 0, but that will force them all out at level 1, 
and then in again at level 2, and so on. 

Given any argument a,  the nodes on the branches ascending from ~ can be 
put into correspondence with argument levels. If a T is finite, this enables us to 
construct an algorithm for computing defeat status relative to ary in terms of the 
structure of the defeat graph. The algorithm is as follows: 

Algorithm 4.2. 
Step O. Mark all initial nodes (nodes having no parents) as undefeated. 
Step 1. Apply the following two rules recursively until there are no more 

nodes to which they are applicable: 
(a) If a node is unmarked and all of its parents are marked as defeated,  

mark the node as undefeated. 
(b) If a node is unmarked and one of its parents is marked as undefeated,  

mark the node as defeated. 
Step 2. Mark any remaining nodes as provisionally defeated. 

(R e m e mber  that the parents of a node are the arguments defeating it.) The  
correctness of this algorithm is easily proven as follows. 

Definition 4.3. An argument a becomes stably in (or out) at the nth level iff 
(1) either n = 0 or a is out (or in, respectively) at the (n - 1)st level, and 
(2) for all m/> n, a is in (or out, respectively) at the mth level. 

a is ultimately undefeated (or defeated) iff a becomes stably in (out, 
respectively) at some level. If we count the marking of initial nodes as the 
zeroth step of the recursion, then it is trivial to prove the following by 
induction on n: 

a is marked undefeated (or defeated) at the nth step of the 
recursion in Algorithm 4.2 iff a becomes stably in (or out, respec- 
tively) at the nth level. 

The  correctness of the algorithm follows. 
The objective is now to show that the sequence of justification sets J ( i )  

produced by a flag-based reasoner using this algorithm constitutes a defeasible 
enumerat ion of warrant. This cannot be proven without imposing further 
restrictions on the monotonic reasoner. What is required for J to be a 
defeasible enumerat ion of warrant is that for each proposition P, the status of 
P eventually stabilizes, i.e., at some stage i of the monotonic reasoner,  P 
becomes justified and subsequently remains justified, or P becomes unjustified 
and subsequently remains unjustified. For J to be a defeasible enumerat ion of 
warrant,  it is sufficient (and perhaps necessary) that the following hold: 
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Condition 4.4. For any argument a, a is ultimately defeated (or ultimately 
undefeated,  or provisionally defeated) relative to ~q iff there is a stage n of the 
monotonic  reasoner such that a is ultimately defeated (or ultimately unde- 
feated,  or provisionally defeated, respectively) at every stage ~>n. 

The only way Condition 4.4 can fail is for the status of a to cycle indefinitely 
at progressively later stages of the monotonic reasoner. This in turn can only 
happen if there is an infinite sequence {~:k} of arguments produced by the 
monotonic  reasoner all of which are relevant to the defeat-status of a. 
Obviously, there are only two ways to get infinitely many arguments connected 
to ~: 

(1) either a or some node that is an ancestor of a could be an infinite branch 
point in the defeat graph for M; 

(2) the defeat graph for ~ could contain an infinite branch having a as its 
initial node. 

Let  us consider these two possibilities separately. 
Infinite branch points can lead to infinite cycling. To illustrate this possibili- 

ty, suppose input = {P ,R ,S} ,  where P is a prima facie reason for Q, R is a 
prima facie reason for each of an infinite list of propositions Di, where each Di 
is a prima facie reason for ( P ®  Q) ,  and S is a prima facie reason for each 
proposit ion ( D ~ ® ( P @ Q ) ) .  With this set of prima facie reasons, if the 
ordering of the arguments is such that those supporting D i and inferring 
( P ®  Q) from it alternate with those supporting (D~ @ ( P ®  Q)), then Q will 
alternate indefinitely between being justified and being unjustified at the 
different stages. However ,  the mere existence of infinite branch points is not 
sufficient to guarantee infinite cycling. This is obvious when we realize that, for 
many argument systems, it will be possible to construct infinitely many variants 
for any given argument. For example, we may be able to construct notational 
variants, or add unnecessary steps. This can have the consequence that every 
branch point will be an infinite branch point. But this need not give rise to 
infinite cycling because the different branches are not independent--anything 
defeating one will defeat the other. Let us define: 

Definition 4.5. An argument/3 is parasitic on an argument Y iff any defeater  for 
y is also a defeater  for /3. 

A necessary (but not sufficient) condition for infinite cycling to result from 
an infinite branch point is that there is no finite set of parents of the branch 
point such that every other parent is parasitic on one of the parents in the finite 
set. I will call such a branch point a non-redundantly infinite branch point. If a 
branch point is not non-redundantly infinite, then defeating a finite set of its 
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parents would defeat them all, and so the only way to get infinite cycling at the 
branch point would be to already have infinite cycling at one of the parents. 

Noncircular infinite branches can also lead to infinite cycling. For example, 
infinite cycling would result if there were an infinite sequence of propositions 
Qi all either in input or supported by arguments, and such that if we define D i 
recursively by stipulating that 

D~ = (Qo@ P) ,  

D i + l = ( Q i @ D i ) ,  i ~ l ,  

then (1) Q0 is a prima facie reason for P, and (2) for each i/> 1, Q~ is a prima 
facie reason for Di. On the other hand, circular branches cannot lead to infinite 
cycling. They contain only finitely many different arguments, so once those 
arguments are all generated by the monotonic reasoner, they will be marked as 
provisionally defeated and will stay that way unless one of the nodes is 
defeated by other nodes not on the branch. If one of the nodes of the circular 
branch is defeated by a node v not on the branch, that will lead to infinite 
cycling only if v cycles infinitely, u itself could be on another circular branch, 
and so on. Thus we might get a sequence of interacting circular branches as in 
Fig. 4. If the sequence is finite, there will still only be finitely many arguments 
involved, and so infinite cycling will not result. Infinite cycling would only be 
possible if the sequence of interacting circular branches were infinite, but then 
we could construct a noncircular infinite branch by just combining the top parts 
of each loop. 

Summarizing, we have the following simple lemma: 

Lemma 4.6. I f  the defeat graph for ~l contains no noncircular infinite branches 
and no nonredundantly infinite branch points, then Condition 4.4 holds. 

Although arrays of prima facie reasons and defeaters that will generate 
noncircular infinite branches and non-redundantly infinite branch points are a 
formal possibility, I doubt that they are a real possibility. That is, we cannot 
find real examples of prima facie reasons having these structures. (My only 
reason for saying this is that I have tried and failed.) Accordingly, my strategy 
will be to adopt some realistic assumptions about the structure of the set of 

$ 1" 

Fig. 4. Interacting circular branches. 
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prima facie reasons that preclude these possibilities, and impose them as 
constraints on the monotonic reasoner. It will then follow that J is a defeasible 
enumerat ion of warrant. Recall that, so far, we have made no assumptions 
about the monotonic reasoner except that it generates all arguments in the set 
3¢. 

Unless they are defeated by side branches, noncircular infinite branches lead 
to the provisional defeat of all of their nodes, but this defeat is odd because it 
does not arise from collective defeat. The only cases of provisional defeat that 
seem to arise in realistic systems of prima facie reasons and defeaters involve 
collective defeat. Accordingly, my first assumption will be that noncircular 
infinite branches are impossible: 

Assumption 4.7. The defeat graph for ~l contains no noncircular infinite 
branches. 

The second assumption to be adopted is: 

Assumption 4.8. For every proposition P and finite set X of propositions, there 
is a finite ( possibly empty) set ary of  arguments in ~ supporting P relative to X 
such that any other argument in ~ that supports P relative to X is parasitic on 
some member of  arg. 

Both of these assumptions are finiteness assumptions. They tell us that for 
any finite input and finite supposition X, there is a limit to how much 
nondeductive reasoning we can do. Again, the only reason for making these 
assumptions is that I can think of no plausible counterexamples. Both assump- 
tions ought to be provable for particular classes of arguments. Note, however, 
that we cannot expect to prove them as general theorems about the monotonic 
reasoner.  Their  truth will depend essentially on what arrays of prima facie 
reasons and defeaters are supplied for the use of the monotonic reasoner, and 
that will vary from application to application. 

Assumption 4.7 precludes infinite cycling resulting from infinite branches. 
The role of Assumption 4.8 is to rule out non-redundantly infinite branch 
points. To see that it does this, consider any argument a in ~/. a contains 
finitely many defeasible steps, and the parents of a are arguments supporting 
defeaters for those defeasible steps. If a defeasible step infers P from F relative 
to a supposition X, then an argument supporting a defeater for this step must 
support  either - -P  or (FIF ® P) relative to a subset of X. Accordingly, there 
are only finitely many conclusions that a defeating argument can have, and 
hence by Assumption 4.8 there is a finite set arg of arguments in ,ff supporting 
those conclusions and such that any other  argument in ~' that supports one of 
those conclusions is parasitic on some member  of a T . In other words, 
non-redundantly infinite branch points are impossible. 
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We now have the following theorem, which is the central theorem of the 

paper: 

Theorem 4.9. I f  Assumptions 4.7 and 4.8 hold, then ~ is a defeasible enumera- 
tion of  warrant. 

Proof. This follows from the fact that if Assumptions 4.7 and 4.8 hold then the 
defeat  graph for M contains no noncircular infinite branches and no non- 
redundantly infinite branch points, and hence by Lemma 4.6, Condition 4.4 
holds and consequently J is a defeasible enumerat ion of warrant. In other 
words, given Assumptions 4.7 and 4.8, a flag-based reasoner using the Marking 

Algori thm 4.2 described above will be d.e.-adequate.  [] 

5. The inference graph 

In Section 4, an algorithm was described for computing J ( i ) .  This algorithm 
could, in principle, be used to construct a d.e.-adequate flag-based reasoner. 
However ,  implementing this algorithm directly would require too much mem- 
ory because arguments are going to be repeated over and over again in the 
defeat  graph as they recur as subarguments of larger arguments. Fortunately,  
the information that is represented in the defeat graph can be represented 
more efficiently in an inference graph, whose nodes are labeled with pairs of 
the form ( F , p ) .  The pair ( F , p )  signifies that p has been inferred from the 
supposition F. The inference graph can encode both arguments and defeat 
relations with two different kinds of links. Where v and 71 are nodes, (v,r/)  is 
an inference link iff v is labeled by a pair (F ,p ) ,  ~ is labeled by a pair (g2,q) ,  
and (F ,p )  was inferred from a set { ( O , l , q l ) , . . .  , (g2n,qn)} of pairs where 
( g2, q) E { ( 01, ql ) , .  • •, ( On, qn ) }'  The intent is for arguments to be encoded 
in the inference links. However ,  if we are to be able to recover the arguments 
from the inference links, we must take care in one respect. There  can be more 
than one argument supporting (F ,p) .  We must keep the inference links 

embodied in the different arguments separate. That  can be done by having a 
different node labeled (F,  p )  for each argument supporting (F,  p ) .  Nodes and 
their inference links then become unambiguous. (Note that this will also allow 
us to associate unique strengths with nodes.) The immediate inference ancestors 
of a node are the nodes connected to it by inference links. Let  us say that r / is  
an inference ancestor of v iff there is an inference branch connecting v to 77. A 
node is a pf-node iff, if its label is ( F, p ) and the set of labels of its immediate 
inference ancestors is { (~~1, ql ) . . . . .  (On, qn) }, then F =/21 . . . . .  O n, 
({ql  . . . . .  qn},P) is a prima facie reason, and the monotonic reasoner infer- 
red p from { ql . . . .  , q~ } on that basis. Let us say tha t /z  is a deductive ancestor 
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of ~, iff/~ is an inference ancestor of u and the branch connecting them contains 

no pf-nodes. 
{ p. ,u) is a defeat link iff Fz is a pf-node, and if its label is (F,p) and the set 

of  labels of its immediate  inference ancestors is {(F,  ql ) . . . . .  (lT, qn}}, and 

the label of u is ( J2 ,q ) ,  then J~2C_F and q is either ~ p  or ( (q t&. . .  
& q , , ) ® p ) .  Defeat  links encode undercutting and rebutting defeat.  

Given the inference graph, replete with inference links and defeat links, we 

want an algorithm for determining which nodes are defeated,  which are 

provisionally defeated,  and which are undefeated.  This can be done in an 
obvious way by translating the algorithm that was applied to the defeat graph 

into an algorithm that is applied to the inference graph. 

Let us say that a node /z is potentially defeated iff there exists a node u such 
that ( /~ ,u)  is a defeat link. A node is d-initial iff neither it nor any of its 

inference ancestors is potentially defeated, d-initial nodes are guaranteed to be 
undefeated.  They correspond to arguments that are initial nodes in the defeat  

graph. So the algorithm for computing defeat status from the inference graph 

will proceed as follows: 

Algorithm 5.1. 
Step O. Mark all d-initial nodes as undefeated.  
Step 1. Apply the following two rules recursively until there are no more 

nodes to which they are applicable: 
(a) If u is marked as undefeated and (k~,u is a defeat link, then if ~z is 

unmarked,  mark it and all its inference descendants as defeated. 

(b) If p~ is unmarked  and (1) for every u such that ( ~ , u )  is a defeat link, u is 
marked  as defeated,  and (2) every inference ancestor of /~  is marked as 

undefeated,  then mark  /~ as undefeated. 
Step 2. Mark  any remaining nodes as provisionally defeated. 

The flag-based defeasible reasoner  should now work as follows. The mono- 

tonic reasoner  builds the inference graph one node at a time. As each node is 
constructed,  defeat  links between it and pre-existing nodes are computed and 

the defeat  statuses of the nodes are recomputed.  Rather  than recomputing 
defeat  status from scratch each time a new node is added to the inference 

graph, it is sometimes possible to update the markings by only examining those 
nodes whose status might be changed by the addition. This is at least true if the 

new node does not defeat  any pre-existing node. In that case: 

(1) if every node defeating the new node is marked as defeated and all of its 
immediate  ancestors are marked as undefeated,  we mark  the new node 

as undefeated;  
(2) if some node defeating the new node is marked  as undefeated or at least 

one of its immediate  ancestors is marked as defeated,  we mark the new 
node as defeated; 
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(3) otherwise, mark it as provisionally defeated. 

If the new node is a defeater for a pre-existing node,  then it appears that all 
the node statuses must be recomputed from scratch because there is always the 
possibility of defeat cycles that can only be detected by starting from d-initial 

nodes. 

6. An interest-driven defeasible reasoner 

The flag-based reasoner described in Section 5 could actually be constructed, 
but it is impractical in one important  respect. It operates by having the 
monotonic  reasoner systematically generate all possible arguments in the class 
.ft. This is the so-called "British Museum Algorithm". Any automated reasoner 
that is practical employs a more efficient control structure enabling it to focus 
its attention on arguments that are more intimately connected with the 
conclusions it is trying to establish. There  are various ways of doing this, but 
my own preference is to begin with the interest-driven deductive reasoner 
O S C A R  described in [30] and use it as the monotonic reasoner on which the 

defeasible reasoner is built. 
Interest-driven reasoners are characterized by their use of two databases. 

One is the set adoptions of conclusions that have thus far been drawn, and the 

other  is the set interests of conclusions the reasoner is trying to get. The 
conclusions that are of ultimate interest are inserted into interests at the 
beginning of the reasoning, but an interest-driven reasoner may also employ 
rules for adopting interest in additional conclusions during the course of its 

reasoning. 
The desideratum for an interest-driven defeasible reasoner should no longer 

be d.e.-adequacy,  because we only want to require the reasoner to discover the 
warranted propositions we assign as interests. The obvious proposal is to 

relativize d.e.-adequacy to interests: 

Definition 6.1. A reasoner is i.d.e.-adequate relative to ~ iff, for any input and 

any proposition P in interests: 
(1) if P is warranted relative to ~ then there is some n such that after n 

cycles of reasoning, P is marked as undefeated and that marking is never 

subsequently changed; and 
(2) if P is not warranted relative to ~ then there is some n such that after n 

cycles of reasoning, P is marked as defeated and that marking is never 

subsequently changed. 

An interest-driven defeasible reasoner makes no at tempt to build the entire 
inference graph. It begins with certain initial interests, and then it attempts to 
perform just those inferences that are relevant to those interests and build just 
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that part of the inference graph that records the relationships between those 
inferences. The relevant inferences are those involved in constructing argu- 
ments supporting the propositions in interests, and all those arguments support- 
ing defeaters for those arguments, and defeaters for the defeating arguments, 
and so on. This will automatically be achieved if 

(1) the monotonic reasoner is guaranteed to find all relevant arguments for 
anything in which it is interested, and 

(2) the reasoner automatically adopts interest in defeaters for each defeas- 
ible inference it performs. 

By virtue of these two conditions, if there is an argument supporting a desired 
conclusion, the reasoner will find it. If there is a defeating argument i t  will find 
that. Then it follows recursively that if there is a reinstating argument, the 
reasoner will find that, and so on. 

However ,  condition (1) is not quite the condition that should be imposed on 
the monotonic  reasoner. The difficulty is that every argument has infinitely 
many variations that result from adding redundant steps or from varying the 
way in which deductive inferences are made. It is not necessary for the 
monotonic  reasoner to produce more than one of these infinite variations. It 
will suffice to produce just one on which all the others are parasitic. According- 
ly, we have: 

Definition 6.2. A monotonic reasoner is interest-complete relative to ~ iff, for 
any input and any P and any argument a in ~/inferring P from input relative to 
a supposition X, if the reasoner is given input as premises and adopts interest 
in P relative to X, then the reasoner will construct an argument/3 inferring P 
from input relative to X which is such that any defeasible inference occurring in 
/3 also occurs in a and does so relative to the same or a less inclusive 
supposition. 

Then we have the following theorem, which is the justifying theorem for 
defeasible reasoning: 

Fundamental Theorem for Defeasible Reasoning. I f  
(1) the defeat graph for ag contains no noncircular infinite branches, and 
(2) for every proposition P and finite set X of  propositions, there is a finite 

(possibly empty) set arg of  arguments in ag supporting P relative to X such 
that any other argument in ~1 that supports P relative to X is parasitic on 
some member of arfl, 

and if  a flag-based defeasible reasoner 
(3) is based upon an interest-driven monotonic reasoner that is interest- 

complete relative to ~1, 

(4) adopts interest in defeaters for every defeasible inference it performs, and 
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(5) uses the Marking Algorithm 5.1 to compute defeat status, 

then it is i .d.e.-adequate relative to ~ .  

It was observed in Section 3 that a defeasible reasoner may never stop 
reasoning. However ,  by restricting the monotonic reasoner to interests, the 
defeasible reasoner may often halt simply by running out of things to do. That  
cannot always be the case, but in many simple cases this is what will happen. 
This is illustrated in Appendix B. It follows from interest-completeness that if 
the reasoner halts, anything in interest that is unproven is unprovable,  so 
members  of ultimate are warranted iff they are justified at the stage at which 
the reasoner halts. 

I have observed several times that flagging beliefs as provisionally defeated 
or ultimately defeated and then continuing to reason with them seems outrage- 
ously expensive. However ,  there is a way of alleviating this cost, at least to 
some extent. I assume that the monotonic reasoner uses some scheme for 

prioritizing potential inferences and stores them on an inference queue. This 
could be a simple "last in, first out"  stack, but there is abundant reason to 
prefer  more complex control structures. OSCAR uses a fairly sophisticated 
prioritizing scheme. Whatever  prioritizing scheme is used, if it is modified in 
such a way that once beliefs are defeated, either provisionally or ultimately, 
inferences involving them are given low priority, then the reasoner will pursue 
the consequences of defeated reasoning "only when it has t ime". This looks 

much like what human beings do. As long as the prioritizing is done in such a 
way that even low priority inferences are eventually performed,  the reasoner 
will remain i .d.e.-adequate.  

This reasoner has actually been implemented, and is now being tested and 
refined. It is considered the latest version of OSCAR.  Appendix A goes into a 
bit more detail regarding the implementation. Appendix B gives some exam- 
ples of its operation. 

7. An interrupt-driven defeasible reasoner 

Etherington [6] makes the observation that for most nonmonotonic logics, 
little attention has been paid to the problem of updating beliefs (or extensions) 
in response to adding new premises (as opposed to simply starting over in the 
construction of the belief set or the computation of the extension). If a 
defeasible reasoner is to be used as the inference engine in a real-time system, 
e.g. ,  a robot  (or a human being), this is a serious problem. Such a system is 
embedded  in an environment that is continually feeding it more information, 
and it must repeatedly update its beliefs in response to such inputs. It is totally 
impractical to require such a system to start over again from scratch every time 
it is given a new premise. 
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In OSCAR,  there is no updating problem. If OSCAR is supplied a new 
premise after reasoning has already begun, OSCAR will quickly reach a point 
in its reasoning where its beliefs and arguments are the same as if that premise 
had been supplied at the beginning. This means that OSCAR can provide the 
inference engine for an interrupt-driven reasoner. Such a reasoner will receive 
additional premises from time to time after it has already begun reasoning. 

This will cause the reasoning to be interrupted at the end of a cycle, the new 
premises inserted into input, and then reasoning resumed. OSCAR's  standard 
prioritizing scheme will have the result that if OSCAR is reasoning in some 
supposition other than the empty supposition, it will continue that reasoning 
until it exhausts the moves it can make within that supposition, and then it will 
return to the empty supposition and process the new members of input. 
However ,  different prioritizing schemes can be adopted depending upon how 
much precedence we want the new members of input to be given. 

There  is another  way in which an interrupt-driven reasoner is important. 
Most problems with which a reasoner is actually presented will be simple and 
the reasoner will be able to perform all relevant reasoning and stop. This is 
illustrated in Appendix B. It has been observed, however, that on problems of 
sufficient complexity, reasoning may never terminate. Note that this is equally 
true for human reasoners. Nevertheless, such a reasoner may have to take 
action at specific times, even though reasoning has not terminated. This is just 
the point made in Section 2 that the reasoning must be interruptible. When the 
time comes to act, the reasoning will be interrupted and action taken based 
upon whatever the current set of beliefs is. It is always possible that if the 
reasoner had more time to reason, its beliefs would change in some crucial 
way, but the presumption behind defeasible reasoning is that at any stage of 
reasoning, if action must be taken then it is reasonable to act on the basis of 

the current set of beliefs. 
The upshot of this is that a real-time defeasible reasoner must be interrupt- 

driven in two respects. It must be continually receptive to new inputs, and it 
must be prepared to interrupt its reasoning and act on its current set of beliefs 
whenever  action is required. The intention is that OSCAR will supply the 
inference engine for such a real-time reasoner. 

8. Conclusions 

The general objective of the OSCAR project is the construction of a 
comprehensive theory of rational inference and its implementation in an 
automated reasoner. This project is a continuation of my epistemological work 
on defeasible reasoning that began as early as 1965, in my Ph.D. Dissertation. 
Defeasible reasoning has provided the principal logical tool that I have 
employed ever since for epistemological analysis. Most of the results of that 
analysis can be found in [24, 26, 29]. The general approach to defeasible 
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reasoning that is presupposed by all my work is the argument-based approach 
that I sketched at the beginning of the paper. It has been developed in detail 
and defended in the papers cited in Section 1. Those papers propound a theory 
of warrant for defeasible reasoning. The objective of this paper is not further 
development of the theory of warrant, but the quite different question of how 
it is possible for a system to reason in a way that can be regarded as 
implementing that theory of warrant, particularly in the light of the fact that 
the set of warranted conclusions is not generally r.e. 

The first main proposal of the paper is that the appropriate criterion to apply 
in evaluating defeasible reasoners is that of i.d.e.-adequacy. This makes it 
possible for reasoners to be adequate despite the fact that the set of warranted 
conclusions is not r.e. The paper then investigates how to construct an 
i.d.e.-adequate reasoner. It is argued that such a reasoner cannot stop reason- 
ing from such a conclusion just because the arguments supporting it are 
defeated. Instead, it must mark conclusions as defeated or undefeated, but 
continue to reason from them. This suggests building the defeasible reasoner 
out of two largely autonomous modules--a monotonic reasoner that systemati- 
cally produces arguments without worrying about their defeat status and a 
module that computes defeat status relative to the arguments that have been 
produced at any given stage of reasoning. The main result of the paper is that 
the sequence consisting of the sets of undefeated conclusions produced at each 
stage of operation of the monotonic reasoner constitutes a d.e.-approximation 
to warrant provided the monotonic reasoner satisfies certain plausible con- 
straints. Two algorithms for evaluating defeat status are described. The first is 
based on the defeat graph, and arises directly out of the theory. The second is 
essentially a more practical reconstruction of the first, in terms of the inference 
graph. The inference graph encodes the same information as the defeat graph, 
but does so in a more efficient way. This is not yet sufficient to produce a truly 
practical defeasible reasoner, however. The d.e.-adequacy of the reasoner 
constructed in this way requires the totally impractical assumption that the 
monotonic reasoner will systematically produce all possible arguments (the 
British Museum Algorithm). This assumption is replaced by the more reason- 
able assumption that the monotonic reasoner is interest-driven. This requires a 
change to the adequacy condition, replacing d.e.-adequacy by its interest- 
relative analogue, i.d.e.-adequacy. It is then shown that, subject to reasonable 
assumptions about the interest-driven monotonic reasoner, either algorithm for 
evaluating defeat status will yield an i.d.e.-adequate reasoner. This final 
approach (using the inference graph algorithm) has been implemented in 
OSCAR. 

There have been several earlier attempts to construct theories of reasoning 
(misleadingly called "proof theories") for defeasible reasoning and there have 
been a few attempts to implement such theories in automated defeasible 
reasoners. The most noteworthy are those of Nute and Lewis [20], Nute [19], 
Levesque [14], Ginsberg [8], Baker and Ginsberg [1], and Geffner [7]. There 
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have also been some (often unimplemented) special-purpose reasoners like 
that described by Horty,  Thomason,  and Touretzky [10] for reasoning within 
defeasible inheritance hierarchies. These reasoners are based upon a wide 
variety of approaches to defeasible reasoning. For example, the Ginsberg 
system is based upon circumscription, the Levesque theory on autoepistemic 
logic, and the Horty,  Thomason,  and Touretzky theory on defeasible inheri- 
tance. Despite their variety, it is very simple to compare all of these theories 
simultaneously to the present theory. This is because all of these theories 
at tempt to build a reasoner that is analogous to a traditional theorem prover. 
Such reasoners produce r.e. sets of conclusions. Because that is only possible if 
the underlying logic is decidable, such defeasible reasoners have typically been 
restricted to the propositional calculus or some other very weak logic. By 
contrast,  because OSCAR seeks to provide an i.d.e, approximation to warrant 
rather than a recursive enumeration of warranted conclusions, it is applicable 
to the full predicate calculus, and indeed, OSCAR is deductively complete for 
the predicate calculus as well as being i .d.e.-adequate for defeasibte reasoning. 

O S C A R  also stands in an interesting relationship to RMSs (reason mainte- 
nance systems). McDermot t  [18] constructs a general framework for RMSs~ 
and emphasizes the distinction between the application program and the RMS 
itself. That is parallel to the distinction in OSCAR between the monotonic 
reasoner and the module computing defeat status on the basis of the inference 
graph. The latter module by itself is quite similar to a "justification-based '~ 
RMS (of which the original example was Doyle's TMS [5]). There are also 
some important differences, however. Standard justification-based RMSs have 
only one kind of link, corresponding to the inference links in the inference 
graph. They have no links corresponding to the defeat links, and correspond- 
ingly they are incapable of detecting undercutting defeat. They can only 
respond to inconsistencies, which is to say that they detect rebutting defeat. 
McDermot t ,  however, constructs a more general kind of "nonmonotonic  
RMS" by adding dependencies between nodes that are formulated using a 
modal operator  L meaning "it is definitely true that".  The idea comes from 
McDermot t  and Doyle [18]. The result is not an RMS that computes defeat 
status in the same way OSCAR does, because McDermot t  explicitly opts for a 
credulous nonmonotonic  logic. But it may be possible to use the same ideas to 
build a skeptical RMS that really does compute defeat statuses equivalently 
with OSCAR.  In doing this, it should be noted that the literals upon which 
McDermott~s RMS operates must be interpreted as expressing inferences 
(nodes of the inference graph) rather than propositions, but that seems to 
make no difference to the functionality. ~ 

<> It can also be observed that the assumption-based aspect of McDermot t ' s  RMS is unnecessary 
for this application. In addition, the introduction of the modal  operator  L introduces more 
expressive power than is required for formulating prima facie reasons. All prima facie reasons can 
be expressed in a single form: 71'  v 7 L T Q  v ~ L ( P ®  Q) v Q (P  is a prima facie reason for Q) .  
Accordingly,  forms like ( L P  v P) that give McDermot t  trouble ("odd loops")  do not even arise in 
the formulat ion of prima facie reasons. 
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Although RMSs are quite close, at least in spirit, to OSCAR's  defeat status 
computat ion based on the inference graph, it is important to realize that the 
defeat  status computation is only part of OSCAR. RMSs are not themselves 
reasoners.  The idea of building an i .d.e.-adequate reasoner by cycling between 
the monotonic  reasoner and the defeat status computation on the inference 
graph, and the proof  that this will work, takes us far beyond an RMS. 

Appendix A. Implementation 

A.1. The monotonic reasoner 

The monotonic reasoner incorporated into the defeasible O S CA R is based 
upon the interest-driven deductive version of OSCAR described in [30]. 
Without  going into details, let me indicate roughly how this reasoner works. It 
is based upon the simple idea that when trying to infer a specified conclusion 
from a set of premises, the reasoner not only works forwards from the premises 
but also backwards from the conclusion. The latter is just goal reduction. The 
reasoner begins with the set of premises input and a set ultimate of conclusions 
in which it is ultimately interested. The reasoner keeps two distinct databases 
--adoptions and interests. The former comprises the propositions believed at 
any given time, and the latter comprises those propositions the reasoner is 
trying to infer at any point. The reasoner reasons forwards from adoptions to 
new conclusions which are then inserted into adoptions, and backwards from 
interests to new interests. The bases for adopting new interests are recorded in 

forset. A distinction is made between those reason schemata of use in forwards 
reasoning (from adoptions to adoptions) and those of use in backwards 
reasoning (from interests to interests). Then the three basic rules governing 
interest-driven reasoning are: 

Rule A.1 (R-Infer). I f  ( F,p ) is an instance of a forwards reason schema, and 
for some supposition X and for some q in F, q is adopted relative to X and all 
the other members of  F have already been adopted, then adopt p relative to X. 

Rule A.2 (Interest-adoption). I f  ( F,p ) is an instance of  a backwards reason 
schema, and for some supposition X, the system adopts interest in p relative to 
X,  then adopt interest in the members of  F relative to X and record the basis for 
the interest by inserting ( F , p , X )  into forset. I f  all the members of  F have 
already been adopted relative to X,  then adopt p relative to X. 

Rule A.3 (1-Infer). I f  the system adopts p relative to X and p is in interest, then 
for any member ( F ,q ,X )  of  forset, if p E F and the other members of  F are 
already adopted relative to X, then adopt q relative to X. 
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In addition, O S C A R  embodies  various structural rules like conditionaliza- 

tion and reductio ad absurdum that govern suppositional reasoning. O S C A R  is 

complete  for the predicate calculus. 

For incorporation into the defeasible reasoner,  the deductive reasoner is 

modified in four main respects. 
First, a supposition is now taken to inherit all of the adoptions made relative 

to less inclusive suppositions, and adoptions are made explicitly in only the 

minimal suppositions relative to which they can be inferred. By contrast, in the 
deductive reasoner,  when a new supposition was made,  all the adoptions from 

less inclusive suppositions were automatically moved into the set of adoptions 

for the new supposition, but if a new conclusion was subsequently inferred in 

the new supposition from adoptions drawn from a less inclusive supposition, 
that new conclusion was not automatically adopted in the less inclusive 

supposition. Even though this sometimes required repeating the same reason- 

ing in two or more suppositions, it made the deductive reasoner run faster. But 

for the i .d .e . -adequacy of the defeasible reasoner it is important  to ensure that 
conclusions are always available simultaneously in the minimal suppositions 

possible and all more inclusive suppositions. 
The second modification allows the reasoner to employ substantive reasons 

in its reasoning in addition to formal principles of logic. When the reasoner is 
given a problem,  this now consists of a set of premises,  a desired conclusion, a 

set of pr ima facie reason schemata,  and a set of conclusive reason schemata,  
For example ,  it might be informed that rFx~ is a prima facie reason for rGx  1 , 

and that rRx" is a conclusive reason for rSx~. These reasons are given in the 

form of a triple 

( premise-se t ,conclus ion,  variables ) , 

where premise-set  is a set of formulas,  conclusion is a formula,  and variables is 

the set of variables occurring free in the schema. The reasoner then uses these 
substantive reasons in its reasoning, both backwards and forwards, just as it 

previously used principles of deductive reasoning. One complication is that in 
an interest-driven reasoner  it must be specified whether  a reason is to be used 

for backwards reasoning, forwards reasoning, or both. It is important  that this 
be done properly,  or relevant arguments may not be constructible by the 
reasoner.  To take a very simple example,  suppose input = { P} ,  P is a reason 
for Q, and Q is a reason for R, and ultimate = {R}. If P is designated as only a 
backwards reason for Q, and Q is designated as only a forwards reason for R, 
the reasoner  will be unable to infer R from P. With any other combination of 
designations, the reasoner  will be able to infer R from P. For instance, if P is 
designated as a forwards reason for Q, and Q is designated as a backwards 
reason for R, then the reasoner  will adopt  interest in Q on the basis of interest 
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in R, and will then infer Q from P and then R from Q. I do not have a general 
theory to propose regarding how directions are to be assigned to reasons. More 
theoretical work is needed on this question. However, to avoid combinatorial 
explosion, a necessary condition for a forwards reason is that any variables free 
in the conclusion are also free in the premises, and a necessary condition for a 
backwards reason is that any variables free in the premises are also free in the 
conclusion. For now I have also adopted these as sufficient conditions for the 
designation. When presented with a problem, the reasoner assigns directions to 
the reasons on this bases. This has the consequence that most substantive 
reasons will be designated as both backwards and forwards reasons. Although 
OSCAR is complete for the predicate calculus, it is unclear whether this 
handling of substantive reasons makes OSCAR interest-complete. 

The third modification concerns reductio ad absurdum and is required by the 
introduction of prima facie reasons into the reasoning. Reasoning by reductio 
ad absurdum appears to be essential in the predicate calculus (see the 
discussion in [30]), but it is not generally valid for defeasible reasoning. If a 
contradiction is inferred at the end of a defeasible argument, rather than 
justifying an inference to the negation of the premise, this will normally have 
the effect of defeating some of the defeasible reasoning. Thus the rule of 
reductio ad absurdum must be qualified. If we suppose -1P with the intent of 
inferring P from it, only deductive reasoning can be allowed within this 
supposition. Of the substantive reasons, the conclusive reasons can still be used 
within a reductio-supposition, but the prima facie reasons cannot. The results 
of defeasible reasoning within less inclusive suppositions can, however, still be 
used in the reasoning, because the contradiction in the larger supposition 
cannot defeat reasoning in less inclusive suppositions. 

The final modification concerns the rules for interest-cancellation. In the 
deductive reasoner, once a conclusion is obtained, the reasoner cancels interest 
in both it and (except in reductio-suppositions) its negation. In a defeasible 
reasoner, however, this is inappropriate. Having constructed one argument for 
a conclusion, a reasoner cannot thereby ignore the possibility of others, 
because the first argument might get defeated while other arguments are not. 
Instead, we simply impose a restriction against circular reasoning (i.e., a 
proposition P cannot be inferred from prior conclusions already inferred, in 
part, from P). Similarly, having inferred P, the defeasible reasoner cannot 
thereby cancel interest in --1 P, because inferring the latter may just be a matter 
of acquiring a rebutting defeater. Accordingly, the monotonic reasoner keeps 
track of whether any defeasible inferences have been made in inferring a 
conclusion. If the reasoning has been entirely deductive, then the deductive 
interest-cancellation rules are employed, but otherwise not. 

A further modification may ultimately be required, but has not yet been 
implemented. This involves changing the prioritizing scheme so that when 
interest is adopted in defeaters, they receive a lower priority than other 
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interests. Implement ing this may involve rather large changes, because much of 

O S C A R ' s  current prioritizing scheme involves built-in structures in supposi- 
tions. 

A.2. The defeasible reasoner 

The defeasible reasoner  results from making several additions to the mono- 

tonic reasoner.  When a proposit ion is adopted in a particular supposition, 

three new operat ions are performed:  adopt-interest-in-defeaters, make-nodes, 
and update-defeat-statuses. In addition, whenever  the defeat status of a m e m b e r  

of ultimate changes, the reasoner  announces this fact, and if the reasoning 

terminates ,  all relevant arguments  are displayed. As previously observed,  it 
cannot  be assumed that the reasoning will terminate,  but the reasoner can also 

be interrupted at any point and asked to display all relevant arguments found 
so far. The three new operat ions mentioned above are as follows. 

When the monotonic  reasoner  performs a defeasible inference, adopt- 
interest-in-defeaters leads it to adopt interest in defeaters for that inference. 

The operat ion make-nodes builds the inference graph. The inference graph 
consists of a list nodes of nodes, where each node k is a structure containing 
slots for the following information: 

• node proposition: a formula p,  

• node supposition: a set of formulas,  

• node basis: the set of formulas from which p is inferred, 

• node justification: a string describing the reason for the inference, 
• immediate  ancestors: a set of nodes, 

• node ancestors: a set of nodes, 

• immediate  descendants: a set of nodes, 

• pf-node: t or nil depending upon whether  k is a pf-node, 
• node defeaters: a set of nodes, 

• node defeatees: a set of nodes, 

• defeat status: 0 if undefeated,  1 if defeated,  nil if provisionally defeated. 

When a proposit ion is adopted relative to a supposition, make-node adds a 

node to the inference graph encoding this adoption. When a node is added to 
the inference graph, its defeat  relations to other nodes are computed.  Then 

update-defeat-statuses recomputes  the defeat statuses of all nodes using Al- 
gori thm 5.1. If this results in a change to the status of any member  of ultimate, 
this is announced.  

To  some extent,  it is arbitrary when these last two operations are performed,  
because they do not affect the performance of the monotonic reasoner.  They 
could all be postponed until the opera tor  queries the reasoner regarding the 
status of the members  of ultimate, or until the reasoning terminates.  This 
would be more efficient, but for aesthetic reasons I have chosen instead to have 
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the reasoner perform these operations as it goes along and supply a running 
commentary on the status of the members of u l t i m a t e .  

Appendix B. Examples 

This appendix gives some examples of the operation of OSCAR. For 
simplicity, all but one of the examples are formulated in the propositional 
calculus, but that is not an essential feature of OSCAR. OSCAR can deal with 
problems in the full predicate calculus, and on deductive problems it is 
complete. The final (predicate calculus) example was explicitly chosen to 
illustrate what happens when the reasoner does not halt. The defeasible 
structure in that example is the same as in the previous example except that 
first-order inferences must be performed to find the defeaters. The reasoner 
quickly does the requisite reasoning, but the first-order structure of the 
premises forces the reasoner to continue searching for additional defeaters, 
which it never finds. In the following examples, the diagrams of the inference 
graphs are done by hand, but the rest is an actual printout of the operation of 
the program. The times are for the program running in Allegro Common LISP 
on a MaclIx. Figure B. 1 shows the symbols that are used in the diagrams of the 
inference graphs. 

v deductive inference 
. . . . . . . . . . . . . . .  lb. defeasible inference 

.;¢.,,.. 
............. P'-  defeat 

undefeated node 

I---] defeated node 

O provisionally defeated node 

Fig. B1. Inference graph symbols. 

Example 1. This is a case of undercutting defeat. 

GIVEN: P 
A 

DESIRED CONCLUSIONS: 
R 

PF-REASONS: 
P I ~ Q  
O I ~ R  
a I= (P ® Q) 

CON-REASONS: 
A I = B  

® ® 

1 
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o o e e o o o o o e o o e e o o e e e o o e o o e o e o e e e  

A defeasible argument has been constructed for: 
R 

e e e e e e e e e e e e e e e e e e e e e e e o e e e e e e e  

R is undefeated. 
o o o o  e e e e  e 4 b o o  o e e  e e e e  e o e o e o  o o e o o o  

R is defeated. 
o e e e e e o e o o e o o e e e o e o o o e e e e e e o o e e  

All the available inferences have been performed. 
FINAL STATUS: 

R is unwarranted 
o o o o o e e e o o o o o o e o o o e e e o e e o o o e o e o  

This reasoning took 1.283 sec 

The following relevant arguments were constructed: 

e e e o e e e o e o e e o e e o o e e e o e e o e o e o e e o  

ARGUMENT #1 
This is an ultimately defeated argument for; 

R 

1, P given 
4. Q pfreason from 1 
5. R pf reason from 4 

Line #4 of argument #1 is directly defeated by the 
following argument: 
e e o o o o e e e  e o o o e e e e o e o e  o o e o o e o o e e  

ARGUMENT #2 
This is an ultimately undefeated argument for: 

(P ® Q) 

2. A given 
3. B conclusive reason from 2 
6. (P®Q) pfreasonfrom3 

Example 2. This is a case of defeat and reinstatement. 

GIVEN: P 
A 
D 

DESIRED CONCLUSIONS: 
R 

PF-REASONS: 
C I1~ (A ® B) 
D i = C  
B I =  (P ® Q) 
A I I = B  
Q i = R  
P ~ Q  

@ @ 

e e e e e o e e o e e o e e o o o e e e e e e e e e o e e e e  

A defeasible argument has been constructed for: 
R 

o e o o o o o e o o o o e o o e e o o o e o o e o o o o o o e  

R is justified., 
e o o o o o o e o o o e o e o o o e o o e o o e o o o e o o e  

R is unjustified. 
o o o e o  o o e o  o o o o o o e o o e o o o e e o o o e o o e  

R is justified., 
o o o o o o o o o o o o o o o o o o o o o o o o o e o o o o e  

All the available inferences have been performed. 
FINAL STATUS: 

R is warranted 
o o e o o o o o o o o e o o o o e o o o o o o o o  o o o o o  o 

This reasoning took 2.033 sec 

The following relevant arguments were constructed: 
o o o o e o o o o o e o o o e o o o e  o o e o  o e o o o o o  o 

ARGUMENT #t 
This is an undefeated argument for: 

R 

1. P given 
6, Q pf reason from 1 
7. R pf reason from 6 

Line #6 of argument #1 is defeated by the 
following argument: 

6 e e e e e e e e  e e e e  e e e e e e  ee  e e e e e e e e e e  

ARGUMENT #2 
This is a defeated argument for: 

(P ® Q) 

2. A given 
5. B pfreason from2 
8. (P ® Q) pf reason from 5 

Line #5 of argument #2 is directly defeated by the 
following argument: 
e e e e o o o e o e e e o  e e e e e e e e e e e e e e = e e e  

ARGUMENT #3 
This is an undefeated argument for: 

(A ® B) 

3. D given 
4. C pf reason from 3 
9. (A ® B) pf reason from 4 
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Example 3. 

GIVEN: P 
A 

DESIRED CONCLUSIONS: 
R 

PF-REASONS: 
AI=B 
B l o c  
C I =  -R 
PI=>Q 
Q I ~ R  

This is a case of collective rebutting defeat. 

® ® 

;'d co:s;;d,;; ,o;:" 
R 

. . . .  . . . . . . . . . . . . . . . . .  

. . . .  ;: . . . . . . . . . . .  

e e o o o e o o o o o o e o o e o o o e o e o o o o e e o o o  

A~I the available inferences have been performed. 
FINAL STATUS: 

R is unwarranted 
o e o o o o o o o e e o e o o e o o o o o o o o e o o o e o o  

This reasoning took 1,183 sec 

The f~lowing re l ian t  arguments were coretr~ted: 
o o o o o o o o o o o o o o o e o o o o o o o o o o o o o o o  

ARGUMENT#1 
This is a provisionally d~e=ed argument for: 

R 

® @ 
i 

1. P given 
5. Q pf reason from 1 
6. R pf reason from5 

Line #6 of argument #1 is directly defeated by the 
following argument: 
o e o o o o o o o e e o e o o o o o o  o o e o e o e o o o o o  

ARGUMENT #2 
This is a provisionally defeated argument for: 

-R 

2. A given 
3. B pf reason from2 
4. C pf reason from 3 
7. -R pf reason from4 

Line #7 of argument #2 is directly defeated by 
argument #1, 

Example 4. This is a case of 
Fig. 2). 

hidden collective undercutting 

GIVEN: A ( ~  ( ~  
P 

DESIRED CONCLUSIONS: : " 
C 

PF--REASONS: 
A I = B  
B l o c  
C I = (P ® Q) 
P I = O  
Q I ~ R  
R I ~  (A ® B) 

defeat (as in 
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e o o o o e o o e o o o o o o e o e o o o o e e o o o o e e e  

A defeasible argument has been constructed for: 
C 

e o o o e e e o o o o o e o e o o e o e e e o o e e e e o o o  

C is undefeated. 
o e o o o e o o o e o o o e e o o o o o e o o o o o o o o o o  

C iS provisionally defeated 
o o o e o e e e o o o e o e e o o o o o o o e o o o o o o o o  

All the available inferences have been performed. 
FINAL STATUS: 

C is unwarranted 
o e o o o o o e o e o o e o o e e o o o e o e e o e o e e e o  

This reasoning took 1.617 sec 

The following relevant arguments were constructed: 
o o o o o o e o o o o o o o o o e o o o e o o o o o o o e e e  

ARGUMENT #1 
This is a provisionally defeated argument for: 

C 

1. A given 
5. B pf reason from 1 
6. C pf reasonf rom5 

Line #5 of argument #1 is defeated by the 
following argument: 

o e o o o o o e e e e e o o o o e o e o e o e o o o e o o o o  

ARGUMENT #2 
This is a provisionally defeated argument for: 

(A ® B) 

2. P given 
3. Q pf reason from 2 
4. R pf reason from3 
8. (A®B)  pf reasonfrom4 

Line #3 of argument #2 is directly defeated by the 
following argument: 
e o e o o o e o e e o o o o e e o o e e e e o o e e e o o e e  

ARGUMENT #3 
This is a provisionally defeated argument for: 

(P ® O) 

1. A given 
5. B pf reason from 1 
6. C pf reason from 5 
7. (P®Q) pf reasonf rom6 

Line #5 of argument #3 is directly defeated by 
argument #2. 

Example 5. This has the same defeasible structure as the previous example, 
but the reasoner must perform first-order inferences to find the defeaters. The 
first-order structure of the problem prevents the reasoner from halting. Even- 
tually, it is halted manually by the operator, and then all relevant arguments 
that have been discovered are displayed. 

GIVEN: (P a) 
(A a) 
(Vx)[(C x) D (3y)[(C y) & (F x y)]] 
(Vx)[(R x) ~ Gy)[(R y) & (G x y)]] 

G @ 
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DESIRED CONCLUSIONS: 
(C a) 

PF-REASONS: 
(A x) J~ (B x) (variables = x) 
(B x) I ~ (C x) (variables = x) 
(P x) I=> (Q x) (variables = x) 
(Q x) | =  (R x) (variables = x) 

CONCLUSIVE-REASONS: 
(:1 y)(3 z)([(C y) & (C z)] & [(F y z) & (F x y)]) I ~  ((P x) ® (Q x)) (variables = x) 
(3 y)[(R y) & (G x y)] I =  ((A x) ® (S x)) (variables = x) 

• ee l  e l  eee  eee  e e l  e l •  • • • • e e e e e e e e e  ee  ee  

A defeasible argument has been constructed for: 
(C a) 

e e e o e e e e e e e e e e e e e e e e e e e e e e e e l e e e e e e  

(C a) is undefeated. 
e e • e e e e e o e e e e l e e e l •  • • • e  • l ee  • eeoc  e l l  

(C a) is defeated. 
e e e e e o e e e o e o e o e o e o e e e e e e e e e e e e e e e e e  

(C a) is provisionally defeated 
e o e o e o e e e e e e e e e e e o o e e e e e e e e o e e e e e e e  

THE REASONER HAS NOT YET HALTED, BUT AFTER 
580 INFERENCES, THE CURRENT STATUS IS: 

(C a) is unjustified 

997 INFERENCES, THE CURRENT STATUS IS: 
(C a) is unjustified 

e e e e e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e  

THE REASONER HAS NOT YET HALTED, BUT AFTER 
1514 INFERENCES, THE CURRENT STATUS IS: 

(C a) is unjustified 

2;4;; 
2041 INFERENCES, THE CURRENT STATUS IS: 

(C a) is unjustified 
e e e e e e o e o e e o e o e e o e o e o e e o e e e o e e e e e e e  

THE REASONER HAS NOT YET HALTED, BUT AFTER 
2421 INFERENCES, THE CURRENT STATUS IS: 

(C a) is unjustified 

2807 INFERENCES THE CURRENT STATUS IS: 
(C a) is unjustified 

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e •  

THE REASONER HAS NOT YET HALTED, BUT AFTER 
3221 INFERENCES THE CURRENT STATUS IS: 

(C a) is unjustified 
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o e e  

THE REASONER HAS NOT YET HALTED BUT AFTER 
3575 INFERENCES, THE CURRENT STATUS IS: 

(C a) is unjustified 
• eo  eee  eee  • ee  • ee  e ee  eee  e ee  e e • • • • ee l  e • 

THE REASONER HAS NOT YET HALTED, BUT AFTER 17. 
3927 INFERENCES, THE CURRENT STATUS IS: 18. 

(C a) is unjustified 20. 

. . . . . . . . . . . . . . . .  " ;  38. 
N HAS NOT ET ALTED, 39. 

4329 INFERENCES, THE CURRENT STATUS IS: 
(C a) is unjustified 19. 

40. 
e e e e e e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e  

THE REASONER HAS NOT YET HALTED, BUT AFTER 
4668 INFERENCES, THE CURRENT STATUS IS: 

(C a) is unjustified 
e e e e e e e e e e o e e e e e e e e e e e e e e o e o o e e e e e e  

4!  

At this point the reasoning was 
aborted by the operator. 

The following relevant arguments were conatructed: 
o o e o o e o o e o o o o o o o o o e o o o o e o o e o o o o e o e o  

ARGUMENT #1 
This is a provisionally defeated argument for: 

(C a) 

2. (Aa) given 
5, (S a) pf reason from 2 
6. (C a) pf reason from 5 

Node #5 in argument #1 is defeated by the following 
argument: 

. . . . . . . . . . . . . . . . . . . . . . . . .  

This is a provisionally defeated argument for: 
((A a) ® (B a)) 

1, (Pa) given 
7, (Qa) pf reason from 1 
4. (Vx)((R x) D (3y)((R y) & (G x y))) given 
S. (R a) pf reason from 7 
9. (3y)((R y) & (G a y)) all-detachment from 8,4 
13. ((A a) ® (B a)) conclusive reason from 9 

Node #7 in argument #2 is defeated by the following 
argument: 

. . . . . . . . . . . . . . . . . . . . . . . . .  

This is a provisionally defeated argument for: 
((P a) ® (O a)) 

2. (Aa) given 
5. (Ba) pf reason from2 
3. (Vx)((C x) D ~y)((C y) & (F x y))) given 
6. (C a) pf reason from 5 
16. (3y)((C y) & (F a y)) all-detachment from 6,3 

((C @@y) & (F a @@y)) El from 16 
(C @@y) simplification from 17 
(3y)((C y) & (F @@y y)) all-detachment from 18,3 
((C @@@@y) & (F @@y @@@@y)) El from 20 
(C @@@@y) simplification from 38 
(F a @@y) simplification from 17 
(F @@y @@@@y) simplification from 38 

41. (3z)(((C @@y) & (C z)) & ((F @@y z) & (F a @@y))) 
EG from 40,19,39,18 

43. (3y)(3z)(((C y) & (C z)) & ((F y z) & (F a y))) EG from 41 
44. ((P a) ® (Q a)) conclusive reason from 43 

Node #5 in argument #2 is defeated by node #13 (argument 
#3): 
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