
Artificial Intelligence 57 (1992) 1-42 I
Elsevier

H o w to reason defeasibly

J o h n L. Po l lock

Department of Philosophy, University of Arizona, Tucson, AZ 85721. USA

Received January 1991
Revised February 1992

Abstract

Pollock, J.L., How to reason defeasibly, Artificial Intelligence 57 (1992) 1-42.

This paper describes the construction of a general-purpose defeasible reasoner that is
complete for first-order logic and provably adequate for the argument-based conception of
defeasible reasoning that I have developed elsewhere. Because the set of warranted
conclusions for a defeasible reasoner will not generally be recursively enumerable, a
defeasible reasoner based upon a rich logic like the predicate calculus cannot function like a
traditional theorem prover and simply enumerate the warranted conclusions. An alternative
criterion of adequacy called i.d.e.-adequacy is formulated. This criterion takes seriously the
idea that defeasible reasoning may involve indefinitely many cycles of retracting and
reinstating conclusions. It is shown how to construct a reasoner that, subject to certain
realistic assumptions, is provably i.d.e.-adequate. The most recent version of OSCAR
implements this system, and examples are given of OSCAR's operation.

1. Introduction

The aim of the OSCAR project is the construction of a general theory of
rationality and its implementation in a computer system, thus producing an
artificial rational agent named "OSCAR". This is of central relevance to AI.
At least for most purposes, a general constraint on AI systems should be that
they draw conclusions and make decisions that we, as human beings, regard as
rational. As long as their reasoning remains simple, we can evaluate the
rationality of AI systems just by using our intuitions about rationality and
without appeal to a general theory of rationality. But as the reasoning of AI
systems gets more complicated and the objectives of the systems more am-
bitious, the reasoning outstrips our uninformed intuitions. Eventually, complex
AI systems are going to have to be developed against the background of a
theory of rationality.

Correspondence to: J.L. Pollock, Department of Philosophy, University of Arizona, Tucson, AZ
85721, USA. Telephone: (602) 621-3129. E-mail: pollock@ccit.arizona.edu.

0004-3702/92/$05.00 © 1992--Elsevier Science Publishers B.V. All rights reserved

2 .1. L. Pollock

This paper addresses an aspect of rationality that is of central importance to

much current work in AI - -de feas ib le (nonmonotonic) reasoning. Most reason-

ing is defeasible, in the sense that it can lead not only to the adoption of new

conclusions but also to the retraction of previously adopted conclusions. The

structure of defeasible reasoning has been a topic of interest in both philosophy

and AI, although until recently researchers in the two fields were largely

oblivious of each other. 1 The purpose of this paper is not to construct a new

theory of defeasible reasoning, but to ask a new question about an old

t h e o r y - - t h e theory that can probably be regarded as the dominant model in

phi losophy for the last fifteen years. The question is, how can an automated

reasoner be constructed so that it can, in some reasonable sense, be regarded

as an implementat ion of the theory?

Although the general form of the philosophical theory of defeasible reason-
ing has remained constant since the early 1970s, it has recently undergone

considerable refinement in detail, motivated largely by its encounter with AI.

These refinements are recounted in [27, 28, 31, 32]. Rather than repeat all of

the details and arguments here, I will just give enough of a sketch of the theory

to enable the reader to understand its structure, and refer the reader to those

earlier publications for the details and for the defense of the theory.

1.I. Reasons and arguments"

Defeasible reasoning is, afortiori , reasoning. Reasoning proceeds by con-

structing arguments, where reasons provide the atomic links in arguments.

Conclusive reasons logically entail their conclusions. Defeasibility arises from

the fact that not all reasons are conclusive. Those that are not are prima facie
reasons. Prima facie reasons create a presumption in favor of their conclusion,
but it is defeasible. To illustrate, we often judge the colors of objects on the

basis of what color they look to us, taking apparent color to provide a prima
facie reason for a judgment about actual color. Thus, for example, rx looks red
to me ~ is a pr ima facie reason for me to believe rx is red 1 . Similarly, rMost
A's are B 's , and this is an A 1 is a pr ima facie reason for rThis is a B 1 . I will

represent a reason as an ordered pair { F, p) , where F is the set of premises of
the reason and p is the conclusion. The simplest kind of defeater for a pr ima

facie reason { F, p } is a reason for denying the conclusion. Let us define " ~ "
as follows: if for some 0, q~ = r - 0 ~ , let -n~ = 0, and let ~ ¢ = r_¢1 otherwise.
Then we have:

Definition 1.1. If (F, p} is a prima facie reason, (A, q) is a rebutting defeater
for (F , p) iff (A, q) is a reason and q = r--npl.

~The work on defeasible reasoning in philosophy stems mainly from the publications of
Roderick Chisholm and myself. See [2-4, 21-24, 26, 27, 29]. See also Kyburg's [12, 13].

How to reason defeasibly 3

For instance, if something looks red to me, that gives me a prima facie
reason for thinking it is red; but if Jones, whom I regard as reliable, insists that
it is not red, that gives me a rebutting defeater. There are also defeaters that
are not rebutting defeaters. They attack a prima facie reason without attacking
its conclusion. They accomplish this by instead attacking the connection
between the premises and the conclusion. They do this by giving us a reason
for denying that the premises wouldn't be true unless the conclusion were true.
Suppose again that I judge an object to be red on the basis of its looking red to
me. If I subsequently learn that the object is illuminated by red lights and such
illumination can make things look red when they are not, it is unreasonable for
me to maintain my belief that it is red. In other words, this is a defeater. But it
is not a reason for denying that the object is red, so it is not a rebutting
defeater. It is instead a reason for denying that the object would not look red
unless it were red. Symbolizing rit is false that P wouldn't be true unless Q
were true 1 as r p ® Q~, and letting HFbe the conjunction of the members of a
set F, we can define:

Definition 1.2. If (F, p} is a prima facie reason, (A, q) is an undercutting
defeater for (F, p) iff (A, q) is a reason and q = r(HF@p) 7 .

It is of interest to inquire about the logical properties of "®" , but that will
not be relevant to the present paper. For now it can be taken as an undefined
primitive. It is my conviction that rebutting defeaters and undercutting defea-
ters constitute the only kinds of defeaters necessary for describing the structure
of defeasible reasoning. The basis for this claim is the success I have had over
the years in using them as tools in epistemological analysis (see [24, 26, 29]).

Reasoning starts with premises that are input to the reasoner. (In human
beings, they are provided by perception.) The input premises comprise the set
input. (I assume throughout that input is finite.) The reasoner then makes
inferences (some conclusive, some defeasible) from those premises using
reason schemata. Reasons are combined in various patterns to form argu-
ments. The simplest arguments are linear arguments. These can be viewed as
finite sequences of propositions each of which is either a member of input or
inferable from previous members of the sequence in accordance with some
reason schema. But it is important to realize that not all arguments are linear.
We engage in various kinds of suppositional reasoning. In suppositional
reasoning we "suppose" something that we have not inferred from input, draw
conclusions from the supposition, and then "discharge" the supposition to
obtain a related conclusion that no longer depends upon the supposition. The
simplest example of such suppositional reasoning is conditionalization. When
using conditionalization to obtain a conditional (p D q), we suppose the
antecedent p, somehow infer the consequent q from it, and then discharge the
supposition to infer (p D q) independently of the supposition. Similarly, in

4 ,I. L. Pollock

reductio ad absurdurn reasoning, to obtain ~ p we may suppose p, somehow
infer -qp on the basis of the supposition, and then discharge the supposition

and conclude -np independently of the supposition. Another variety of supposi-
tional reasoning is dilemma (reasoning by cases).

In suppositional reasoning, we cannot think of arguments as finite sequences
of propositions, because each line of an argument may depend upon supposi-
tions. We can instead think of lines of arguments as ordered triples (X, p , /3),
where X is the set of propositions comprising what is supposed on that line, p is
the proposition obtained on that line, and/3 describes the basis" for the line,/3
will be taken to be an ordered pair (A, R) , where R is the rule of inference
used to obtain the line and A is the set of line numbers of the lines from which
the present line is inferred by using R. X is the supposition set of the line. An
argument cr supports the proposition p relative to the supposition X iff one of
its lines has the form (X, p, /3). or supports p iff ~ supports p relative to the
empty supposition. The conclusion of an argument is its last line. For further
details about the structure of arguments, see [31, 32].

Arguments defeat other arguments by supporting rebutting or undercutting
defeaters for some of their defeasible steps. If we make the simplifying
assumption that all reasons are of equal strength, this is described as follows:

Definition 1.3. An argument ~r rebuts an argument rj iff:

(1) some line of ~/has the form (Y, q, (a, reason)), where the propositions
supported on the lines in a constitute a prima facie reason for q; and

(2) some line of ~ has the form (X,--nq,/3), where XC_ Y.

Definition 1.4. An argument o- undercuts an argument rt iff:
(1) some line of r t has the form (Y, q, (a, reason)), where the propositions

Pl Pk supported on the lines in a constitute a prima facie reason
for q; and

(2) some line of cr has the form (X , ((p l & . . . & p k) ® q) , / 3) , where
X C Y .

If we do not assume that all reasons are of equal strength, then this account
must be complicated somewhat. A proposal is made in [31] for how to do this,
and it has been implemented in OSCAR, but to keep the current presentation
as simple as possible, I will ignore variations in reason-strength in this paper.
We can then define:

An argument o- defeats an argument r/ iff ~ either rebuts or undercuts "O.

1.2. Justified beliefs and warranted propositions

Theories of reasoning are basically procedural theories. They are concerned
with what a reasoner should do next when it finds itself in any particular

How to reason defeasibly 5

epistemological situation. Correct reasoning can involve numerous false starts,
wherein a belief is adopted, retracted, reinstated, retracted again, and so forth.
At each stage of reasoning, if the reasoning is correct then a belief held on the
basis of that reasoning is justified, even if subsequent reasoning will mandate its
retraction. Epistemic justification, in this sense, is a procedural notion consist-
ing of the correct rules for belief updating having been followed by the system
up to the present time in connection with the belief being evaluated.

We can think of a reasoner as a belief-updater, i.e., an effectively comput-
able set function update that operates repeatedly on sets of beliefs to generate
new sets of beliefs. The reasoner starts with the set input, and each cycle of the
reasoner constitutes the application of update to the previous set of beliefs. Let
us define the function J recursively by stipulating

J(O) = input,

J (n + 1) = update(¢(n)) .

Then J (i) is the set of beliefs justified at the ith stage of reasoning.
In contrast to justification, warrant is what the system of reasoning is

ultimately striving for. A proposition is warranted in a particular epistemic
situation iff (if and only if), starting from that epistemic situation, an ideal
reasoner unconstrained by time or resource limitations would ultimately be led
to believe the proposition. Warranted propositions are those that would be
justified "in the long run" if the system were able to do all possible relevant
reasoning. A proposition can be justified without being warranted, because
although the system has done everything correctly up to the present time and
that has led to the adoption of the belief, there may be further reasoning
waiting to be done that will mandate the retraction of the belief. Similarly, a
proposition can be warranted without being justified, because although reason-
ing up to the present time may have failed to reveal adequate reasons for
adopting the proposition, further reasoning may provide such reasons. Analog-
ously, reasoning up to the present may mandate the adoption of defeaters
which, upon further reasoning, will be retracted. So justification and warrant
are two importantly different notions, although they are closely related.

A characterization of what ought to be believed given all possible relevant
arguments is a characterization of the set of warranted propositions. Such an
account can be given fairly easily in terms of the notion of one argument
defeating another. Suppose we have an argument a supporting a conclusion P,
and an argument /3 that defeats a. If these are the only relevant arguments,
then P is not warranted. But now suppose we acquire a third argument y that
defeats/3. This situation is diagrammed as in Fig. 1. The addition of y should
have the effect of reinstating a, thus making P warranted. We can capture this
kind of interplay between arguments by talking about arguments being in or
out at different levels. Let us provisionally define:

6 J.L. Pollock

c¢ ~ 't

P

Fig. 1. Interacting arguments.

Definition 1.5.
• All arguments are in at level O.
• An argument is in at level n + 1 iff it is in at level 0 and it is not defeated

by any argument in at level n.
• An argument is ultimately undefeated iff there is an m such that for every

n ~> m, the argument is in at level n.

My proposal is then that a proposit ion is warranted iff it is supported by some

ult imately undefeated argument. '-

1.3. Collective and provisional defeat

Suppose you have two friends, Smith and Jones, that you regard as equally

reliable. Smith approaches you in the hall and says, " I t is raining outside."

Jones then announces, " D o n ' t believe him. It is a fine sunny day." If you have
no other evidence regarding the weather, what should you believe? It seems
obvious that you should withhold belief, believing neither that it is raining nor

that it is not. If the state of the weather is important to you then you should
seek more evidence rather than deciding at random to hold one or the other of

these beliefs. This is an illustration of the phenomenon of collective defeat.

Consider a simple scenario in which i n p u t = { p , q } , and ({ p } , r) and
({ q}, ~ r) are pr ima facie reasons of the same strength. Then we can construct

two simple arguments:

a: p - - - > r ,

¢3: q - - - > ~ r .

It follows f rom our analysis that each argument defeats the other. Accordingly,
they are in at level 0, out at level 1, in again at level 2, out again at level 3, and
so on. Hence neither is ultimately undefeated, and hence neither r nor ~ r is

warranted.
Collective defeat operates in accordance with the following general principle:

: I first made this proposal in [25]. It was first published in [26]. A similar proposal was made by
Horty, Thomason, and Touretzky in [10].

How to reason defeasibly 7

The Principle of Collective Defeat. If X is a set of arguments such that (1) each
argument in Y, is defeated by some other argument in X and (2) no argument in

is defeated by any argument not in ~, then no argument in ~ is ultimately
undefeated.

This is because each argument in X will be in at every even level, but then it
follows that each will be out at every odd level. We can define:

Definit ion 1.6.
• An argument o" is ultimately defeated iff there is a level n such that o" is out

at all higher levels.

• An argument o- is provisionally defeated iff there is no level n such that or
is in at all higher levels or out at all higher levels.

Collective defeat is familiar in AI from the discussion of skeptical and
credulous reasoners (see [35]). Roughly, skeptical reasoners withhold belief
when they have equally good reasons for and against a conclusion, and
credulous reasoners choose a conclusion at random. It has been urged that the
choice between skeptical and credulous reasoners is more a matter of taste
than a matter of logic, but my own view is that credulous reasoners are just
wrong. In the above example, if I announced "I realize that I have no better
reason for thinking that it is raining than for thinking that it is not, but I choose
to believe that it is raining", no one would regard me as rational. I have argued
in [28, p. 129] that this controversy stems from a confusion of theoretical
reasoning (reasoning about what to believe) with practical reasoning (reasoning
about what actions to perform). In practical reasoning, if one has no basis for
choosing between two alternative actions, one should choose at random. The
classical illustration of this is the medieval tale of Buridan's ass who starved to
death standing midway between two equally succulent bales of hay because he
could not decide from which to eat. This marks an important difference
between practical reasoning and theoretical reasoning. But regardless of what
one thinks about all this, the theory of reasoning being implemented in this
paper is skeptical.

Collectively defeated arguments are provisionally defeated, but it turns out
that an argument can be provisionally defeated without entering into collective
defeat with other arguments. This results from the fact that, although an
ultimately defeated argument cannot defeat another argument, provisionally
defeated arguments can still provisionally defeat other arguments. To illus-
trate, suppose a and/3 defeat one another collectively. In this case, a is in at
every even level and out at every odd level. Now suppose a supports a defeater
for a third argument y. This will have the effect that y is out at every odd level
and back in at every even level, so y is also provisionally defeated, even though
it may not in turn defeat the arguments at whose hands it suffers provisional

8 ,I. L. Pol lock

defeat. This observation will turn out to be extremely important in the design
of a defeasible reasoner.

1.4. Self-defeating arguments

In [32], 1 showed that if the only source of defeat among arguments were the
rebutting and undercutting relations defined in Section 1.1, purely formal
manipulations would produce arguments defeating virtually any defeasible
argument, with the result that the whole structure of defeasible reasoning
would collapse. For example, suppose P is a prima facie reason for R, Q is an
equally good prima facie reason for - R , S is a prima facie reason for T, and
input = {P, Q, S}. Then we can construct the following three arguments
(where defeasible inferences are indicated by dashed arrows):

o~: P - - - > R ,

/3: Q - - - > - R ,

o-: S - - - > T ;

a and/3 collectively defeat one another, but o- should be independent of u and
/3 and ultimately undefeated. The difficulty is that we can construct a fourth
argument (where deductive inferences are indicated by solid arrows):

P - - - > R--+(R v - T) ,}
71: (2 - - - > - - R , ~ - T "

rl uses a standard strategy for deriving an arbitrary conclusion from a con-
tradiction. The problem is now that rl rebuts ~r. Of course, "q itself is defeated
by either ~ or /3 , or for that matter, by itself (it supports defeaters for its own
defeasible steps). But that only results in rl being provisionally defeated, and as
I pointed out above, a provisionally defeated argument can still provisionally
defeat another argument, r I is out at every even level, but it is still in at every
odd level. Consequently, it still forces ¢r to be out at every even level, and
hence o~ is provisionally defeated too. But ~ should not be provisionally
defea ted- - i t should be ultimately undefeated.

To handle self-defeat correctly, the theory of defeasible reasoning must be
made more complicated, and in [32] I made a proposal regarding how this
should be done. As a start, the definition of being in at a level is modified so
that self-defeating arguments are ruled out at every level. But it turns out that
additional complications must be added to the theory to adequately handle
collective defeat. The proposal of [32] is incorporated into OSCAR, but to
simplify the account, I am going to ignore these complications in the present
paper. The justification for this is that they turn out not to affect the overall
structure of the automated reasoner. All they do is make it a bit more difficult
to compute which arguments defeat which.

How to reason defeasibly 9

1.5. Comparison with A I theories of nonmonotonic reasoning

Although in general outline this theory predates the most familiar theories of
nonmonotonic reasoning in AI, it will seem unfamiliar to many researchers in
AI because of the past isolation of philosophy and AI from each other.
Accordingly, it is useful to compare this theory to theories more familiar in AI.
The comparison will be brief, because the point of this paper is not to defend
this theory (that has been done elsewhere), but to ask how an automated
reasoner could implement it. In spirit, the theory of defeasible reasoning seems
close to Reiter's default logic [34], with prima facie reasons and defeaters
corresponding to Reiter's defaults. But there are also profound differences
between the two theories. First, prima facie reasons are supposed to be logical
relationships between concepts. It is a necessary feature of the concept red that
something's looking red to me gives me a prima facie reason for thinking it is
red. (To suppose we have to discover such connections inductively leads to an
infinite regress, because we must rely upon perceptual judgments to collect the
data for an inductive generalization.) By contrast, Reiter's defaults often
represent contingent generalizations. If we know that most birds can fly, then
the inference from being a bird to flying may be adopted as a default. In the
theory of defeasible reasoning, the latter inference is instead handled in terms
of the following prima facie reason schema:

rMost A's are B's, and this is an A ~ is a prima facie reason for
rThis i sa B 7 .

This is the statistical syllogism, and constitutes the central topic of discussion of
[29].

A second contrast between the present theory of defeasible reasoning and
Reiter's approach is that the latter is semantical (proceeding in terms of an
unspecified deductive-consequence relation), whereas the former is argument-
theoretic. Argument-based approaches to defeasibility can be found in the
work of Loui [16] and also in that of Lin and Shoham [15]. The work of Horty,
Thomason, and Touretzky [35] can also be viewed as an argument-based
theory of defeasible reasoning, where the arguments are represented as trees.
However, these theories are all based upon much simpler conceptions of
argument, confining their attention to linear arguments, and they do not
investigate the phenomena of collective defeat or self-defeat. None of the AI
theories of nonmonotonic reasoning appear to be sensitive to the importance of
suppositional reasoning, but suppositional reasoning seems to be essential in
any reasoner that is capable of performing deductive and defeasible reasoning
simultaneously. In addition, the systems of Horty, Thomason, and Touretzky
accommodate only rebutting defeaters.

It is easily proven that if we identify prima facie reasons with defaults,
confine our attention to linear arguments, consider only cases in which there is

Ill Y .L. Pollock

no collective defeat or self-defeat, and identify the deductive-consequence
relation with deductive provability using the linear arguments, then the set of
warranted conclusions generated by the present theory will be the same as the
unique extension generated by Reiter's default logic. In situations in which
collective defeat occurs, the two theories yield completely different results,
because default logic is credulous and the present theory is skeptical. A
skeptical version of default logic can be generated by requiring that default
consequences be members of the intersection of all extensions, and I conjec-
ture (but have not proven) that this brings the two theories back into
agreement if there is no self-defeat and we consider only linear arguments.
Once we allow suppositional reasoning, the two theories diverge again. For
instance, if we consider a default theory with the normal default

P : - O
Q

and the corresponding defeasible theory in which P is a prima facie reason for
Q and there are no undercutting defeaters, then from the empty set of
premises the present theory of defeasible reasoning will generate the warranted
conclusion (P D Q), but skeptical default logic will not.

No theories of nonmonotonic reasoning handle self-defeat in the same way
as the present theory of defeasible reasoning. For example, suppose we are
given P, and P is a prima facie reason for Q, Q is a prima facie reason for R,
and R is a prima facie reason for (P ® Q). Then the following argument is
self-defeating:

P - - - > Q - - - > R - - - > (P ® Q) .

On the theory of defeasible reasoning (as further developed in [32]), Q and
R will be warranted, but (P ® Q) will not be warranted. If we try to represent
this in default logic, we find that the only extension is the logical closure of
{P, (P ® (2)}. This has the perverse consequence that although Q and R are
unwarranted, (P ® Q) is warranted. I take this to be an intuitive counterexam-
pie to default logic.

2. Cri ter ia of adequacy for a defeasible reasoner

In designing an automated defeasible reasoner, one is faced with the
problem of how to evaluate the reasoning that the reasoner performs. We want
the reasoning to be "correct", but what is the criterion for correctness? The
desideratum is not necessarily to build a reasoner that replicates human
reasoning in all respects, because there may be more efficient ways of doing it.
However, before we can decide whether a particular procedure is a more
efficient way of doing it, we have to determine what the " i t" is that we want

How to reason defeasibly 11

the reasoner to do. The analysis of warrant constitutes an "argument-based
semantics" for defeasible reasoning, but what exactly is the connection be-
tween warrant and what we want a reasoner to accomplish? The simplest
proposal would be that we want the reasoner to "compute warrant". But if this
is understood as requiring that the reasoner implement an effective procedure
for deciding warrant, then it is an impossible desideratum. All theorems of
logic are automatically warranted because the arguments supporting them are
non-defeasible. This includes all theorems of the predicate calculus. If we give
the system no non-logical reasons, these are the only warranted propositions.
Thus a decision procedure for warrant would give us a decision procedure for
the predicate calculus. However , by Church's theorem, the set of theorems of
the predicate calculus is not decidable. Thus no reasoner can compute warrant
in this sense. A weaker proposal would be that we want the reasoner to
systematically generate all warranted propositions in some effective way,

analogous to the manner in which a complete theorem prover generates all
theorems of the predicate calculus. But this desideratum is also provably
unsatisfiable, because the set of warranted propositions can fail to be recursive-

ly enumerable (henceforth " r . e . ") . This is because, as has been observed by
numerous authors, 3 on any theory of defeasible reasoning, the ultimate correct-
ness of a piece of reasoning (i.e., whether the conclusion of the reasoning will
survive an indefinite amount of further reasoning and hence be warranted) will
always turn upon something else being unprovable. Making this more precise,
we have the following theorem:

Theorem 2.1. There are finite sets o f input premises and finite sets o f non-logical
reasons such that the set of conclusions warranted with respect to them is not r.e.

Proof. Suppose otherwise. Then for any finite set input and finite set of
non-logical reasons, there is a way of mechanically generating the list of
formulas warranted relative to them. Given any first-order formula P, choose a
sentence letter Q not occurring in P, let input= {Q}, and let the only
non-logical reason be the prima facie reason ({Q} , P) . We have a prima facie
reason for P, so P is warranted iff there is no ultimately undefeated or
provisionally defeated argument defeating this inference. Because Q is logically
unrelated to P, and there are no other prima facie reasons, the only possible
defeating argument would be a deductive argument for - P . Thus in this
situation, P is warranted iff - P is not a theorem of the predicate calculus.
Consequently, the mechanical procedure for listing warranted conclusions will
list P iff - P is not a theorem. This would constitute a recursive enumerat ion of
the non-theorems of the predicate calculus, but that is impossible by Church's
theorem. It follows that the set of defeasible consequences of a set of premises

I think that the first were David Israel [11] and Raymond Reiter [34].

12 .I.L. tOIlock

may not be r.e. , and there can be no effective procedure for generating the set
of warranted consequences of an arbitrary set of input premises and non-logical

reasons. []

If the desideratum for an automated reasoner is neither that of computing

warrant nor recursively enumerat ing the set of warranted conclusions, what is

it? We should take seriously the idea that defeasible reasoning is defeasible.
That is, a defeasible reasoner may have to adopt a belief, and then retract it in

the face of defeaters, and then reinstate the belief because the defeaters are

themselves retracted. This cycle may be repeated an indefinite number of

times. The most we can require of the reasoner is that its rules for reasoning
guarantee that it will systematically modify its belief set so that it comes to

approximate the set of warranted propositions more and more closely. We
want the set of beliefs to "approach the set of warranted propositions in

the limit". In [28, 31], I proposed that we understand this in the following

sense:

Proposition 2.2. The rules for reasoning should be such that:
(1) if a proposition p is" warranted, then the reasoner will eventually reach a

stage where p is" adopted and stays adopted;
(2) if p is unwarranted, then the reasoner will eventually reach a stage where

p is not adopted and stays unadopted.

So the task of a reasoner is not to compute warrant. It is to generate

successive sets of beliefs that approximate warrant more and more closely, in

the above sense. We can make this mathematical ly precise as follows.

Definition 2.3. A set A is defeasibly enumerable (henceforth " d . e . ") iff there is

an effectively computable set function o- and a recursive set Ao such that if we
define Ai+ ~ = o-(Ai) then:

(1) (Vx) if x E A then (3n) (Vm > n) x E A,,,;
(2) (Vx) if x ~ A then (3 n) (V m > n) xf~A,, , .

I will say that the pair (A o, ~r) is a d.e. approximation of A, and the

sequence A i of recursive sets is a defeasible enumeration of A. An equivalent
definition is:

Definition 2.4. A set A is defeasibly enumerable iff there is an effectively
computable function f such that for each n, f (n) is a recursive set, and

(1) (Vx) if x E A then (3 n) (V m > n) x ~ f (m) ;
(1) (Vx) if x ~ A then (3 n) (V m > n) x ~ f (m) .

Defeasibly enumerable sets are the same as the sets that Gold [9] calls

How to reason defeasibly 13

"limiting recursive" and Putnam [33] calls "trial and error". Both authors
establish that a set is of this type iff it is za 2 in the arithmetic hierarchy.

The intuitive difference between recursively enumerable sets and defeasibly
enumerable sets is that recursively enumerable sets can be "systematically
approximated from below", while defeasibly enumerable sets that are not
recursively enumerable can only be systematically approximated from above
and below simultaneously. More precisely, if A is r.e., then there is an
effectively computable sequence of sets A i such that

(1) (Vx) if x E A then (3n)(Vm > n) x E Am;
(2) (Vx) if x ~ A then (Vm) x ~ m m.

The sets A i approximate A from below in the sense that they are all subsets of
A and they grow monotonically, approaching A in the limit. If A is defeasibly
enumerable, however, the sets A i need not be subsets of A. They may only
approach A from above and below simultaneously, in the sense that they may
contain elements not contained in A. Every such element must eventually be
taken out of the Ai's, but there need not be any point at which they have all
been removed. The process of defeasible enumeration can be pictured by
thinking of A as a spherical region of space and the A~'s as representing
successive stages of a reverberating elastic ball whose center coincides with the
center of A. As the reverberations dampen out, the outer surface of the ball
will come to approximate that of the spherical surface more and more closely,
but there will never be a point at which the ball is contained entirely within the
spherical surface.

The reverberating sphere metaphor can be used to give a precise mathemati-
cal characterization of the difference between A being r.e. (approximation
from below) and d.e. (approximation from above and below simultaneously).
If A is r.e. then

A = L_.J A , .
n e w

On the other hand, if A is d.e. then what we have is:

A= (-] ~J Am= ~J ("~ A m.
n e w m ~ n n e r o m ~ n

My proposal regarding reasoning and warrant is that the set of warranted
propositions is defeasibly enumerable, and the rules for reasoning are rules for
successively approximating warrant in this way, i.e., they are rules for con-
structing a d.e. approximation. More accurately, thinking of a reasoner as an
effective set function update that starts with the set input and operates
repeatedly on sets of beliefs to generate new sets of beliefs, we have:

Definition 2.5. A reasoner update is d.e.-adequate iff, for any set input of
inputs, (input,update) is a d.e. approximation of the set of propositions that
are warranted given that set of inputs.

14 .I.L. Pollock

Equivalently:

Definition 2.6. If J (i) is the set of propositions justified after i applications of
update to input, the reasoner is d.e.-adequate iff J is a defeasible enumeration
of the set of warranted propositions.

I propose d.e.-adequacy as the primary criterion of adequacy for a reasoner,
and the objective of this paper is to investigate the question of how to construct
a reasoner that is d.e.-adequate. 4

In actual practice, an automated reasoner does not strive to do all possible
reasoning. Instead, it is constrained to construct arguments built using only
limited resources for argument formation. For instance, it might construct only
arguments that can be formulated within a certain system of first-order logic.
These arguments will comprise a class ~/. The preceding adequacy condition
must be relativized to ~ to make it applicable to such reasoners. Given any
class ,~/of arguments, we can relativize all our argument-based concepts to ~/
by relativizing all quantification over arguments to the class ,ft. In particular:

Definition 2.7. P is warranted relative to ~l iff P is supported by some argument
in ~ / t h a t is ultimately undefeated relative to M.

Definition 2.8. A reasoner update is d.e.-adequate relative to ~l iff, for any set
input of inputs, (input,update) is a d.e. approximation to the set of proposi-
tions that are warranted relative to ~ given that set of inputs.

Our actual objective will be to construct reasoners that are d.e.-adequate
relative to particular classes of arguments.

The requirement that a reasoner provide a d.e. approximation to warrant is
a minimal criterion of adequacy. Other criteria must also be involved in the
choice of a reasoner. At the very least we must consider efficiency. But there is
a different kind of adequacy condition that must also be met. If a reasoner is
d .e . -adequate , there will be cases in which it will never stop reasoning. Any
given proposition may be adopted, retracted, and reinstated many times. Every
warranted proposition will eventually be adopted without subsequently being
retracted, and every unwarranted proposition will eventually become un-
adopted without subsequently being adopted, but the reasoner may never
know that a given proposition has reached this stable state. It can inform us
that "so far" a certain conclusion is justified, but it may have to continue

4 It can be observed that d .e . -adequate reasoners might also be constructed for other theories of
defeasible and nonmonotonic reasoning. I have not pursued that, because it is my conviction that
insofar as such theories disagree with the present theory they give incorrect accounts of rationality.
But , of course, others will disagree with me on this.

How to reason defeasibly 15

forever in a possibly fruitless search for defeating arguments. This, of course, is
just the way people work. This highlights a distinction between two concepts of
defeasibility. The sense in which correct human reasoning is defeasible is that

we regard such reasoning as "innocent until proven guilty". Once a conclusion
becomes justified, it is reasonable to accept it provisionally and act upon it. By
contrast, AI theories of nonmonotonic reasoning (default logic, circumscrip-
tion, etc.) have usually focused on a stronger notion of defeasibility according

to which a defeasible conclusion is acceptable only if it has been established
that it is objectively devoid of faults. The latter amounts to proving that the
conclusion is warranted. This has made it seem mysterious how nonmonotonic
reasoning can possibly function in a finite agent. The solution is to instead
adopt the "innocent until proven guilty" construal of defeasibility, and allow a
rational agent to act on its defeasible conclusions even though it has not
conclusively established that there are no defeaters and even though, in the
absence of more pressing tasks, it will continue to search for defeaters.

The reasoning employed by such a rational agent must be interruptible, 5 in
the sense that if at some point the agent must stop reasoning and act, it is
reasonable to act on the conclusions drawn to that point. This is not ensured by

d.e.-adequacy. For example, let R 1 be a reasoner that is both interruptible and
d.e .-adequate. Let R 2 be just like R I except that for the first million steps it
draws conclusions purely at random, and then after one million steps it
withdraws all those randomly drawn conclusions and begins reasoning as in
R 1. Clearly, it would be unreasonable to make use of any of the conclusions
drawn by R 2 during its first one million inference steps, so it is not interruptible.
On the other hand, R~ is still d.e .-adequate, because that concerns only
its behavior in the limit, and its behavior in the limit is the same as that

of R l .
It is not clear how to construct a formal criterion of adequacy that will

ensure interruptibility. It is tempting to at least require that the conditional

probability that a conclusion is warranted given that it is drawn at a certain
stage of the reasoning is (1) high, and (2) a monotonic increasing function of
the number of the stage. But this is still insufficient to insure interruptibility.
For example, a reasoner satisfying this condition will continue to satisfy it if we
modify it to draw conclusions at random when it is dealing with a certain
isolated subject matter.

Because of the difficulty in formulating a mathematically precise characteri-
zation of interruptibility, I am going to ignore that condition in this paper, but
it is a topic that must eventually be addressed with care. My objective here will
be merely to design a reasoner that is d.e.-adequate. I will return to inter-
ruptibility briefly in Section 7.

5 This point and the terminology are due to George Smith.

16 ,I. L. Pollock

3. Bui lding a defeasible reasoner

3.1. The monotonic reasoner

In constructing a defeasible reasoner, we need rules governing the adoption

of beliefs, the retraction of beliefs in response to the adoption of defeaters, and

the re ins ta tement of beliefs in response to the retraction of defeaters. I propose

to begin with the construction of a reasoner that ignores defeaters. This

monotonic reasoner will be analogous to a deductive reasoner in that it

constructs arguments and adopts as beliefs any conclusions supported by any of

the arguments it constructs, but it will differ from a deductive reasoner in that
it will use pr ima facie reasons as well as conclusive reasons as links in

arguments . For the most part, it need not distinguish between prima facie and

conclusive reasons.

3.2. Defeasible reasoning without collective defeat or self-defeat

If we did not have to contend with collective defeat or self-defeat, it would
be quite easy to build a defeasible reasoner by modifying the monotonic

reasoner . A defeasible reasoner must perform three kinds of operations: belief
adopt ion, retraction, and reinstatement. These proceed as follows:

(1) The reasoner must adopt beliefs in response to constructing arguments,
provided no defeaters have already been adopted for any step of the

argument . This can be handled just as in the monotonic reasoner, except

that when a defeasible inference occurs, there must be a check to

ascertain whether a defeater for it has already been adopted as a belief.

(2) The reasoner must keep track of the bases upon which its beliefs are
held. When a new belief is adopted that is a defeater for a previous

inference step, then the reasoner must retract that inference step and all

beliefs inferred from it.
(3) The reasoner must keep track of defeated inferences, and when a

defeater is itself retracted (in accordance with (2)), this should reinstate

the defeated inference. The reasoner can then either repeat the reason-
ing that followed from that defeated inference, or the reasoner can be
constructed in such a way that it keeps track of that reasoning and

reinstates it en block.

It is simple to build a reasoner that performs these functions, and in fact such
a reasoner is described in [27]. Let us call a reasoner performing these
functions a stage-I reasoner. One of the salient characteristics of a stage-I
reasoner is that once a defeasible inference step is defeated, the reasoner
ceases exploring its consequences. The reasoner expends its resources inves-
tigating the consequences of a defeated inference only if the inference is
reinstated. This seems like the only sensible way to proceed in defeasible

How to reason defeasibly 17

reasoning. Why put effort into developing the consequences of an inference
you already know to be defeated? But as we will see, this seemingly obvious
design feature leads to apparently insuperable difficulties when we begin to

worry about collective defeat.

3.3. Collective defeat and provisional defeat

Some special device must be adopted for handling collective defeat. For
example, suppose input = {P, Q}, and P is a prima facie reason for R while Q
is an equally good prima facie reason for - R . The stage-I reasoner will fail to
discover the collective defeat. It will adopt P and Q, and then infer R. The
next move would be to infer - R , but it has already adopted a defeater for that
inference (namely, R), so it will refrain from making that inference. It will thus
never adopt a defeater for the inference to R, and hence that belief will remain

adopted, whereas it should be provisionally defeated.
A first stab at handling collective rebutting defeat might have the reasoner

note that - R is a defeater for the inference to R, and so in addition to
refraining from inferring - R , the reasoner will also retract the belief in R.

However , the reasoner cannot stop there, because upon retracting R, it will no
longer have a defeater for the inference to - R , and hence that inference would
be reinstated according to the rules governing the stage-I reasoner. To block
this, the reasoner must maintain a special database recording the essential facts
governing any collective defeat that has occurred. By appealing to the data-
base, the reasoner can avoid repeating collectively defeated reasoning unless it
is reinstated, and it can also use the database to govern reinstatement. In
collective rebutting defeat, a set X of prima facie reasons all of whose premises
are adopted as beliefs is shown to deductively entail a contradiction. A
convenient way to record such collective rebutting defeat is to have the
database be a list of such sets X. If one of the reasons in X is subsequently
defeated in some other way, or if its premises are retracted on the basis of

defeat elsewhere, that should reinstate the other reasons in X. Let us call a
reasoner handling collective rebutting defeat in this way a stage-H reasoner.
The reasoner of [27] was also a stage-II reasoner. Note that stage-II reasoners
are like stage-I reasoners in that it is still true that once a defeasible inference
step is defeated, the reasoner ceases exploring its consequences.

In [27], I observed that the reasoner described there did not handle some
cases of collective undercutting defeat correctly. At the time, I supposed this
could be corrected by adding a special database and rules for processing it
analogous to the above treatment of rebutting defeaters. But I have sub-
sequently come to realize that this is incorrect, and furthermore that the
stage-II reasoner handles some cases of collective rebutting defeat incorrectly.
The problem stems from the seemingly desirable feature that once a defeasible
inference step is defeated, the reasoner ceases exploring its consequences.

1~ .1. L. Pollo~'k

O~: P > Q - - > ... ---->(A ® B)

~: A ----> B ----> ... -----> (p ® Q)

Fig. 2. Collective undercutting defeat.

The cases in which collective rebutting defeat is handled incorrectly arise
from the fact noted in Section 1.3 that collectively defeated arguments can still
render other arguments provisionally defeated. However, such provisional
defeat will not be discovered by a stage-II reasoner. If it simply retracts beliefs
in the face of collective defeat, this will prevent their provisionally defeating
other beliefs. For instance, suppose we have an argument ~ for - (P & Q),
and /3 for (P & Q). c~ and /3 are collectively defeated. If the reasoner then
constructs an argument 3' for - P , it will not notice the conflict between that
and (P & Q), because the latter was retracted before the reasoner had a
chance to infer P from it. Consequently, the reasoner will not take 3, to be
provisionally defeated. In order to discover the provisional defeat of 3', it
would have to continue reasoning from (P & Q) to P, even after/3 has been
provisionally defeated. (I am assuming here that without some special reason
for doing so, the reasoner will not automatically infer - (P & Q) from - P . I
believe that this is true of all existing monotonic reasoners. The alternative is
combinatorially explosive.) It appears that the only way to handle this correctly
is to flag provisionally defeated beliefs as provisionally defeated, and have the
reasoner continue to reason from them instead of simply discarding them as in
the stage-II reasoner.

An analogous problem occurs in collective undercutting defeat. Suppose a
and/3 are long arguments each of which undercuts an early defeasible inference

in the other. This is diagrammed in Fig. 2. If the reasoner first discovers the
defeat of /3 by a, it will stop reasoning from propositions supported by/3 and
never discover the defeat of a and/3. The only way to handle this is to continue
reasoning with beliefs even when they are defeated outright (not just provision-
ally defeated). Again, the reasoner must flag them as defeated, and continue
reasoning with them.

3.4. Flag-based reasoners

The preceding considerations seem to indicate that the production of argu-
ments by the monotonic reasoner must be relatively insensitive to their defeat
status, because the reasoner must continue reasoning from conclusions even
when they are defeated. This suggests building a defeasible reasoner out of two
relatively autonomous modules. The first is the monotonic reasoner, which
systematically makes inferences (generates arguments) without concern for
their defeat status, and the second is a module that computes the defeat status

How to reason defeasibly 19

of all the arguments produced at each stage of reasoning relative to the set of
all arguments so far produced. The reasoner will then be a simple loop:

(loop
(make-an-inference)
(recompute-defeat-statuses))

Each time the reasoner makes an inference, it thereby produces a new
argument. Let Mi be the set of arguments produced after i inferences. It is
assumed that the set ~ / o f arguments relative to which we assess warrant is the

union of the s~ i.

Definition 3.1.
• An argument a is ultimately undefeated at stage i iff a is ultimately

undefeated relative to ~/i.
• An argument c~ is ultimately defeated at stage i iff a is ultimately defeated

relative to ~/i.
• An argument a is provisionally defeated at stage i iff a is provisionally

defeated relative to ~/i.
• A proposition P is justified at stage i iff P is supported by some argument

ultimately undefeated at stage i.

The function recompute-defeat-status determines which of the arguments in
~/i are ultimately defeated, which are ultimately undefeated, and which are
provisionally defeated, at stage i. To avoid confusion, the reader should bear in
mind that the levels of arguments employed in the recursive definition of
warrant are unrelated to the stages of inference employed here. I will refer to
the latter as stages o f the monotonic reasoner. Let J (i) be the set of all
propositions justified at stage i of the monotonic reasoner. These will be taken
to be the interim conclusions (the current beliefs) of the reasoner. The hope is
that the sequence of justification sets ~ (i) will constitute a defeasible enumera-
tion of the set of warranted conclusions. I will call a reasoner of this sort a
flag-based reasoner. Whether this approach will actually work remains to be
seen, but the principal result of this paper will be that flag-based reasoners can

be made to work.
Flag-based reasoners mark a serious divergence from stage-II reasoners.

Flagging beliefs as provisionally defeated or defeated outright, and then
continuing to reason with them, seems outrageously expensive. But there
appears to be no alternative. It is worth at least noting that human reasoners
are not totally insensitive to the consequences of defeated beliefs, even if they
do not usually expend a large amount of effort in developing those con-
sequences. In Section 6, I will mention possibilities for minimizing this cost.
But first, in Sections 4 and 5, I will address theoretical issues concerning the
possibility of constructing a d.e.-adequate flag-based reasoner.

20 J.L. Pollock

4. The defeat graph

The main result of this section will be a theorem to the effect that, given
certain reasonable assumptions, it is possible to construct a d.e.-adequate
flag-based reasoner for a class of arguments M. Such a reasoner consists of a
monotonic reasoner and an algorithm for computing defeat status. Initially, the
only assumption that will be made about the monotonic reasoner is that it
systematically generates every argument in ~/. An algorithm will be con-
structed for computing defeat status, and then we will consider what additional
constraints must be imposed on the monotonic reasoner in order to ensure that
the resulting flag-based reasoner is d.e.-adequate.

The algorithm for computing defeat status will be based rather directly upon
the argument-based semantics. This will facilitate understanding how it works,
but it would be impractical to try to implement it directly because of the
inordinate demands it would make on memory. To surmount this difficulty, a
second algorithm will be described in Section 5. The second algorithm is
derived from the first by adopting a different representation of arguments, and
it can be implemented in a more practical way. However, a d.e.-adequate
flag-based reasoner based on either algorithm can be seen to require an

unreasonable assumption about the monotonic reasoner. In order to relax this
assumption, we must modify the criterion of d.e.-adequacy to make it interest-
relative. Section 6 will address the task of constructing a truly practical
defeasible reasoner based upon an interest-driven monotonic reasoner.

The first algorithm is based upon the defeat graph, which represents defeat
information in a graphical form.

Definition 4.1. The defeat graph for a set ary of arguments is a graph whose
nodes are the members of a T and which is such that if a,/3 C a T, (a,13) is a
link iff 13 defeats a.

I will construe the directionality so that it is the parents of a node that defeat
it. In diagramming defeat graphs, I will write " a ~--/3" when/3 is a parent of
(defeats) a. It will be useful to talk about the defeat graphs both for the infinite
set M and the finite sets ~/g.

As usual, a branch is any finite or infinite sequence { G} such that for each i,
(¢g,¢i+1) is a link. A circular branch is an infinite branch that repeats, i.e.,
there is a k such that for every i />k , there is a j < k such that ~:g=¢j.
Collective defeat gives rise to circular branches. For example, the collective
defeat diagrammed in Fig. 3 gives rise to the circular branch
(c~,/3,y,/3,3,,/3,y). Unless they are defeated by other nodes not on the

Fig. 3. Circular branches.

How to reason defeasibly 21

branch, the nodes of a circular branch are all provisionally defeated. This is
because they will all be in at level 0, but that will force them all out at level 1,
and then in again at level 2, and so on.

Given any argument a, the nodes on the branches ascending from ~ can be
put into correspondence with argument levels. If a T is finite, this enables us to
construct an algorithm for computing defeat status relative to ary in terms of the
structure of the defeat graph. The algorithm is as follows:

Algorithm 4.2.
Step O. Mark all initial nodes (nodes having no parents) as undefeated.
Step 1. Apply the following two rules recursively until there are no more

nodes to which they are applicable:
(a) If a node is unmarked and all of its parents are marked as defeated,

mark the node as undefeated.
(b) If a node is unmarked and one of its parents is marked as undefeated,

mark the node as defeated.
Step 2. Mark any remaining nodes as provisionally defeated.

(R e m e mber that the parents of a node are the arguments defeating it.) The
correctness of this algorithm is easily proven as follows.

Definition 4.3. An argument a becomes stably in (or out) at the nth level iff
(1) either n = 0 or a is out (or in, respectively) at the (n - 1)st level, and
(2) for all m/> n, a is in (or out, respectively) at the mth level.

a is ultimately undefeated (or defeated) iff a becomes stably in (out,
respectively) at some level. If we count the marking of initial nodes as the
zeroth step of the recursion, then it is trivial to prove the following by
induction on n:

a is marked undefeated (or defeated) at the nth step of the
recursion in Algorithm 4.2 iff a becomes stably in (or out, respec-
tively) at the nth level.

The correctness of the algorithm follows.
The objective is now to show that the sequence of justification sets J (i)

produced by a flag-based reasoner using this algorithm constitutes a defeasible
enumerat ion of warrant. This cannot be proven without imposing further
restrictions on the monotonic reasoner. What is required for J to be a
defeasible enumerat ion of warrant is that for each proposition P, the status of
P eventually stabilizes, i.e., at some stage i of the monotonic reasoner, P
becomes justified and subsequently remains justified, or P becomes unjustified
and subsequently remains unjustified. For J to be a defeasible enumerat ion of
warrant, it is sufficient (and perhaps necessary) that the following hold:

22 J.L. Pollock

Condition 4.4. For any argument a, a is ultimately defeated (or ultimately
undefeated, or provisionally defeated) relative to ~q iff there is a stage n of the
monotonic reasoner such that a is ultimately defeated (or ultimately unde-
feated, or provisionally defeated, respectively) at every stage ~>n.

The only way Condition 4.4 can fail is for the status of a to cycle indefinitely
at progressively later stages of the monotonic reasoner. This in turn can only
happen if there is an infinite sequence {~:k} of arguments produced by the
monotonic reasoner all of which are relevant to the defeat-status of a.
Obviously, there are only two ways to get infinitely many arguments connected
to ~:

(1) either a or some node that is an ancestor of a could be an infinite branch
point in the defeat graph for M;

(2) the defeat graph for ~ could contain an infinite branch having a as its
initial node.

Let us consider these two possibilities separately.
Infinite branch points can lead to infinite cycling. To illustrate this possibili-

ty, suppose input = {P ,R ,S} , where P is a prima facie reason for Q, R is a
prima facie reason for each of an infinite list of propositions Di, where each Di
is a prima facie reason for (P ® Q) , and S is a prima facie reason for each
proposit ion (D ~ ® (P @ Q)) . With this set of prima facie reasons, if the
ordering of the arguments is such that those supporting D i and inferring
(P ® Q) from it alternate with those supporting (D~ @ (P ® Q)), then Q will
alternate indefinitely between being justified and being unjustified at the
different stages. However , the mere existence of infinite branch points is not
sufficient to guarantee infinite cycling. This is obvious when we realize that, for
many argument systems, it will be possible to construct infinitely many variants
for any given argument. For example, we may be able to construct notational
variants, or add unnecessary steps. This can have the consequence that every
branch point will be an infinite branch point. But this need not give rise to
infinite cycling because the different branches are not independent--anything
defeating one will defeat the other. Let us define:

Definition 4.5. An argument/3 is parasitic on an argument Y iff any defeater for
y is also a defeater for /3.

A necessary (but not sufficient) condition for infinite cycling to result from
an infinite branch point is that there is no finite set of parents of the branch
point such that every other parent is parasitic on one of the parents in the finite
set. I will call such a branch point a non-redundantly infinite branch point. If a
branch point is not non-redundantly infinite, then defeating a finite set of its

How to reason defeasibly 23

parents would defeat them all, and so the only way to get infinite cycling at the
branch point would be to already have infinite cycling at one of the parents.

Noncircular infinite branches can also lead to infinite cycling. For example,
infinite cycling would result if there were an infinite sequence of propositions
Qi all either in input or supported by arguments, and such that if we define D i
recursively by stipulating that

D~ = (Qo@ P) ,

D i + l = (Q i @ D i) , i ~ l ,

then (1) Q0 is a prima facie reason for P, and (2) for each i/> 1, Q~ is a prima
facie reason for Di. On the other hand, circular branches cannot lead to infinite
cycling. They contain only finitely many different arguments, so once those
arguments are all generated by the monotonic reasoner, they will be marked as
provisionally defeated and will stay that way unless one of the nodes is
defeated by other nodes not on the branch. If one of the nodes of the circular
branch is defeated by a node v not on the branch, that will lead to infinite
cycling only if v cycles infinitely, u itself could be on another circular branch,
and so on. Thus we might get a sequence of interacting circular branches as in
Fig. 4. If the sequence is finite, there will still only be finitely many arguments
involved, and so infinite cycling will not result. Infinite cycling would only be
possible if the sequence of interacting circular branches were infinite, but then
we could construct a noncircular infinite branch by just combining the top parts
of each loop.

Summarizing, we have the following simple lemma:

Lemma 4.6. I f the defeat graph for ~l contains no noncircular infinite branches
and no nonredundantly infinite branch points, then Condition 4.4 holds.

Although arrays of prima facie reasons and defeaters that will generate
noncircular infinite branches and non-redundantly infinite branch points are a
formal possibility, I doubt that they are a real possibility. That is, we cannot
find real examples of prima facie reasons having these structures. (My only
reason for saying this is that I have tried and failed.) Accordingly, my strategy
will be to adopt some realistic assumptions about the structure of the set of

$ 1"

Fig. 4. Interacting circular branches.

24 J.L. Pollock

prima facie reasons that preclude these possibilities, and impose them as
constraints on the monotonic reasoner. It will then follow that J is a defeasible
enumerat ion of warrant. Recall that, so far, we have made no assumptions
about the monotonic reasoner except that it generates all arguments in the set
3¢.

Unless they are defeated by side branches, noncircular infinite branches lead
to the provisional defeat of all of their nodes, but this defeat is odd because it
does not arise from collective defeat. The only cases of provisional defeat that
seem to arise in realistic systems of prima facie reasons and defeaters involve
collective defeat. Accordingly, my first assumption will be that noncircular
infinite branches are impossible:

Assumption 4.7. The defeat graph for ~l contains no noncircular infinite
branches.

The second assumption to be adopted is:

Assumption 4.8. For every proposition P and finite set X of propositions, there
is a finite (possibly empty) set ary of arguments in ~ supporting P relative to X
such that any other argument in ~ that supports P relative to X is parasitic on
some member of arg.

Both of these assumptions are finiteness assumptions. They tell us that for
any finite input and finite supposition X, there is a limit to how much
nondeductive reasoning we can do. Again, the only reason for making these
assumptions is that I can think of no plausible counterexamples. Both assump-
tions ought to be provable for particular classes of arguments. Note, however,
that we cannot expect to prove them as general theorems about the monotonic
reasoner. Their truth will depend essentially on what arrays of prima facie
reasons and defeaters are supplied for the use of the monotonic reasoner, and
that will vary from application to application.

Assumption 4.7 precludes infinite cycling resulting from infinite branches.
The role of Assumption 4.8 is to rule out non-redundantly infinite branch
points. To see that it does this, consider any argument a in ~/. a contains
finitely many defeasible steps, and the parents of a are arguments supporting
defeaters for those defeasible steps. If a defeasible step infers P from F relative
to a supposition X, then an argument supporting a defeater for this step must
support either - -P or (FIF ® P) relative to a subset of X. Accordingly, there
are only finitely many conclusions that a defeating argument can have, and
hence by Assumption 4.8 there is a finite set arg of arguments in ,ff supporting
those conclusions and such that any other argument in ~' that supports one of
those conclusions is parasitic on some member of a T . In other words,
non-redundantly infinite branch points are impossible.

How to reason defeasibly 25

We now have the following theorem, which is the central theorem of the

paper:

Theorem 4.9. I f Assumptions 4.7 and 4.8 hold, then ~ is a defeasible enumera-
tion of warrant.

Proof. This follows from the fact that if Assumptions 4.7 and 4.8 hold then the
defeat graph for M contains no noncircular infinite branches and no non-
redundantly infinite branch points, and hence by Lemma 4.6, Condition 4.4
holds and consequently J is a defeasible enumerat ion of warrant. In other
words, given Assumptions 4.7 and 4.8, a flag-based reasoner using the Marking

Algori thm 4.2 described above will be d.e.-adequate. []

5. The inference graph

In Section 4, an algorithm was described for computing J (i) . This algorithm
could, in principle, be used to construct a d.e.-adequate flag-based reasoner.
However , implementing this algorithm directly would require too much mem-
ory because arguments are going to be repeated over and over again in the
defeat graph as they recur as subarguments of larger arguments. Fortunately,
the information that is represented in the defeat graph can be represented
more efficiently in an inference graph, whose nodes are labeled with pairs of
the form (F , p) . The pair (F , p) signifies that p has been inferred from the
supposition F. The inference graph can encode both arguments and defeat
relations with two different kinds of links. Where v and 71 are nodes, (v,r/) is
an inference link iff v is labeled by a pair (F ,p) , ~ is labeled by a pair (g2,q) ,
and (F ,p) was inferred from a set { (O , l , q l) , . . . , (g2n,qn)} of pairs where
(g2, q) E { (01, ql) , . • •, (On, qn) }' The intent is for arguments to be encoded
in the inference links. However , if we are to be able to recover the arguments
from the inference links, we must take care in one respect. There can be more
than one argument supporting (F ,p) . We must keep the inference links

embodied in the different arguments separate. That can be done by having a
different node labeled (F, p) for each argument supporting (F, p) . Nodes and
their inference links then become unambiguous. (Note that this will also allow
us to associate unique strengths with nodes.) The immediate inference ancestors
of a node are the nodes connected to it by inference links. Let us say that r / is
an inference ancestor of v iff there is an inference branch connecting v to 77. A
node is a pf-node iff, if its label is (F, p) and the set of labels of its immediate
inference ancestors is { (~~1, ql) (On, qn) }, then F =/21 O n,
({ql qn},P) is a prima facie reason, and the monotonic reasoner infer-
red p from { ql , q~ } on that basis. Let us say tha t /z is a deductive ancestor

26 ,1. L. Pollock

of ~, iff/~ is an inference ancestor of u and the branch connecting them contains

no pf-nodes.
{ p. ,u) is a defeat link iff Fz is a pf-node, and if its label is (F,p) and the set

of labels of its immediate inference ancestors is {(F, ql) (lT, qn}}, and

the label of u is (J2 ,q) , then J~2C_F and q is either ~ p or ((q t&. . .
& q , ,) ® p) . Defeat links encode undercutting and rebutting defeat.

Given the inference graph, replete with inference links and defeat links, we

want an algorithm for determining which nodes are defeated, which are

provisionally defeated, and which are undefeated. This can be done in an
obvious way by translating the algorithm that was applied to the defeat graph

into an algorithm that is applied to the inference graph.

Let us say that a node /z is potentially defeated iff there exists a node u such
that (/~ ,u) is a defeat link. A node is d-initial iff neither it nor any of its

inference ancestors is potentially defeated, d-initial nodes are guaranteed to be
undefeated. They correspond to arguments that are initial nodes in the defeat

graph. So the algorithm for computing defeat status from the inference graph

will proceed as follows:

Algorithm 5.1.
Step O. Mark all d-initial nodes as undefeated.
Step 1. Apply the following two rules recursively until there are no more

nodes to which they are applicable:
(a) If u is marked as undefeated and (k~,u is a defeat link, then if ~z is

unmarked, mark it and all its inference descendants as defeated.

(b) If p~ is unmarked and (1) for every u such that (~ , u) is a defeat link, u is
marked as defeated, and (2) every inference ancestor of /~ is marked as

undefeated, then mark /~ as undefeated.
Step 2. Mark any remaining nodes as provisionally defeated.

The flag-based defeasible reasoner should now work as follows. The mono-

tonic reasoner builds the inference graph one node at a time. As each node is
constructed, defeat links between it and pre-existing nodes are computed and

the defeat statuses of the nodes are recomputed. Rather than recomputing
defeat status from scratch each time a new node is added to the inference

graph, it is sometimes possible to update the markings by only examining those
nodes whose status might be changed by the addition. This is at least true if the

new node does not defeat any pre-existing node. In that case:

(1) if every node defeating the new node is marked as defeated and all of its
immediate ancestors are marked as undefeated, we mark the new node

as undefeated;
(2) if some node defeating the new node is marked as undefeated or at least

one of its immediate ancestors is marked as defeated, we mark the new
node as defeated;

H o w to reason defeasibly 27

(3) otherwise, mark it as provisionally defeated.

If the new node is a defeater for a pre-existing node, then it appears that all
the node statuses must be recomputed from scratch because there is always the
possibility of defeat cycles that can only be detected by starting from d-initial

nodes.

6. An interest-driven defeasible reasoner

The flag-based reasoner described in Section 5 could actually be constructed,
but it is impractical in one important respect. It operates by having the
monotonic reasoner systematically generate all possible arguments in the class
.ft. This is the so-called "British Museum Algorithm". Any automated reasoner
that is practical employs a more efficient control structure enabling it to focus
its attention on arguments that are more intimately connected with the
conclusions it is trying to establish. There are various ways of doing this, but
my own preference is to begin with the interest-driven deductive reasoner
O S C A R described in [30] and use it as the monotonic reasoner on which the

defeasible reasoner is built.
Interest-driven reasoners are characterized by their use of two databases.

One is the set adoptions of conclusions that have thus far been drawn, and the

other is the set interests of conclusions the reasoner is trying to get. The
conclusions that are of ultimate interest are inserted into interests at the
beginning of the reasoning, but an interest-driven reasoner may also employ
rules for adopting interest in additional conclusions during the course of its

reasoning.
The desideratum for an interest-driven defeasible reasoner should no longer

be d.e.-adequacy, because we only want to require the reasoner to discover the
warranted propositions we assign as interests. The obvious proposal is to

relativize d.e.-adequacy to interests:

Definition 6.1. A reasoner is i.d.e.-adequate relative to ~ iff, for any input and

any proposition P in interests:
(1) if P is warranted relative to ~ then there is some n such that after n

cycles of reasoning, P is marked as undefeated and that marking is never

subsequently changed; and
(2) if P is not warranted relative to ~ then there is some n such that after n

cycles of reasoning, P is marked as defeated and that marking is never

subsequently changed.

An interest-driven defeasible reasoner makes no at tempt to build the entire
inference graph. It begins with certain initial interests, and then it attempts to
perform just those inferences that are relevant to those interests and build just

28 J.L. I'ollock

that part of the inference graph that records the relationships between those
inferences. The relevant inferences are those involved in constructing argu-
ments supporting the propositions in interests, and all those arguments support-
ing defeaters for those arguments, and defeaters for the defeating arguments,
and so on. This will automatically be achieved if

(1) the monotonic reasoner is guaranteed to find all relevant arguments for
anything in which it is interested, and

(2) the reasoner automatically adopts interest in defeaters for each defeas-
ible inference it performs.

By virtue of these two conditions, if there is an argument supporting a desired
conclusion, the reasoner will find it. If there is a defeating argument i t will find
that. Then it follows recursively that if there is a reinstating argument, the
reasoner will find that, and so on.

However , condition (1) is not quite the condition that should be imposed on
the monotonic reasoner. The difficulty is that every argument has infinitely
many variations that result from adding redundant steps or from varying the
way in which deductive inferences are made. It is not necessary for the
monotonic reasoner to produce more than one of these infinite variations. It
will suffice to produce just one on which all the others are parasitic. According-
ly, we have:

Definition 6.2. A monotonic reasoner is interest-complete relative to ~ iff, for
any input and any P and any argument a in ~/inferring P from input relative to
a supposition X, if the reasoner is given input as premises and adopts interest
in P relative to X, then the reasoner will construct an argument/3 inferring P
from input relative to X which is such that any defeasible inference occurring in
/3 also occurs in a and does so relative to the same or a less inclusive
supposition.

Then we have the following theorem, which is the justifying theorem for
defeasible reasoning:

Fundamental Theorem for Defeasible Reasoning. I f
(1) the defeat graph for ag contains no noncircular infinite branches, and
(2) for every proposition P and finite set X of propositions, there is a finite

(possibly empty) set arg of arguments in ag supporting P relative to X such
that any other argument in ~1 that supports P relative to X is parasitic on
some member of arfl,

and if a flag-based defeasible reasoner
(3) is based upon an interest-driven monotonic reasoner that is interest-

complete relative to ~1,

(4) adopts interest in defeaters for every defeasible inference it performs, and

How to reason defeasibly 29

(5) uses the Marking Algorithm 5.1 to compute defeat status,

then it is i .d.e.-adequate relative to ~ .

It was observed in Section 3 that a defeasible reasoner may never stop
reasoning. However , by restricting the monotonic reasoner to interests, the
defeasible reasoner may often halt simply by running out of things to do. That
cannot always be the case, but in many simple cases this is what will happen.
This is illustrated in Appendix B. It follows from interest-completeness that if
the reasoner halts, anything in interest that is unproven is unprovable, so
members of ultimate are warranted iff they are justified at the stage at which
the reasoner halts.

I have observed several times that flagging beliefs as provisionally defeated
or ultimately defeated and then continuing to reason with them seems outrage-
ously expensive. However , there is a way of alleviating this cost, at least to
some extent. I assume that the monotonic reasoner uses some scheme for

prioritizing potential inferences and stores them on an inference queue. This
could be a simple "last in, first out" stack, but there is abundant reason to
prefer more complex control structures. OSCAR uses a fairly sophisticated
prioritizing scheme. Whatever prioritizing scheme is used, if it is modified in
such a way that once beliefs are defeated, either provisionally or ultimately,
inferences involving them are given low priority, then the reasoner will pursue
the consequences of defeated reasoning "only when it has t ime". This looks

much like what human beings do. As long as the prioritizing is done in such a
way that even low priority inferences are eventually performed, the reasoner
will remain i .d.e.-adequate.

This reasoner has actually been implemented, and is now being tested and
refined. It is considered the latest version of OSCAR. Appendix A goes into a
bit more detail regarding the implementation. Appendix B gives some exam-
ples of its operation.

7. An interrupt-driven defeasible reasoner

Etherington [6] makes the observation that for most nonmonotonic logics,
little attention has been paid to the problem of updating beliefs (or extensions)
in response to adding new premises (as opposed to simply starting over in the
construction of the belief set or the computation of the extension). If a
defeasible reasoner is to be used as the inference engine in a real-time system,
e.g. , a robot (or a human being), this is a serious problem. Such a system is
embedded in an environment that is continually feeding it more information,
and it must repeatedly update its beliefs in response to such inputs. It is totally
impractical to require such a system to start over again from scratch every time
it is given a new premise.

30 J.L. Pollock

In OSCAR, there is no updating problem. If OSCAR is supplied a new
premise after reasoning has already begun, OSCAR will quickly reach a point
in its reasoning where its beliefs and arguments are the same as if that premise
had been supplied at the beginning. This means that OSCAR can provide the
inference engine for an interrupt-driven reasoner. Such a reasoner will receive
additional premises from time to time after it has already begun reasoning.

This will cause the reasoning to be interrupted at the end of a cycle, the new
premises inserted into input, and then reasoning resumed. OSCAR's standard
prioritizing scheme will have the result that if OSCAR is reasoning in some
supposition other than the empty supposition, it will continue that reasoning
until it exhausts the moves it can make within that supposition, and then it will
return to the empty supposition and process the new members of input.
However , different prioritizing schemes can be adopted depending upon how
much precedence we want the new members of input to be given.

There is another way in which an interrupt-driven reasoner is important.
Most problems with which a reasoner is actually presented will be simple and
the reasoner will be able to perform all relevant reasoning and stop. This is
illustrated in Appendix B. It has been observed, however, that on problems of
sufficient complexity, reasoning may never terminate. Note that this is equally
true for human reasoners. Nevertheless, such a reasoner may have to take
action at specific times, even though reasoning has not terminated. This is just
the point made in Section 2 that the reasoning must be interruptible. When the
time comes to act, the reasoning will be interrupted and action taken based
upon whatever the current set of beliefs is. It is always possible that if the
reasoner had more time to reason, its beliefs would change in some crucial
way, but the presumption behind defeasible reasoning is that at any stage of
reasoning, if action must be taken then it is reasonable to act on the basis of

the current set of beliefs.
The upshot of this is that a real-time defeasible reasoner must be interrupt-

driven in two respects. It must be continually receptive to new inputs, and it
must be prepared to interrupt its reasoning and act on its current set of beliefs
whenever action is required. The intention is that OSCAR will supply the
inference engine for such a real-time reasoner.

8. Conclusions

The general objective of the OSCAR project is the construction of a
comprehensive theory of rational inference and its implementation in an
automated reasoner. This project is a continuation of my epistemological work
on defeasible reasoning that began as early as 1965, in my Ph.D. Dissertation.
Defeasible reasoning has provided the principal logical tool that I have
employed ever since for epistemological analysis. Most of the results of that
analysis can be found in [24, 26, 29]. The general approach to defeasible

How to reason defeasibly 31

reasoning that is presupposed by all my work is the argument-based approach
that I sketched at the beginning of the paper. It has been developed in detail
and defended in the papers cited in Section 1. Those papers propound a theory
of warrant for defeasible reasoning. The objective of this paper is not further
development of the theory of warrant, but the quite different question of how
it is possible for a system to reason in a way that can be regarded as
implementing that theory of warrant, particularly in the light of the fact that
the set of warranted conclusions is not generally r.e.

The first main proposal of the paper is that the appropriate criterion to apply
in evaluating defeasible reasoners is that of i.d.e.-adequacy. This makes it
possible for reasoners to be adequate despite the fact that the set of warranted
conclusions is not r.e. The paper then investigates how to construct an
i.d.e.-adequate reasoner. It is argued that such a reasoner cannot stop reason-
ing from such a conclusion just because the arguments supporting it are
defeated. Instead, it must mark conclusions as defeated or undefeated, but
continue to reason from them. This suggests building the defeasible reasoner
out of two largely autonomous modules--a monotonic reasoner that systemati-
cally produces arguments without worrying about their defeat status and a
module that computes defeat status relative to the arguments that have been
produced at any given stage of reasoning. The main result of the paper is that
the sequence consisting of the sets of undefeated conclusions produced at each
stage of operation of the monotonic reasoner constitutes a d.e.-approximation
to warrant provided the monotonic reasoner satisfies certain plausible con-
straints. Two algorithms for evaluating defeat status are described. The first is
based on the defeat graph, and arises directly out of the theory. The second is
essentially a more practical reconstruction of the first, in terms of the inference
graph. The inference graph encodes the same information as the defeat graph,
but does so in a more efficient way. This is not yet sufficient to produce a truly
practical defeasible reasoner, however. The d.e.-adequacy of the reasoner
constructed in this way requires the totally impractical assumption that the
monotonic reasoner will systematically produce all possible arguments (the
British Museum Algorithm). This assumption is replaced by the more reason-
able assumption that the monotonic reasoner is interest-driven. This requires a
change to the adequacy condition, replacing d.e.-adequacy by its interest-
relative analogue, i.d.e.-adequacy. It is then shown that, subject to reasonable
assumptions about the interest-driven monotonic reasoner, either algorithm for
evaluating defeat status will yield an i.d.e.-adequate reasoner. This final
approach (using the inference graph algorithm) has been implemented in
OSCAR.

There have been several earlier attempts to construct theories of reasoning
(misleadingly called "proof theories") for defeasible reasoning and there have
been a few attempts to implement such theories in automated defeasible
reasoners. The most noteworthy are those of Nute and Lewis [20], Nute [19],
Levesque [14], Ginsberg [8], Baker and Ginsberg [1], and Geffner [7]. There

32 J.L. Pollock

have also been some (often unimplemented) special-purpose reasoners like
that described by Horty, Thomason, and Touretzky [10] for reasoning within
defeasible inheritance hierarchies. These reasoners are based upon a wide
variety of approaches to defeasible reasoning. For example, the Ginsberg
system is based upon circumscription, the Levesque theory on autoepistemic
logic, and the Horty, Thomason, and Touretzky theory on defeasible inheri-
tance. Despite their variety, it is very simple to compare all of these theories
simultaneously to the present theory. This is because all of these theories
at tempt to build a reasoner that is analogous to a traditional theorem prover.
Such reasoners produce r.e. sets of conclusions. Because that is only possible if
the underlying logic is decidable, such defeasible reasoners have typically been
restricted to the propositional calculus or some other very weak logic. By
contrast, because OSCAR seeks to provide an i.d.e, approximation to warrant
rather than a recursive enumeration of warranted conclusions, it is applicable
to the full predicate calculus, and indeed, OSCAR is deductively complete for
the predicate calculus as well as being i .d.e.-adequate for defeasibte reasoning.

O S C A R also stands in an interesting relationship to RMSs (reason mainte-
nance systems). McDermot t [18] constructs a general framework for RMSs~
and emphasizes the distinction between the application program and the RMS
itself. That is parallel to the distinction in OSCAR between the monotonic
reasoner and the module computing defeat status on the basis of the inference
graph. The latter module by itself is quite similar to a "justification-based '~
RMS (of which the original example was Doyle's TMS [5]). There are also
some important differences, however. Standard justification-based RMSs have
only one kind of link, corresponding to the inference links in the inference
graph. They have no links corresponding to the defeat links, and correspond-
ingly they are incapable of detecting undercutting defeat. They can only
respond to inconsistencies, which is to say that they detect rebutting defeat.
McDermot t , however, constructs a more general kind of "nonmonotonic
RMS" by adding dependencies between nodes that are formulated using a
modal operator L meaning "it is definitely true that". The idea comes from
McDermot t and Doyle [18]. The result is not an RMS that computes defeat
status in the same way OSCAR does, because McDermot t explicitly opts for a
credulous nonmonotonic logic. But it may be possible to use the same ideas to
build a skeptical RMS that really does compute defeat statuses equivalently
with OSCAR. In doing this, it should be noted that the literals upon which
McDermott~s RMS operates must be interpreted as expressing inferences
(nodes of the inference graph) rather than propositions, but that seems to
make no difference to the functionality. ~

<> It can also be observed that the assumption-based aspect of McDermot t ' s RMS is unnecessary
for this application. In addition, the introduction of the modal operator L introduces more
expressive power than is required for formulating prima facie reasons. All prima facie reasons can
be expressed in a single form: 71' v 7 L T Q v ~ L (P ® Q) v Q (P is a prima facie reason for Q) .
Accordingly, forms like (L P v P) that give McDermot t trouble ("odd loops") do not even arise in
the formulat ion of prima facie reasons.

How to reason defeasibly 33

Although RMSs are quite close, at least in spirit, to OSCAR's defeat status
computat ion based on the inference graph, it is important to realize that the
defeat status computation is only part of OSCAR. RMSs are not themselves
reasoners. The idea of building an i .d.e.-adequate reasoner by cycling between
the monotonic reasoner and the defeat status computation on the inference
graph, and the proof that this will work, takes us far beyond an RMS.

Appendix A. Implementation

A.1. The monotonic reasoner

The monotonic reasoner incorporated into the defeasible O S CA R is based
upon the interest-driven deductive version of OSCAR described in [30].
Without going into details, let me indicate roughly how this reasoner works. It
is based upon the simple idea that when trying to infer a specified conclusion
from a set of premises, the reasoner not only works forwards from the premises
but also backwards from the conclusion. The latter is just goal reduction. The
reasoner begins with the set of premises input and a set ultimate of conclusions
in which it is ultimately interested. The reasoner keeps two distinct databases
--adoptions and interests. The former comprises the propositions believed at
any given time, and the latter comprises those propositions the reasoner is
trying to infer at any point. The reasoner reasons forwards from adoptions to
new conclusions which are then inserted into adoptions, and backwards from
interests to new interests. The bases for adopting new interests are recorded in

forset. A distinction is made between those reason schemata of use in forwards
reasoning (from adoptions to adoptions) and those of use in backwards
reasoning (from interests to interests). Then the three basic rules governing
interest-driven reasoning are:

Rule A.1 (R-Infer). I f (F,p) is an instance of a forwards reason schema, and
for some supposition X and for some q in F, q is adopted relative to X and all
the other members of F have already been adopted, then adopt p relative to X.

Rule A.2 (Interest-adoption). I f (F,p) is an instance of a backwards reason
schema, and for some supposition X, the system adopts interest in p relative to
X, then adopt interest in the members of F relative to X and record the basis for
the interest by inserting (F , p , X) into forset. I f all the members of F have
already been adopted relative to X, then adopt p relative to X.

Rule A.3 (1-Infer). I f the system adopts p relative to X and p is in interest, then
for any member (F ,q ,X) of forset, if p E F and the other members of F are
already adopted relative to X, then adopt q relative to X.

34 J.L. ['ollock

In addition, O S C A R embodies various structural rules like conditionaliza-

tion and reductio ad absurdum that govern suppositional reasoning. O S C A R is

complete for the predicate calculus.

For incorporation into the defeasible reasoner, the deductive reasoner is

modified in four main respects.
First, a supposition is now taken to inherit all of the adoptions made relative

to less inclusive suppositions, and adoptions are made explicitly in only the

minimal suppositions relative to which they can be inferred. By contrast, in the
deductive reasoner, when a new supposition was made, all the adoptions from

less inclusive suppositions were automatically moved into the set of adoptions

for the new supposition, but if a new conclusion was subsequently inferred in

the new supposition from adoptions drawn from a less inclusive supposition,
that new conclusion was not automatically adopted in the less inclusive

supposition. Even though this sometimes required repeating the same reason-

ing in two or more suppositions, it made the deductive reasoner run faster. But

for the i .d .e . -adequacy of the defeasible reasoner it is important to ensure that
conclusions are always available simultaneously in the minimal suppositions

possible and all more inclusive suppositions.
The second modification allows the reasoner to employ substantive reasons

in its reasoning in addition to formal principles of logic. When the reasoner is
given a problem, this now consists of a set of premises, a desired conclusion, a

set of pr ima facie reason schemata, and a set of conclusive reason schemata,
For example , it might be informed that rFx~ is a prima facie reason for rGx 1 ,

and that rRx" is a conclusive reason for rSx~. These reasons are given in the

form of a triple

(premise-se t ,conclus ion, variables) ,

where premise-set is a set of formulas, conclusion is a formula, and variables is

the set of variables occurring free in the schema. The reasoner then uses these
substantive reasons in its reasoning, both backwards and forwards, just as it

previously used principles of deductive reasoning. One complication is that in
an interest-driven reasoner it must be specified whether a reason is to be used

for backwards reasoning, forwards reasoning, or both. It is important that this
be done properly, or relevant arguments may not be constructible by the
reasoner. To take a very simple example, suppose input = { P} , P is a reason
for Q, and Q is a reason for R, and ultimate = {R}. If P is designated as only a
backwards reason for Q, and Q is designated as only a forwards reason for R,
the reasoner will be unable to infer R from P. With any other combination of
designations, the reasoner will be able to infer R from P. For instance, if P is
designated as a forwards reason for Q, and Q is designated as a backwards
reason for R, then the reasoner will adopt interest in Q on the basis of interest

How to reason defeasibly 35

in R, and will then infer Q from P and then R from Q. I do not have a general
theory to propose regarding how directions are to be assigned to reasons. More
theoretical work is needed on this question. However, to avoid combinatorial
explosion, a necessary condition for a forwards reason is that any variables free
in the conclusion are also free in the premises, and a necessary condition for a
backwards reason is that any variables free in the premises are also free in the
conclusion. For now I have also adopted these as sufficient conditions for the
designation. When presented with a problem, the reasoner assigns directions to
the reasons on this bases. This has the consequence that most substantive
reasons will be designated as both backwards and forwards reasons. Although
OSCAR is complete for the predicate calculus, it is unclear whether this
handling of substantive reasons makes OSCAR interest-complete.

The third modification concerns reductio ad absurdum and is required by the
introduction of prima facie reasons into the reasoning. Reasoning by reductio
ad absurdum appears to be essential in the predicate calculus (see the
discussion in [30]), but it is not generally valid for defeasible reasoning. If a
contradiction is inferred at the end of a defeasible argument, rather than
justifying an inference to the negation of the premise, this will normally have
the effect of defeating some of the defeasible reasoning. Thus the rule of
reductio ad absurdum must be qualified. If we suppose -1P with the intent of
inferring P from it, only deductive reasoning can be allowed within this
supposition. Of the substantive reasons, the conclusive reasons can still be used
within a reductio-supposition, but the prima facie reasons cannot. The results
of defeasible reasoning within less inclusive suppositions can, however, still be
used in the reasoning, because the contradiction in the larger supposition
cannot defeat reasoning in less inclusive suppositions.

The final modification concerns the rules for interest-cancellation. In the
deductive reasoner, once a conclusion is obtained, the reasoner cancels interest
in both it and (except in reductio-suppositions) its negation. In a defeasible
reasoner, however, this is inappropriate. Having constructed one argument for
a conclusion, a reasoner cannot thereby ignore the possibility of others,
because the first argument might get defeated while other arguments are not.
Instead, we simply impose a restriction against circular reasoning (i.e., a
proposition P cannot be inferred from prior conclusions already inferred, in
part, from P). Similarly, having inferred P, the defeasible reasoner cannot
thereby cancel interest in --1 P, because inferring the latter may just be a matter
of acquiring a rebutting defeater. Accordingly, the monotonic reasoner keeps
track of whether any defeasible inferences have been made in inferring a
conclusion. If the reasoning has been entirely deductive, then the deductive
interest-cancellation rules are employed, but otherwise not.

A further modification may ultimately be required, but has not yet been
implemented. This involves changing the prioritizing scheme so that when
interest is adopted in defeaters, they receive a lower priority than other

36 J.L. f'ollock

interests. Implement ing this may involve rather large changes, because much of

O S C A R ' s current prioritizing scheme involves built-in structures in supposi-
tions.

A.2. The defeasible reasoner

The defeasible reasoner results from making several additions to the mono-

tonic reasoner. When a proposit ion is adopted in a particular supposition,

three new operat ions are performed: adopt-interest-in-defeaters, make-nodes,
and update-defeat-statuses. In addition, whenever the defeat status of a m e m b e r

of ultimate changes, the reasoner announces this fact, and if the reasoning

terminates , all relevant arguments are displayed. As previously observed, it
cannot be assumed that the reasoning will terminate, but the reasoner can also

be interrupted at any point and asked to display all relevant arguments found
so far. The three new operat ions mentioned above are as follows.

When the monotonic reasoner performs a defeasible inference, adopt-
interest-in-defeaters leads it to adopt interest in defeaters for that inference.

The operat ion make-nodes builds the inference graph. The inference graph
consists of a list nodes of nodes, where each node k is a structure containing
slots for the following information:

• node proposition: a formula p,

• node supposition: a set of formulas,

• node basis: the set of formulas from which p is inferred,

• node justification: a string describing the reason for the inference,
• immediate ancestors: a set of nodes,

• node ancestors: a set of nodes,

• immediate descendants: a set of nodes,

• pf-node: t or nil depending upon whether k is a pf-node,
• node defeaters: a set of nodes,

• node defeatees: a set of nodes,

• defeat status: 0 if undefeated, 1 if defeated, nil if provisionally defeated.

When a proposit ion is adopted relative to a supposition, make-node adds a

node to the inference graph encoding this adoption. When a node is added to
the inference graph, its defeat relations to other nodes are computed. Then

update-defeat-statuses recomputes the defeat statuses of all nodes using Al-
gori thm 5.1. If this results in a change to the status of any member of ultimate,
this is announced.

To some extent, it is arbitrary when these last two operations are performed,
because they do not affect the performance of the monotonic reasoner. They
could all be postponed until the opera tor queries the reasoner regarding the
status of the members of ultimate, or until the reasoning terminates. This
would be more efficient, but for aesthetic reasons I have chosen instead to have

How to reason defeasibly 37

the reasoner perform these operations as it goes along and supply a running
commentary on the status of the members of u l t i m a t e .

Appendix B. Examples

This appendix gives some examples of the operation of OSCAR. For
simplicity, all but one of the examples are formulated in the propositional
calculus, but that is not an essential feature of OSCAR. OSCAR can deal with
problems in the full predicate calculus, and on deductive problems it is
complete. The final (predicate calculus) example was explicitly chosen to
illustrate what happens when the reasoner does not halt. The defeasible
structure in that example is the same as in the previous example except that
first-order inferences must be performed to find the defeaters. The reasoner
quickly does the requisite reasoning, but the first-order structure of the
premises forces the reasoner to continue searching for additional defeaters,
which it never finds. In the following examples, the diagrams of the inference
graphs are done by hand, but the rest is an actual printout of the operation of
the program. The times are for the program running in Allegro Common LISP
on a MaclIx. Figure B. 1 shows the symbols that are used in the diagrams of the
inference graphs.

v deductive inference
. lb. defeasible inference

.;¢.,,..
............. P'- defeat

undefeated node

I---] defeated node

O provisionally defeated node

Fig. B1. Inference graph symbols.

Example 1. This is a case of undercutting defeat.

GIVEN: P
A

DESIRED CONCLUSIONS:
R

PF-REASONS:
P I ~ Q
O I ~ R
a I= (P ® Q)

CON-REASONS:
A I = B

® ®

1

38 .I. l~. / 'o / lock

o o e e o o o o o e o o e e o o e e e o o e o o e o e o e e e

A defeasible argument has been constructed for:
R

e o e e e e e e e

R is undefeated.
o o o o e e e e e 4 b o o o e e e e e e e o e o e o o o e o o o

R is defeated.
o e e e e e o e o o e o o e e e o e o o o e e e e e e o o e e

All the available inferences have been performed.
FINAL STATUS:

R is unwarranted
o o o o o e e e o o o o o o e o o o e e e o e e o o o e o e o

This reasoning took 1.283 sec

The following relevant arguments were constructed:

e e e o e e e o e o e e o e e o o e e e o e e o e o e o e e o

ARGUMENT #1
This is an ultimately defeated argument for;

R

1, P given
4. Q pfreason from 1
5. R pf reason from 4

Line #4 of argument #1 is directly defeated by the
following argument:
e e o o o o e e e e o o o e e e e o e o e o o e o o e o o e e

ARGUMENT #2
This is an ultimately undefeated argument for:

(P ® Q)

2. A given
3. B conclusive reason from 2
6. (P®Q) pfreasonfrom3

Example 2. This is a case of defeat and reinstatement.

GIVEN: P
A
D

DESIRED CONCLUSIONS:
R

PF-REASONS:
C I1~ (A ® B)
D i = C
B I = (P ® Q)
A I I = B
Q i = R
P ~ Q

@ @

e e e e e o e e o e e o e e o o o e e e e e e e e e o e e e e

A defeasible argument has been constructed for:
R

o e o o o o o e o o o o e o o e e o o o e o o e o o o o o o e

R is justified.,
e o o o o o o e o o o e o e o o o e o o e o o e o o o e o o e

R is unjustified.
o o o e o o o e o o o o o o o e o o e o o o e e o o o e o o e

R is justified.,
o e o o o o e

All the available inferences have been performed.
FINAL STATUS:

R is warranted
o o e o o o o o o o o e o o o o e o o o o o o o o o o o o o o

This reasoning took 2.033 sec

The following relevant arguments were constructed:
o o o o e o o o o o e o o o e o o o e o o e o o e o o o o o o

ARGUMENT #t
This is an undefeated argument for:

R

1. P given
6, Q pf reason from 1
7. R pf reason from 6

Line #6 of argument #1 is defeated by the
following argument:

6 e e e e e e e e e e e e e e e e e e ee e e e e e e e e e e

ARGUMENT #2
This is a defeated argument for:

(P ® Q)

2. A given
5. B pfreason from2
8. (P ® Q) pf reason from 5

Line #5 of argument #2 is directly defeated by the
following argument:
e e e e o o o e o e e e o e e e e e e e e e e e e e e = e e e

ARGUMENT #3
This is an undefeated argument for:

(A ® B)

3. D given
4. C pf reason from 3
9. (A ® B) pf reason from 4

How to reason defeasibly 39

Example 3.

GIVEN: P
A

DESIRED CONCLUSIONS:
R

PF-REASONS:
AI=B
B l o c
C I = -R
PI=>Q
Q I ~ R

This is a case of collective rebutting defeat.

® ®

;'d co:s;;d,;; ,o;:"
R

.

. . . . ;:

e e o o o e o o o o o o e o o e o o o e o e o o o o e e o o o

A~I the available inferences have been performed.
FINAL STATUS:

R is unwarranted
o e o o o o o o o e e o e o o e o o o o o o o o e o o o e o o

This reasoning took 1,183 sec

The f~lowing re l ian t arguments were coretr~ted:
o o o o o o o o o o o o o o o e o o o o o o o o o o o o o o o

ARGUMENT#1
This is a provisionally d~e=ed argument for:

R

® @
i

1. P given
5. Q pf reason from 1
6. R pf reason from5

Line #6 of argument #1 is directly defeated by the
following argument:
o e o o o o o o o e e o e o o o o o o o o e o e o e o o o o o

ARGUMENT #2
This is a provisionally defeated argument for:

-R

2. A given
3. B pf reason from2
4. C pf reason from 3
7. -R pf reason from4

Line #7 of argument #2 is directly defeated by
argument #1,

Example 4. This is a case of
Fig. 2).

hidden collective undercutting

GIVEN: A (~ (~
P

DESIRED CONCLUSIONS: : "
C

PF--REASONS:
A I = B
B l o c
C I = (P ® Q)
P I = O
Q I ~ R
R I ~ (A ® B)

defeat (as in

40 J.L. Pollock

e o o o o e o o e o o o o o o e o e o o o o e e o o o o e e e

A defeasible argument has been constructed for:
C

e o o o e e e o o o o o e o e o o e o e e e o o e e e e o o o

C is undefeated.
o e o o o e o o o e o o o e e o o o o o e o o o o o o o o o o

C iS provisionally defeated
o o o e o e e e o o o e o e e o o o o o o o e o o o o o o o o

All the available inferences have been performed.
FINAL STATUS:

C is unwarranted
o e o o o o o e o e o o e o o e e o o o e o e e o e o e e e o

This reasoning took 1.617 sec

The following relevant arguments were constructed:
o o o o o o e o o o o o o o o o e o o o e o o o o o o o e e e

ARGUMENT #1
This is a provisionally defeated argument for:

C

1. A given
5. B pf reason from 1
6. C pf reasonf rom5

Line #5 of argument #1 is defeated by the
following argument:

o e o o o o o e e e e e o o o o e o e o e o e o o o e o o o o

ARGUMENT #2
This is a provisionally defeated argument for:

(A ® B)

2. P given
3. Q pf reason from 2
4. R pf reason from3
8. (A®B) pf reasonfrom4

Line #3 of argument #2 is directly defeated by the
following argument:
e o e o o o e o e e o o o o e e o o e e e e o o e e e o o e e

ARGUMENT #3
This is a provisionally defeated argument for:

(P ® O)

1. A given
5. B pf reason from 1
6. C pf reason from 5
7. (P®Q) pf reasonf rom6

Line #5 of argument #3 is directly defeated by
argument #2.

Example 5. This has the same defeasible structure as the previous example,
but the reasoner must perform first-order inferences to find the defeaters. The
first-order structure of the problem prevents the reasoner from halting. Even-
tually, it is halted manually by the operator, and then all relevant arguments
that have been discovered are displayed.

GIVEN: (P a)
(A a)
(Vx)[(C x) D (3y)[(C y) & (F x y)]]
(Vx)[(R x) ~ Gy)[(R y) & (G x y)]]

G @

H o w to reason defeasibly

DESIRED CONCLUSIONS:
(C a)

PF-REASONS:
(A x) J~ (B x) (variables = x)
(B x) I ~ (C x) (variables = x)
(P x) I=> (Q x) (variables = x)
(Q x) | = (R x) (variables = x)

CONCLUSIVE-REASONS:
(:1 y)(3 z)([(C y) & (C z)] & [(F y z) & (F x y)]) I ~ ((P x) ® (Q x)) (variables = x)
(3 y)[(R y) & (G x y)] I = ((A x) ® (S x)) (variables = x)

• ee l e l eee eee e e l e l • • • • • e e e e e e e e e ee ee

A defeasible argument has been constructed for:
(C a)

e e e o e l e e e e e e

(C a) is undefeated.
e e • e e e e e o e e e e l e e e l • • • • e • l ee • eeoc e l l

(C a) is defeated.
e e e e e o e e e o e o e o e o e o e e e e e e e e e e e e e e e e e

(C a) is provisionally defeated
e o e o e o e e e e e e e e e e e o o e e e e e e e e o e e e e e e e

THE REASONER HAS NOT YET HALTED, BUT AFTER
580 INFERENCES, THE CURRENT STATUS IS:

(C a) is unjustified

997 INFERENCES, THE CURRENT STATUS IS:
(C a) is unjustified

e e e e e o e o e

THE REASONER HAS NOT YET HALTED, BUT AFTER
1514 INFERENCES, THE CURRENT STATUS IS:

(C a) is unjustified

2;4;;
2041 INFERENCES, THE CURRENT STATUS IS:

(C a) is unjustified
e e e e e e o e o e e o e o e e o e o e o e e o e e e o e e e e e e e

THE REASONER HAS NOT YET HALTED, BUT AFTER
2421 INFERENCES, THE CURRENT STATUS IS:

(C a) is unjustified

2807 INFERENCES THE CURRENT STATUS IS:
(C a) is unjustified

e •

THE REASONER HAS NOT YET HALTED, BUT AFTER
3221 INFERENCES THE CURRENT STATUS IS:

(C a) is unjustified
e o e e

THE REASONER HAS NOT YET HALTED BUT AFTER
3575 INFERENCES, THE CURRENT STATUS IS:

(C a) is unjustified
• eo eee eee • ee • ee e ee eee e ee e e • • • • ee l e •

THE REASONER HAS NOT YET HALTED, BUT AFTER 17.
3927 INFERENCES, THE CURRENT STATUS IS: 18.

(C a) is unjustified 20.

. " ; 38.
N HAS NOT ET ALTED, 39.

4329 INFERENCES, THE CURRENT STATUS IS:
(C a) is unjustified 19.

40.
e e e e e e e e e o e

THE REASONER HAS NOT YET HALTED, BUT AFTER
4668 INFERENCES, THE CURRENT STATUS IS:

(C a) is unjustified
e e e e e e e e e e o e e e e e e e e e e e e e e o e o o e e e e e e

4!

At this point the reasoning was
aborted by the operator.

The following relevant arguments were conatructed:
o o e o o e o o e o o o o o o o o o e o o o o e o o e o o o o e o e o

ARGUMENT #1
This is a provisionally defeated argument for:

(C a)

2. (Aa) given
5, (S a) pf reason from 2
6. (C a) pf reason from 5

Node #5 in argument #1 is defeated by the following
argument:

.

This is a provisionally defeated argument for:
((A a) ® (B a))

1, (Pa) given
7, (Qa) pf reason from 1
4. (Vx)((R x) D (3y)((R y) & (G x y))) given
S. (R a) pf reason from 7
9. (3y)((R y) & (G a y)) all-detachment from 8,4
13. ((A a) ® (B a)) conclusive reason from 9

Node #7 in argument #2 is defeated by the following
argument:

.

This is a provisionally defeated argument for:
((P a) ® (O a))

2. (Aa) given
5. (Ba) pf reason from2
3. (Vx)((C x) D ~y)((C y) & (F x y))) given
6. (C a) pf reason from 5
16. (3y)((C y) & (F a y)) all-detachment from 6,3

((C @@y) & (F a @@y)) El from 16
(C @@y) simplification from 17
(3y)((C y) & (F @@y y)) all-detachment from 18,3
((C @@@@y) & (F @@y @@@@y)) El from 20
(C @@@@y) simplification from 38
(F a @@y) simplification from 17
(F @@y @@@@y) simplification from 38

41. (3z)(((C @@y) & (C z)) & ((F @@y z) & (F a @@y)))
EG from 40,19,39,18

43. (3y)(3z)(((C y) & (C z)) & ((F y z) & (F a y))) EG from 41
44. ((P a) ® (Q a)) conclusive reason from 43

Node #5 in argument #2 is defeated by node #13 (argument
#3):

42 J.L. Pollock

References

Ill A. Baker and M.L. Ginsberg, A theorem prover for prioritized circumscription, in: Proceed-
ings IJCAI-89, Detroit, MI (1989) 463-467.

[21 R.M. Chisholm, Perceiving (Cornell University Press, Ithaca, NY, 1957).
[31 R.M. Chisholm, Theo(v of Knowledge (Prentice Hall, Englewood Cliffs, N J, 1st ed., 19661.
14] R.M. Chisholm, Theol T of Knowledge (Prentice Hall, Englewood Cliffs, N J, 2nd ed., 1977).
[5] J. Doyle, A truth maintenance system, Arti]~ lntell. 12 (1979) 231-272.
16] D,W. Etherington, Formalizing nonmonotonic reasoning systems, Artif] buell. 31 (1987)

41-85.
[71 tt. Geffner, Conditional entailment: closing the gap between defaults and conditionals, in:

Proceedings Third International Workshop on Nonmonotonic Reasoning, South Lake, Tahoe.
CA (199/I) 58-72.

[8] M.L. Ginsberg, A circumscriptive theorem prover, ArtiJ~ lntell. 39 (1989) 209-23(/.
[9] E.M. Gold, Limiting recursion, J. Symbolic Logic 30 (1965) 28-48.

[ll)] J.F. Horty, R.H. Thomason and D.S. Touretzky, A skeptical theory of inheritance in
nonmonotonic semantic networks, Arti¢~ lntell. 42 (19901 311-348.

[11] D. Israel, What's wrong with non-monotonic logic? in: Proceedings AAAI-80, Stanford, CA
(1980) 99-101.

112] H.E. Kyburg, The Logical Foundations of Statistical Inference (Reidel, Dordrecht, Nether-
lands, t974).

[13] H.E. Kyburg, The reference class, Philos. Sci. 50 (1983) 374-397.
[14] H.J. Levesque, All 1 know: a study in autoepistemic logic, Artif. Intell. 42 (1990) 263-309.
[15] F. Lin and Y. Shoham, Argument systems: a uniform basis for nonmonotonic reasoning,

Tech. Rept. No. STAN-CS-89-1243, Department of Computer Science, Stanford University,
Stanford, CA (199(I).

[16] R.P. Loui, Defeat among arguments: a system of defeasible inference, Comput. lntell. 3
(1987) 100-106.

[17] D. McDermott, A general framework for reason maintenance, ArtiJ~ lntell. 50 (1991)
289-329.

[18] D. McDermott and J. Doyle, Non-monotonic logic 1, Arti]~ lntell. 13 (19801 41-72.
[19] D. Nute, Basic defeasible logic, in: L. Farinas-del-Cerro and M. Pentonnen, eds., lntensional

Logics for Programming (199(/).
[2(t] D. Nute and M. Lewis, A users manual for d-Prolog, ACMC Research Report 01-0016, The

University of Georgia, Athens, GA (19861.
[21] J. Pollock. Implication and analyticity, Ph.D. Dissertation, University of California, Ber-

keley, CA (1965).
[22] J. Pollock, Criteria and our knowledge of the material world, Philos. Rev. 76 (19671 28-6(I.
[23] J. Pollock, The structure of epistemic justification, in: American Philosophical Quarterly

Monograph Series 4 (Blackwell, Oxford, 1970) 62-78.
[24] J. Pollock, Knowledge and Justification (Princeton University Press, Princeton, N J, 1974).

Reasons and reasoning, APA Symposium, Denver, CO, Unpublished (1979).
Contemporary Theories of Knowledge (Rowman and Littlefield, Totowa, N J,

[25] J. Pollock.
[26] 1. Pollock,

1986).
[27] J. Pollock,
[28] J. Pollock,
[29] J. Pollock,

New York,
[3(/] J. Pollock,
[31] J. Pollock,

Defeasible reasoning. Cogn. Sci. 11 (1987) 481-518.
How to build a person (Bradford/MIT Press, Cambridge, MA, 1989).
Nomic Probability and the Foundations of Induction (Oxford University Press,
19901.
Interest-driven suppositional reasoning, J. Autom. Reasoning 4 (1990) 419-462.
A theory of defeasible reasoning, Int. J. lntell. Syst. 6 (1991) 33-54.

[32] J. Pollock, Self-defeating arguments, Minds Mach. 1 (1991) 367-392.
[33] H. Putnam, Trial and error predicates and the solution to a problem of Mostowski, J.

Symbolic Logic 30 (1965) 49-57.
[34] R. Reiter, A logic for default reasoning, Arti¢: lntell. 13 (1980) 81-132.
[35] D.S. Touretzky, J.F. Horty and R.H. Thomason, A clash of intuitions: the current state of

nonmonotonic multiple inheritance systems, in: Proceedings IJCA1-87, Milan, Italy (1987)
476-482.

