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Reasoning can lead not only to the adoption of beliefs, but also to the retraction of 
beliefs. In philosophy, this is described by saying that reasoning is defeasible. My 
ultimate objective is the construction of a general theory of reasoning and its implemen- 
tation in an automated reasoner capable of both deductive and defeasible reasoning. The 
resulting system is named “OSCAR.” This article addresses some of the theoretical 
underpinnings of OSCAR. This article extends my earlier theory in two directions. 
First, it addresses the question of what the criteria of adequacy should be for a defeasi- 
ble reasoner. Second, it extends the theory to accommodate reasons of varying 
strengths. 

Reasoning can lead not only to the adoption of beliefs, but also to the 
retraction of beliefs. In philosophy, this is described by saying that reasoning is 
defeasible. In AI, it is described by saying that reasoning is nonmonotonic. My 
ultimate objective is the construction of a general theory of reasoning and its 
implementation in an automated reasoner capable of both deductive and defea- 
sible reasoning. The resulting system is named “OSCAR.” This article ad- 
dresses some of the theoretical underpinnings of OSCAR.* I presented the 
basic ideas behind this theory of defeasible reasoning in Ref. 2. This article 
extends that theory in two directions. First, it addresses the question of what 
the criteria of adequacy should be for a defeasible reasoner. Second, it extends 
the theory to accommodate reasons of varying strengths. 

I. PRIMA FACIE REASONS AND DEFEATERS 

The basic ideas behind the present theory of defeasible reasoning come out 
of my work in philosophy, where I have wielded the general framework of 
defeasible reasoning as a tool in the analysis of a number of epistemological 
problems.? Reasoning proceeds by constructing arguments, where reasons 

*A fuller description of the current state of OSCAR is presented in Ref. 1. 
tThe work on defeasible reasoning in philosophy stems mainly from the publica- 

tions of Roderick Chisholm and myself. See C h i ~ h o l m ~ ~  and P o l l o ~ k . * ~ ~ ~  See also 
Kyburg. I0.l’ 
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provide the atomic links in arguments. Conclusive reasons logically entail their 
conclusions. Defeasibility arises from the fact that not all reasons are conclu- 
sive. Those that are not are prima facie reasons. Prima facie reasons create a 
presumption in favor of their conclusion, but it is defeasible. For example, 
something’s looking red to me provides a prima facie reason for thinking that it 
is red. If I have no other relevant information, this makes it reasonable for me 
to believe that the object is red, but if I also have some independent good 
reason for thinking that the object is not red, that defeats the prima facie 
reason. 

I will take a reason to be an ordered pair (r, p ) ,  where r is the set of 
premises of the reason and p is the conclusion. The simplest kind of defeater for 
a prima facie reason (r, p )  is a reason for denying the conclusion. If for some 8, 
cp = - 8 ,  let i c p  = 8, and let i c p  = -cp otherwise. Then we define: 

If (r, p )  is a prima facie reason, (A, q )  is a rebutting defeater for (r, p )  if 
and only if (A, q) is a reason and q = [ i p l .  

Prima facie reasons for which the only defeaters are rebutting defeaters 
would be analogous to normal defaults in default logic. Experience in using 
prima facie reasons in epistemology indicates that there are no such prima facie 
reasons. Every prima facie reason has associated defeaters that are not rebut- 
ting defeaters, and these are the most important kinds of defeaters for under- 
standing any complicated reasoning. * Defeaters that are not rebutting defeaters 
attack a prima facie reason without attacking its conclusion. They accomplish 
this by instead attacking the connection between the premises and the conclu- 
sion. For instance, [x  looks red1 is a prima facie reason for [x  is red]. But if I 
know not only that x looks red but also that x is illuminated by red lights and red 
lights can make things look red when they are not, then it is unreasonable for 
me to infer that x is red. Consequently, I x  is illuminated by red lights and red 
lights can make things look red when they are not] is a defeater, but it is not a 
reason for thinking that x is not red, so it is not a rebutting defeater. Instead, it 
attacks the connection between I x  looks red] and [x  is red], giving us a reason 
for doubting that x wouldn’t look red unless it were red. [P wouldn’t be true 
unless Q were true] is some kind of conditional, and I will symbolize it as [P %- 
Q1. The preceding indicates that if (r, p )  is a prima facie reason, then any 
reason for denying [IT %- p1 is a defeater.t I call these undercutting defeaters: 

If (I-, p )  is a prima facie reason, (A, q) is an undercutting defeater for (r, p )  
if and only if (A, q) is a reason and q = [-(IIr & q)1. 

A useful illustration of this framework of prima facie reasons, rebutting 
defeaters, and undercutting defeaters, is provided by the Statistical Syllogism. 
The following defeasible reasoning schema has been much discussed in AI: 

*This is illustrated repeatedly in Refs. 9, 12, and 13. 
tIIr is the conjunction of the members of a finite set r of propositions. 
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Most F’s are G’s. 
This is an F. 

This is a G. 

This can be represented more precisely as the following prima facie reason: 

IFc and most F’s are G’s] is a prima facie reason for [Gc]. 

Taking prob(G/F) to be the probability of an arbitrary F being a G, this can be 
regarded as a qualitative version of the following principle of statistical infer- 
ence: 

Statistical Syllogism 
If r > .5 then I Fc & prob(G/F) 2 rl is a prima facie reason for [Gcl, the 
strength of the reason being a monotonic increasing function of r.* 

Much work on nonmonotonic reasoning in A1 has been addressed specifically 
at reasoning in accordance with the qualitative version of Statistical Syllogism. 
One of the central features of this reasoning is that inferences based upon more 
complete information about c take precedence over inferences based upon less 
specific information.? To use a familiar example, suppose we know: 

Tweety is a bird. 
Most birds can fly. 
Tweety is a penguin. 
Most penguins are unable to fly. 
All penguins are birds. 

The intuitively correct conclusion to draw is that Tweety cannot fly. By Statis- 
tical Syllogism we have prima facie reasons for two conflicting conclusions, 
viz., that Tweety can fly, and that Tweety cannot fly, but the latter takes 
precedence because it is based upon more specific information (Tweety ’s being 
a penguin is more specific than Tweety’s being a bird, because being a penguin 
entails being a bird). This is diagrammed in Figure 1. The correct inference can 
be captured by endorsing the following undercutting defeater: 

Subproperty Defeaters 
[ H c ,  and being an H entails being an F, and it is false that most H’s are 
G’sl is an undercutting defeater for [Fc and the most F’s are G’s] as a 
prima facie reason for [Ccl. 

*This is discussed at much greater length in Refs. 12 and 13. Some qualifications are 
required to make the statement of the principle correct, but the reader is referred to the 
above sources for the details. 

tFor discussions of this, see Etherington,14 Etherington and Reiter,I5 Horty et a1.,I6 
Loui,17 Nute,Ia and Touretzky.’9*20 
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Tweety is  a bird 

- - - - - - - - - - - Tweety can fly 

Most birds can fly 

1 Tweety is a penguin 

Most penguins are unable to fly J 
Figure 1. Subset defeators. 

Given this undercutting defeater, we have prima facie reasons for both [Tweety 
can fly1 and [Tweety cannot fly], but we also have an undercutting defeater for 
the former prima facie reason. Accordingly, it is removed from competition, 
leaving the matter undefeated.* 

My experience in epistemology has convinced me that rebutting defeaters 
and undercutting defeaters are the only kinds of defeaters required for repre- 
senting the logical structure of complicated instances of defeasible reasoning. 
Other proposals have been advanced by A1 researchers, however. Ron Loui” 
has advocated specificity defeaters. Specificity defeaters are not reasons, like 
rebutting and undercutting defeaters. Instead, it would be better to talk about a 
rule ofspecificity defeat. This is a structural rule for resolving conflicts between 
reasons. The idea is supposed to be that if we have an argument r) supporting p 
and an argument IT supporting i p ,  if the nonredundant premises of r) include all 
of the nonredundant premises of u, then r) takes precedence over u and defeats 
it. The motivation for such a rule comes from looking at subset defeaters in 
inferences in accordance with Statistical Syllogism, but I would argue that the 
rule of specificity defeat is mistaken in several important respects. First, it is an 
incorrect description of subset defeaters. It arises from looking only at cases in 
which we have [Most H’s  are non-G’s] rather than just [It is false that most H’s 
and G’s]. If we have only the latter, then we do not have a reason for I-Hcl, 
and so the inference does not have the form described by the rule of specificity 

*This account of reasoning in accordance with Statistical Syllogism was first pro- 
posed in Ref. 21. A somewhat similar account was proposed by Touret~ky, ’~  and the 
general idea has since been embraced by most researchers in defeasible reasoning. The 
full theory of reasoning in accordance with statistical Syllogism requires a number of 
additional complexities. See Refs. 12 and 13 for details. 
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defeat. Second, even in cases in which we have [Most H’s and non-G’s], the 
inference does not have the correct form, because the rule of specificity defeat 
overlooks the need for the conjuncts [Most F’s are G’s] and [Most H’s are non- 
G’sl in the conflicting prima facie reasons. The arguments supporting [Gcl and 
I-Gcl must include steps supporting these statistical premises, and if they do 
then it is not true that the premises of the latter argument include all of the 
premises of the former argument. Third, Statistical Syllogism is just one kind of 
prima facie reason. I have never seen any persuasive examples illustrating that 
something like subset defeaters or specificity defeat operates in connection 
with other prima facie reasons. Finally, as I have illustrated above, cases in 
which something like specificity defeat seems correct are easily handled with 
undercutting defeaters, so no further machinery is required. 

11. ARGUMENTS 

Reasoning starts with premises that are input to the reasoner. (In human 
beings, they are provided by perception). The input premises comprise the set 
input. The system then makes inferences (some conclusive, some defeasible) 
from those premises using reason schemes. Reasons are combined in various 
patterns to form arguments. The simplest arguments are linear arguments. 
These can be viewed as finite sequences of propositions each of which is either 
a member of input or inferrable from previous members of the sequence in 
accordance with some reason schema. 

It is very important to realize that not all arguments are linear. The easiest 
way to see this is to note that the linear arguments can only lead to conclusions 
that depend upon the members of input, but actual reasoning can lead to a 
priori conclusions like ( p  v -p)  or ( ( p  & q) 3 4) that do not depend upon 
anything. What makes this possible is suppositional reasoning. In supposi- 
tional reasoning we “suppose” something that we have not inferred from input, 
draw conclusions from the supposition, and then “discharge” the supposition 
to obtain a related conclusion that no longer depends upon the supposition. The 
simplest example of such suppositional reasoning is conditionalization. When 
using conditionalization to obtain a conditional ( p  3 q ) ,  we suppose that ante- 
cedent, p ,  somehow infer the consequent q from it, and then discharge the 
supposition to infer ( p  3 q) independently of the supposition. Similarly, in 
reductio ad absurdum reasoning, to obtain i p  we may suppose p,  somehow 
infer i p  on the basis of the supposition, and then discharge the supposition and 
conclude l p  independently of the supposition. Other varieties of suppositional 
reasoning include dilemma (reasoning by cases) and universal generalization. 

In suppositional reasoning, we can no longer think of arguments as finite 
sequences of propositions, because each line of an argument may depend upon 
suppositions. We can instead think of lines of arguments as ordered pairs (X, p )  
where X is the set of propositions comprising what is supposed on that line. I 
will refer to X as the premise set of ( X ,  p).  Linear arguments can be viewed as 
arguments in which the premise sets are always empty. Discharge rules are 
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rules that manipulate premise sets. For instance, conditionalization could be 
formulated as follows: 

Rules of inference are really rules for the construction of arguments, so condi- 
tionalization could be stated more precisely as follows: 

If u is an argument and some line of cr is ( X U { p } ,  4). then uA ( X ,  ( p  3 4 ) )  
(the result of appending ( X ,  (p 3 4))  to the end of u) is also an argument. 

Other rules for argument formation will include the following: 

Input 
If pEinput and u is an argument, then for any X ,  u^ ( X ,  p )  is an argu- 
ment. 

Supposition 
If u is an argument and X is any finite set of propositions, then if p E X ,  
cr * ( X ,  p )  is an argument. 

Reason 
If u is an argument, ( X ,  p , ) ,  . . . , ( X ,  p n )  are members of u, and 
{ p , ,  . . . , pn} is a reason (either conclusive or prima facie) for 4, and 
for each i ,  X i  X ,  then cr^(X, q) is an argument. 

Dilemma 
If u is an argument containing ( X ,  (p v 4)), ( X U { p } ,  r ) ,  and ( X U { 4 } ,  r ) ,  
then u A ( X ,  r )  is an argument. 

A distinction can be drawn between factual and counterfactual supposi- 
tional reasoning. In factual suppositional reasoning, we suppose that something 
is the case, and then reason about what else is the case. In counterfactual 
suppositional reasoning, we make a supposition of the form “Suppose it were 
true that P,” and then reason about what would be the case. These two kinds of 
suppositional reasoning work in importantly different ways. In factual supposi- 
tional reasoning, because we are supposing that something is the case, we can 
automatically combine that supposition with anything we have already con- 
cluded to be the case. Counterfactual suppositions may, on the other hand, 
override earlier conclusions and require their retraction within the supposition. 
In the present context, I am only concerned with factual suppositional reason- 
ing. Accordingly, we can formulate a rule of inference allowing the adoption 
within a supposition of any conclusion already adopted within a less inclusive 
supposition: 

Foreign Adoptions 
If u is an argument, cri = ( X ,  p ,  /3), and X C Y, then ul( Y, p )  is an 
argument. 
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Note that Reason already builds in foreign adoptions, allowing us to directly 
infer conclusions from reasons adopted in less inclusive suppositions. Dilemma 
could be generalized similarly. 

Reductio ad absurdum can only function in a purely deductive context. 
Deriving a contradiction within a defeasible argument defeats the defeasible 
steps rather than refuting the supposition. So to formulate a correct rule of 
reductio, we must begin by defining: 

is a subargument of u if and only if q is a subsequence of u and q is an 
argument. 

u is a deductive argument if and only if u is an argument but u does not 
employ the rule Reason in connection with any prima facie reasons. 

We can then formulate two rules of reductio ad absurdum: 

Reductio-1 
If u is an argument containing a deductive subargument q containing a 
line ( X U { p } ,  ~ p ) ,  then crA(X,  i p )  is an argument. 

If u is an argument containing a deductive subargument q containing 
lines of the form (XU{p}, q )  and ( X U { p } ,  i q ) ,  then u * ( X ,  ~ p )  is an 
argument. 

Reductio-2 

An argument u supports the proposition p relative to the supposition X if and 
only if (X, p) is a member of u. u supports p if and only if u supports p relative 
to the empty supposition. 

111. REASONING AND WARRANT 

In designing an automated defeasible reasoner, one is faced with the diffi- 
cult problem of how to evaluate the reasoning that the system performs. We 
want the reasoning performed by the system to be “correct,” but what is the 
criterion for correctness? In answering this question, it is useful to distinguish 
between theories of reasoning and theories of warrant. Theories of reasoning 
are basically procedural theories. They are concerned with what a reasoner 
should do next when it finds itself in any particular epistemological situation. 
Correct reasoning can involve numerous false starts, wherein a belief is 
adopted, retracted, reinstated, retracted again, and so forth. At each stage of 
reasoning, if the reasoning is correct then a belief held on the basis of that 
reasoning is justified, even if subsequent reasoning will mandate its retraction. 
Epistemic justification, in this sense, is a procedural notion consisting of the 
correct rules for belief updating having been followed by the system up to the 
present time in connection with the belief being evaluated. 

By contrast, warrant is what the system of reasoning is ultimately striving 
for. A proposition is warranted in a particular epistemic situation if and only if, 
starting from that epistemic situation, an ideal reasoner unconstrained by time 
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or resource limitations, would ultimately be led to adopt belief in the proposi- 
tion. Warranted propositions are those that would be justified “in the long run” 
if the system were able to do all possible relevant reasoning. A proposition can 
be justified without being warranted, because although the system has done 
everything correctly up to the present time and that has led to the adoption of 
the belief, there may be further reasoning waiting to be done that will mandate 
the retraction of the belief. Similarly, a proposition can be warranted without 
being justified, because although reasoning up to the present time may have 
failed to turn up adequate reasons for adopting the proposition, further reason- 
ing may provide such reasons. Similarly, reasoning up to the present may 
mandate the adoption of defeaters which, upon further reasoning, will be re- 
tracted, So justification and warrant are two importantly different notions, 
although they are closely related. 

Two schools of thought are represented in current work on nonmonotonic 
logic and defeasible reasoning. Most theories are members of the semantical 
school, according to which an adequate theory must be based upon a formal 
semantics.* The procedural school, on the other hand, proposes to analyze 
defeasible reasoning by giving a straightforward description of “how it works,” 
in a procedural sense, and holds semantical questions in abeyancest The se- 
mantical/procedural distinction is related to, but not quite the same as, the 
warrant/justification distinction. Procedural theories are typically about justifi- 
cation rather than warrant, and semantical theories are typically about warrant 
rather than justification. However, if one understands “semantical” in a fairly 
narrow sense so that it includes only model theoretic semantics, then there can 
be theories of warrant that are not semantical. The theory of warrant presented 
below will not be semantical in this narrow sense.$ 

My own opinon is that the importance of model theoretic semantics is 
vastly overrated.§ Experience in formal logic has indicated that it is possible to 
construct model theoretic semantics for even the most outlandish logical theo- 
ries. The mere existence of a model theoretic semantics shows nothing at all 
about the correctness of the theory. If a theory is already known to be correct, 
then the discovery of a formal semantics for it can be a useful technical tool in 
its investigation. But the formal semantics is not itself an argument for the 
correctness of the theory unless there is some independent reason for thinking 
that the semantics is correct. The systems of formal semantics that define 
various species of nonmonotonic logic do indeed have initial plausibility, but I 
would argue that their authors have sometimes been driven more by consider- 

*See, for example, M ~ C a r t h y ; ~ ~ , ~ ~  McDermott and Doyle;24 Moore;25 and Rei- 
ter . 26927 

tThe most noteworthy representative of this is school Jon Doyle.** A more recent 
proponent is Ron Loui.17 

$Two other theories that are not semantical in this narrow sense are D e l ~ a n d e ~ ~  
and Pearl.3o 

$1 hold this opinion in general, not just for nonmonotonic logic. See Chapter Six of 
Ref. 31 for a discussion of the significance (or lack thereof) of model theoretic semantics 
for standard logical theories, including the predicate calculus and modal logic. 



DEFEASIBLE REASONING 41 

ations of formal elegance than by an appreciation of the subtleties required of 
defeasible reasoning for a fullblown epistemology. Before getting carried away 
with a semantical investigation, we should be sure that the theory described by 
the semantics is epistemologically realistic, and that requires attending to the 
nuts and bolts of how defeasible reasoning actually works. This quickly reveals 
that standard theories of nonmonotonic reasoning are unable to accommodate 
even some quite elementary defeasible reasoning. For instance, suppose we 
know that most birds can fly. Now suppose we know that there is a small 
animal in the next room and we are trying to identify it by the sounds it makes. 
We may reason that if it is a bird then it can fly. No A1 system of nonmonotonic 
reasoning can accommodate this simple inference. Our actual reasoning is very 
simple. We suppose that the animal is a bird, infer defeasibly that it can fly, and 
then discharge the supposition (use conditionalization) to conclude that if it is a 
bird then it can fly.* 

Our epistemological intuitions are about reasoning, and that suggests that 
the best we can do is build a system that mimics human reasoning. I think that 
that is overly restrictive, however. We do not necessarily want an automated 
reasoner to reason exactly the way human beings do. Resource differences may 
make it possible to construct automated reasoners that improve upon human 
reasoning. The sense in which they improve upon it must be that they update 
their beliefs in ways that are more efficient at bringing the set of their beliefs 
into conformance with the set of warranted propositions. This suggests that the 
target of analysis should be warrant rather than justification. Our intuitions 
about reasoning are equally about warrant, because given a general description 
of an epistemological situation replete with a description of all the relevant 
arguments, our intuitions can inform us about what beliefs ought to be adopted 
and what beliefs ought to be retracted. A characterization of what ought to be 
believed given all possible relevant arguments is a characterization of the set of 
warranted propositions. Such an account can be given fairly easily if we take as 
primitive the notion of one argument defeating another. Suppose we have an 
argument a supporting a conclusion P, and an argument p that defeats a. If 
these are the only relevant arguments, then P is not warranted. But now sup- 
pose we acquire a third argument y that defeats p. This situation is diagrammed 
in Figure 2. The addition of y should have the effect of reinstating a, thus 
making P warranted. We can capture this kind of interplay between arguments 
by defining: 

All arguments are level 0 arguments. 
An argument is a level n + 1 argument if and only if it is a level 0 argument 
and it is not defeated by any level n argument. 

An argument is in at level n if and only if it is a level n argument. Otherwise it is 
out. Thus a,  p,  and y are all in at level 0. y is in at level 1, but neither a nor p is 

*For a more sustained critique of nonmonotonic reasoning systems, see Chapter 
Nine of Ref. 12. 
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f 
P 

Figure 2. Interacting arguments. 

in at level 1. Accordingly, a and y are in at level 2, but p is not. And for every 
n L 2, a and y are in at level n ,  but p is out. Let us define: 

An argument is ultimately undefeated if and only if there is an m such that 
for every n 2 m,  the argument is in at level n .  

My proposal is then that a proposition is warranted if and only if it is supported 
by some ultimately undefeated argument.* 

Most of the rest of this article will be concerned with filling in the details in 
this theory of warrant. But given a theory of warrant, what are we to do with it? 
In an important sense, our ultimate interest in A1 is in justification rather than 
warrant. We want to know how to build a system that reasons correctly, and 
that is a procedural matter. As 1 have just urged, the desideratum is not neces- 
sarily to build a system that replicates human reasoning in all respects, because 
there may be more efficient ways of doing it. However, before we can decide 
whether a particular procedure is a more efficient way of doing it, we have to 
determine what the “it” is that we want the system to do. What exactly is the 
connection between warrant and what we want a system of reasoning to ac- 
complish? The simplest proposal would be that we want the system to “com- 
pute warrant.” But if this is understood as requiring that the system implement 
an effective procedure for determining warrant, then it is an impossible desider- 
atum. All theorems of logic are automatically warranted because the arguments 
suporting them are nondefeasible. This includes all theorems of the predicate 
calculus. However, by Church’s theorem, the set of theorems of the predicate 
calculus is not decidable. Thus, no system can compute warrant in this sense. 
A weaker proposal would be that we want the system to generate all warranted 
propositions in some effective way, analogous to the manner in which a com- 
plete theorem prover generates all theorems of the predicate calculus. But this 
desideratum is also provably unsatisfiable. This is because, as has been ob- 
served by numerous authors,t on any theory of defeasible reasoning, the I 

*This characterization of warrant was presented in Refs. 2 and 9. A similar pro- 

t I  think that the first was David 
posal is contained in Horty, Thomason, and Touretzsky.16 
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mate correctness of a piece of reasoning (i.e., whether the conclusion of the 
reasoning will survive an indefinite amount of further reasoning and hence be 
warranted) may turn upon something being unprovable, and if our resources 
for proof include at least the full predicate calculus, then there is no effective 
test for unprovability. More precisely, by Church’s theorem, the set of invalid 
formulas of the predicate calculus is not recursively enumerable (r.e.). It fol- 
lows that, for example, in default logic, a first order theory with normal defaults 
may have a set of theorems that is not r.e., and hence there can be no effective 
procedure for generating that set of theorems. The analogous conclusion ap- 
plies to all theories of defeasible reasoning and to all nonmonotonic logics. 

If the desideratum for an automated reasoning system is not that of com- 
puting warrant, what is it? We want the system to systematically modify its 
belief set so that it comes to approximate the set of warranted propositions 
more and more closely. We want the set of beliefs to “approach the set of 
warranted propositions in the limit.” I propose that we understand this on 
analogy to the standard &/a definition of limits in mathematical analysis. The 
precise desideratum for an automated reasoner is that justification should come 
to approximate warrant in the following sense: 

The rules for reasoning should be such that: 
( I )  if a proposition p is warranted then the system will eventually reach a 

(2) if p is unwarranted then the system will eventually reach a point where 
point where p is adopted and stays adopted; 

p is not adopted and stays unadopted. 

So the task of a reasoner is not to compute warrant. It is to generate successive 
sets of beliefs that approximate warrant more and more closely, in the above 
sense. We can make this mathematically precise as follows. Define: 

A set A is defeasibly enumerable if and only if there is an effectively 
computable set function f and a recursive set A0 such that if we define 
Ai+, = f ( A J  then: 
( I )  (Vx) if xEA then (3n)(Vm > n) xEA,;  
(2) (Vx) if x$ZA then (3n)(Vm > n )  x@Am.  

I will say that the pair (Ao,  f) is a d.e .  approximation of A .  The intuitive 
difference between recursively enumerable sets and defeasibly enumerable sets 
is that recursively enumerable sets can be “systematically approximated from 
below,” while defeasibly enumerable sets can be systematically approximated 
from above and below simultaneously. More precisely, if A is r.e., then there is 
an effectively computable sequence of sets A; such that 

(1) (Vx) if x E A  then (3n)(Vm > n )  xEA, ;  
(2) (Vx) if x$ZA then (Vm) x$ZA,. 

The sets A; approximate A from below in the sense that they are all subsets of A 
and they grow monotonically, approximating A in the limit. If A is defeasibly 
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enumerable, however, the sets Ai need not be subsets of A .  They may only 
approximate A from above and below simultaneously, in the sense that they 
may contain elements not contained in A .  Every such element must eventually 
be taken out of the Ai’s, but there need not be any point at which they have all 
been removed. The process of d.e. approximation can be pictured by thinking 
of A as a spherical region of space and the A; as representing successive stages 
of a reverberating elastic ball whose center coincides with the center of A .  As 
the reverberations dampen out, the outer surface of the ball will come to ap- 
proximate that of the spherical surface more and more closely, but there will 
never be a point at which the ball is contained entirely within the spherical 
surface. 

The reverberating sphere metaphor can be used to give a precise mathe- 
matical characterization of the difference between A being r.e. (approximation 
from below) and d.e. (approximation from above and below). If A is r.e. then 

On the other hand, if A is d.e. then what we have is: 

To illustrate that defeasibly enumerable sets need not be r.e., choose a pair 
of symbols “0” and “0” and define: 

A = {OcpIp is a valid formula of the predicate calculus} 
U{Vpl -p is an invalid formula of the predicate calculus}. 

By Chuych’s theorem, A is not r.e., but it can be shown to be defeasibly 
enumerable as follows. By the completeness theorem, there is an enumeration 
cp;(iEw) of the valid formulas of the predicate calculus. If for some 8, cp = -8, 
let i p  = 8, and let i c p  = -cp otherwise. Then define: 

Then despite the fact that A is not r.e., (Ao, f )  is a d.e. approximation ofA. The 
d.e. approximation in this example has a particularly simple form in which once 
an element is added to or removed from some A; (for i > 0), its status never 
changes. The general form of a d.e. approximation allows items to be repeat- 
edly added and deleted. Notice that human reasoning works in the latter way. 
As our reasoning develops, beliefs may be repeatedly retracted and reinstated. 

The proposal regarding reasoning and warrant is that the set of warranted 
propositions is defeasibly enumerable, and the rules for reasoning are rules for 
successively approximating warrant in this way, i.e., they are rules for con- 
structing a d.e. approximation. More accurately, we can think of a reasoner as 
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a belief updater that operates repeatedly on a set of beliefs to generate a new set 
of beliefs. The reasoner starts with the set input, and each cycle of the reasoner 
constitutes the application of an effective set function f to the previous set of 
beliefs. I will say that the reasoner provides a d.e. approximation to warrant if 
and only if (input, f) is a d.e. approximation to the set of propositions that are 
warranted given that set of inputs. This is the criterion of correctness for a 
reasoner. This characterization of reasoning enables us to exploit differences 
between people and machines with regard to resource limitations. A rational 
machine need not reason in precisely the same way people do, because it may 
be better at some tasks. Thus the construction of an A1 theory of reasoning 
divides into two parts. We must begin with a theory of warrant, and then given 
that characterization of warrant we can look for rules for belief updating that 
provide a d.e. approximation to warrant. 

A consequence of this proposal is that we cannot expect an automated 
reasoning system to ever stop reasoning. It can inform us that “so far” a 
certain conclusion is justified, but it may have to continue forever in a possibly 
fruitless search for defeating arguments. This, of course, is just the way people 
work. It is not as crippling as it sounds, because once a conclusion becomes 
justified, it is reasonable to accept it provisionally and act upon it. This is what 
defeasible reasoning is all about. A common misconception in A1 theories of 
nonmonotonic reasoning has been that before it is reasonable to act on the 
conclusion of some defeasible reasoning, it must be established that there are 
no true defeaters. As that is generally an impossible requirement, it has seemed 
mysterious how nonmonotonic reasoning can possibly function in a finite 
agent. 

IV. UNIFORM REASONS 

I have characterized warrant in terms of levels of arguments, where the 
latter notion is defined in terms of one argument defeating another. To com- 
plete the theory of warrant, we must characterize when arguments defeat one 
another. A general treatment of defeat among arguments involves addressing a 
complex issue that has rarely been addressed in either philosophy or AI. Rea- 
sons differ in strength. Some reasons are better than others. If we have a reason 
forp and a reason for i p ,  but the latter is significantly stronger than the former, 
then it wins the competition and we should believe i p .  Thus a general theory of 
reasoning requires us to talk about the strengths of reasons and how those 
strengths affect interactions between reasons. One of the main objectives of 
this article is to address that issue, but it is expedient to begin by giving an 
account of defeat among arguments that ignores relative strengths. Let us 
adopt the simplifying assumption that all reasons are of the same strength. 

An argument u defeats an argument r)  by supporting a defeater for some 
line of r). Recall, however, that in suppositional reasoning, different lines of an 
argument may depend upon different suppositions. If a prima facie reason (r, 
p )  is used in r ) ,  the presence in u of a defeater for this reason does not guaran- 
tee that u defeats r)  unless the defeater is supported in CT relative to the supposi- 
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tion made in the context in which the prima facie reason is employed in r ) .  For 
instance, the defeater might be introduced into (T as a mere supposition, where 
that supposition is not included in the supposition set of the line of r )  on which 
(r, p )  is used. In general, the occurrence in (T of a defeater on a line whose 
supposition set is Y only defeats a use of (r, p )  in r)  on a line whose supposition 
set is X if Y C X. Accordingly, we can define: 

An argument (T rebuts an argument r)  iff 
(1) r )  contains a line (X, q) obtained by the rule Reason from some earlier 

lines (X, p , ) ,  . . . , (X, p,) where {p l ,  . . . , p,} is a prima facie 
reason for q; and 

(2) (T contains a line (Y,  i q ,  /3X where Y C X .  
An argument (T undercuts an argument r )  iff 
(1) r )  contains a line (X, q) obtained by the rule Reason from some earlier 

lines (X, p, ) ,  . . . , (X, p,) where { P I ,  . . . , p , }  is a prima facie 
reason for q ; and 

(2) (T contains a line ( Y, - ((PI & . . . & p , )  % q ) ,  p )  where Y C X. 

Then it seems reasonable to propose: 

An argument (T defeats an argument r)  iff (T either rebuts or undercuts r).  

Note that this simple analysis only works subject to the assumption that all 
reasons are of the same strength. Otherwise u might contain a weaker reason 
for i q  than r )  contains for q, in which case it might fail to defeat r ) .  

V. TAKING STRENGTH SERIOUSLY 

Now consider what happens when we relax the simplifying assumption 
that all reasons are of the same strength. 

A. Measuring Strength 

If we are to take strength seriously, we must have some way of measuring 
it. One way of measuring strength is to compare reasons with a set of standard 
equally good reasons that have numerical values associated with them in some 
determinant way. I propose to do that by taking the set of standard reasons to 
consist of instances of Statistical Syllogism. For any p ,  F, and G, [ F c  & 
prob(G/F) = r & ( p  = -Gc)l provides a basis for believing i p ,  the strength of 
this basis being a function of r.  Thus if X is a prima facie reason for p, we can 
measure the strength of this prima facie reason in terms of that value of r such 
that the conflicting reason 1 Fc & prob(G/F) = r 8z ( p  = -Gc)l exactly counter- 
acts it. We could take r itself to be the measure of the strength of the reason, but 
it turns out that a somewhat more convenient measure is log(.5/1- r ) .  For .5 I 
r 5 1, this is a monotonic increasing function of r.  This proposal has the 
convenient consequence that the strength of an instance of Statistical Syllo- 
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gism in which r = .5 is 0, and as we will see below, it makes plausible a certain 
principle for evaluating the outcome of conflicting reasons. So my proposal is: 

If X is a prima facie reason forp, the strength of this reason is log(.5/1 - r) 
where r is that real number such that an argument for ~p based upon the 
supposition 1 Fc & prob(G/F) = r & ( p  = -Gc)l and employing Statistical 
Syllogism exactly counteracts the argument for p based upon the supposi- 
tion X. 

For instance, if we decide that a prima facie reason of minimal acceptable 
strength corresponds to an instance of Statistical Syllogism in which r = .95, 
then it follows that prima facie reasons must have a strength L 1. Let (reason- 
strength X p )  be the strength of a prima facie reason (X, p ) .  

Conclusive reasons logically guarantee the truth of their conclusions given 
the truth of the premises, so there can be no accompanying attenuation in 
strength of justification. We can capture this by taking them to have infinite 
strength. 

B. The Weakest Link Principle 

Given a measure of the strengths of reasons, what are we to do with it? 
Strengths are important in deciding whether a reason is strong enough to justify 
a belief. The simplest way to deal with this is to say that a reason that is too 
weak is not a reason at all. This has the consequence that, for most purposes, 
the system need not worry about the strengths of reasons. It can just assume 
that all reasons are sufficiently strong to justify their conclusions. 

However, there is a residual problem. Although a reason is guaranteed to 
be sufficiently strong to justify its conclusion in a one step argument, how do 
we determine the justification of the conclusion of a complex argument that 
involves a number of inferences? It is often supposed that each inference 
attenuates the strength of the conclusion, and so, although each reason by itself 
is sufficiently strong, the degree of justification of the ultimate conclusion may 
be too weak to justify adoption. 

This is often coupled with a probabilistic model of reasoning according to 
which reasons make their conclusions probable to varying degrees, and the 
ultimate conclusion is warranted only if it is made sufficiently probable by the 
cumulative reasoning. This has the untoward consequence that even purely 
deductive reasoning from a set of warranted premises need not guarantee the 
warrant of the conclusion. Principles like adjunction and modus ponens, which 
deduce a conclusion from a set of more than one premise, cease to be correct 
principles of reasoning. This is because, by the probability calculus, (P 8z Q) 
need not be as probable as either P or Q, and Q need not be as probable as 
either P or (P 3 Q). All we can be sure of is that prob(P & Q )  2 prob(P) + 
prob( Q) - 1, and prob (Q) 2 prob( P) + prob(P 3 Q) - 1. 

As a description of human reasoning, this seems clearly wrong. Once one 
has arrived at a set of conclusions, one does not hesitate to draw further 
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deductive conclusions from them. The probabilistic model is just mistaken as a 
description of human reasoning. Furthermore, there is a good computational 
reason why this must be the case. Gilbert Harrnad3 points out that the probabil- 
ity of a conjunction is not a function of the probability of its conjuncts. To 
compute prob(P & Q) we must know the probability of one of the conjuncts, 
e.g., prob(P), and we must also know the conditional probability prob(QlP). 
hkore generally, to reason in accordance with the probability calculus about a 
set of propositions r, for each P in I' and for each subset A of r, we must know 
the conditional probability prob( Pill A). These are independent probabilities, 
and cannot be computed from anything simpler. If r has n members, there will 
be 2" such conditional probabilities. To illustrate that this is an impossible 
requirement for any real cognizer, Harman points out that if r consists of just 
300 propositions (a very small number for any realistic system), this will require 
the system to store low conditional probabilities. It can be better appreciated 
what a large number this is by noting that it has been estimated that there are 
just elementary particles in the entire universe. Obviously, no real system 
could work this way, including human beings.* 

The moral to this story is that the degree ofjustification of the conclusion 
of a deductive argument cannot be such a complex function of the strengths of 
the premises. Computing the degree of justification of the conclusion must be 
computationally relatively simple. My suggestion is that this is actually done in 
terms of the Weakest Link Principle, according to which a deductive argument 
is as good as its weakest link. More precisely: 

The degree of justification of the conclusion of a deductive argument is the 
minimum of the degrees of justification of its premises. 

This principle applies only to deductive arguments, but we can use it to 
obtain an analogous principle for defeasible arguments. If P is a prima facie 
reason for Q,  then we can use conditionalization to construct a simple defeasi- 
ble argument for the conclusion (P 3 Q ) ,  and this argument turns upon no 
premises: 

Suppose P 

Then (defeasibly) Q. 

As this argument has no premises, the degree of justification of its conclusion 
should be a function of nothing but the strength of the prima facie reason. The 
next thing to notice is that any defeasible argument can be reformulated so that 
prima facie reasons are only used in subarguments of this form, and then all 
subsequent steps of reasoning are deductive. The conclusion of the defeasible 
argument is thus a deductive consequence of members of input together with a 

*For a more extensive discussion of probabilism in epistemiology, see P o l l ~ c k . ~  
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number of conditionals justified in this way. By the weakest link principle for 
deductive arguments, the degree of justification of the conclusion should then 
be the minimum of (1) the degrees of justification of the members of input used 
in the argument and (2) the strengths of the prima facie reasons. 

There are two ways of assigning degrees of justification to the members of 
input. One natural proposal would take input to consist of propositions like 
“That looks red to me,” from which one can infer defeasibly “That is red.” 
Because something can look more or less clearly red, and that can affect the 
justification of the conclusion, this will require us to assign differing degrees of 
justification to “That looks red to me,” these degrees depending upon how 
clearly it looks red. But a simpler alternative, which I will adopt here, is to 
build the degree of justification into the member of input itself, so that it does 
not include propositions like “That looks red to me,” but rather proposition 
like “That looks clearly red to me,” “That looks vaguely red to me,” etc. Then 
the differing degrees of justification attaching to the conclusion “That is red” 
can be regarded as resulting from the fact that the different input propositions 
provide prima facie reasons of differing strengths for this conclusion. We can 
thus ignore degrees of justification for members of input in computing the 
degree of justification for the conclusion of a defeasible argument, and identify 
the latter degree of justification with the minimum of the strengths of the prima 
facie reasons employed in the argument.* This is The Weakest Link Principle 
for  Defeasible Arguments: 

The degree ofjustification of the conclusion of a defeasible argument is the 
minimum of the strengths of the prima facie reasons employed in it. 

The problem of computing degrees of justification is thus computationally sim- 
ple. Sometimes, it will be convenient to talk about the strength of the argument 
as being the degree of justification of its conclusion. 

Where ( X ,  p )  is a prima facie reason and the members of X are justified to 
varying degrees, the strength of the argument that results from combining the 
prima facie reason ( X ,  p )  with the arguments supporting the members of X will 
be the minimum of (reason-strength X p )  and the degrees of justification of the 
members of X .  It will be convenient to define: 

(strength X p )  = minimum{& (reason-strength X p ) }  where 6 is the mini- 
mum of the degrees of justification of the members of X .  

Thus (reason-strength X p )  is the strength of the reason in isolation, whereas 
(strength X p )  is the degree of justification p acquires from X in the actual 
epistemiological situation. 

*Everything said about the members of input here can equally be said about propo- 
sitions that are introduced by supposition in suppositional reasoning. For technical 
reasons, I will assign them infinite degrees of justification. 
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C. Comparing Competing Reasons 

The most important role of the strengths of reasons lies in deciding what to 
believe when one has conflicting arguments for p and i p .  Then one must 
consider which argument is better, and if it is enough better, one should reason 
in accordance with it and draw the corresponding conclusion. The question is 
then, “What constitutes being enough better?” My proposal is that this can be 
captured by an analogue of The Likelihood Principle from statistics. I argued in 
Pollock’* that this principle is best understood in terms of the following variant 
of the statistical syllogism: 

Inverse Statistical Syllogism 
If r > .5 ,  then [-Gc & prob(G/F) 2 rl is a prima facie reason for [ -Fc] ,  
the strength of the reason being the same function of r as in Statistical 
Syllogism. 

Inverse Statistical Syllogism stands to Statistical Syllogism as modus tollens 
stands to modus ponens. 

In statistical reasoning, it is very common to have an argument for p based 
upon an instance of Inverse Statistical Syllogism in which the probability is r, 
and an argument for i p  based upon an instance of Inverse Statistical Syllogism 
in which the probability is s .  The likelihood ratio of p is then (1 - r) / (  1 - s ) .  The 
Likelihood Principle tells us that the on-balance justification for p is measured 
by the likelihood ratio. This is not an entirely uncontroversial principle, but it is 
plausible and has played a role in the foundations of statistical inference.* 
Assuming the Likelihood Principle, it is reasonable to believe p in this case if 
and only if (1 - r ) / ( l  - s )  is sufficiently smal1.t In other words, there must be 
some 6 such that it is reasonable to believe p if and only i f  

(1 - r)/(l - s) < 6. 

Equivalently: 

log(.5/1 - r)  - log(.5/1 - s) > -log(t). 

In statistical reasoning, 6 is typically taken to be in the vicinity of . l  or .01, in 
which case -log(() is in the vicinity of 1 or 2. Given our measure of the 
strengths of reasons, the Likelihood Principle can then be formulated equiva- 
lently as follows: 

There is a 60 such that, given an argument for p based upon an instance of 
Inverse Statistical Syllogism of strength q and an argument for i p  based 

*See the discussion in my Ref. 12. 
tThis is intuitively backwards. It would be more natural to take the likelihood ratio 

to be (1 - s)/(l - r), but that is not the way it has traditionally been done in statistics. 
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upon an instance of Inverse Statistical Syllogism of strength v ,  adoption of 
p is reasonable if and only if r )  - v > ao. 

Reasonable values of tj0 will be around 1 or 2. 

defeat: 
I propose to generalize this principle and apply it to all cases of rebutting 

The Principle of Rebuttal Resolution 
There is a tio such that, given an argument for p of strength r )  and an 
argument for i p of strength v, adoption of p is reasonable if and only if r )  - 
v > 60.  

D. The Accrual of Reasons 

If we have two independent reasons for a conclusion, does that make the 
conclusion more justified than if we had just one? It is natural to suppose that it 
does, but upon closer inspection that becomes unclear. Cases that seem ini- 
tially to illustrate such accrual of justification seem upon reflection to be better 
construed as cases of having a single reason that subsumes the two separate 
reasons. For instance, if Jones tells me that the president of Slobovia has been 
assasinated, that gives me a reason for believing it; and if Smith tells me that 
the president of Slobovia has been assasinated, that also gives me a reason for 
believing it .  Surely, if they both tell me the same thing, that gives me a better 
reason for believing it. However, there are considerations indicating that my 
reason in the latter case is not simply the conjunction of the two reasons I have 
in the former cases. Reasoning based upon testimony is a straightforward in- 
stance of Statistical Syllogism. We know that people tend to tell the truth, and 
so when someone tells us something, that gives us a prima facie reason for 
believing it. This turns upon the following probability being reasonably high: 

prob(p is true/S asserts p).  (1) 

When we have the concurring testimony of two people, our degree of justifica- 
tion is not somehow computed by applying a predetermined function to the 
latter probability. Instead, it is based upon the quite distinct probability 

prob(p is true/S1 asserts p and Sz asserts p and S1 f S2). (2) 

The relationship between (1) and (2) depends upon contingent facts about the 
linguistic community. We might have one community in which speakers tend to 
make assertions completely independently of one another, in which case (2) > 
(1); and we might have another community in which speakers tend to confirm 
each other’s statements only when they are fabrications, in which case (2) < 
(I) .  Clearly, our degree ofjustification for believingp will be different in the two 
linguistic communities. It will depend upon the value of (2), rather than being 
some function of (1). 
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All examples I have considered which seem initially to illustrate the ac- 
crual of reasons turn out in the end to have this same form. They are all cases in 
which we can estimate probabilities analogous to (2) and make our inferences 
on the basis of Statistical Syllogism rather than on the basis of the original 
reasons. Accordingly, I doubt that reasons do accrue. If we have two separate 
arguments for a conclusion, the degree of justification for the conclusion is 
simply the maximum of the strengths of the two arguments. This will be my 
assumption. 

There is a related question. Suppose we have an argument of strength q for 
p ,  and a rebutting argument of strength q for i p .  If q - Y > 60, then we can go 
on to draw further conclusions from p .  How do we compute their degrees of 
justification? Specifically, are they diminished by having the conflicting argu- 
ment for i p ?  I am inclined to think that they are not. If they were, then if we 
acquired a second argument for i p ,  it would face off against a weaker argu- 
ment forp and so be better able to defeat it. But that is tantamount to taking the 
two arguments for i p  to result in greater justification for that conclusion, and 
that is just the principle of accrual. So it seems that if we are to reject the latter 
principle, then we should also conclude that arguments that survive rebuttal by 
conflicting arguments are not thereby diminished in strength. 

E. Defeat Among Arguments 

Now we can generalize our analysis of defeat among arguments to accom- 
modate varying strengths for reasons. It is convenient to revise our understand- 
ing of arguments by explicitly including the degree of justification Y of a line as 
part of the line, taking lines to be triples (X, p ,  v). These degrees ofjustification 
are computed in accordance with the weakest link principle. The rules for 
argument formation (rules of inference) must then be revised in obvious ways. 
For example: 

Conditionalization 
If u is an argument and some line of u is ( X U { p } ,  q, v), then 
u ^ ( X ,  ( p  3 q ) ,  v) is also an argument. 

Input 
If pEinput and u is an argument, then for any X, uA(X, p, a) is an 
argument. 

Supposition 
If u is an argument and X is any finite set, then i f p E X ,  u A ( X ,  p ,  w) is an 
argument. 

Reason 
If cr is an argument, ( X I ,  P I ,  ql), . . . , (X,,, p n ,  q,,) are members of u, 
and { p l ,  . . . , p,,}  is a reason of strength v for q, and for each i ,  X i  X, 
then u A ( X ,  q, minimum{ql, . . . , q,,, v}) is an argument. 
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Dilemma 
If u is an argument containing (X, ( p  v q) ,  r ) ) ,  ( X U { p } ,  r, Y ) ,  and 
( X U { q } ,  r, p),  then u ^ ( X ,  r, minimum{r), Y, p}) is an argument. 

Reductio-1 
If cr is an argument containing a deductive subargument r)  containing a 
line ( X U { p } ,  i p ,  a), then c+^(X, i p ,  m) is an argument. 

Reductio-2 
If u is an argument containing a deductive subargument r )  containing 
lines of the form ( X U { p } ,  q,  m) and ( X u { p } ,  i q ,  m), then a ^ ( X ,  i p ,  m) is 
an argument. 

We are finally in a position to give a characterization of defeat among 
arguments that takes account of the strengths of reasons. Undercutting defeat 
works as before-considerations of strength are not relevant because the de- 
feated argument does not in turn provide a source of defeat for the defeating 
argument. Rebutting defeat is handled in accordance with the Principle of 
Rebuttal Resolution, according to which, given an argument of strength a 
supporting q and an argument of strength j3 supporting i q ,  it is reasonable to 
adopt q if and only if a - j3 2 60. Equivalently, it is unreasonable to adopt q, 
and hence that argument is defeated, if and only if a - j3 < tio. Therefore, we 
can characterize defeat among arguments as follows: 

An argument u defeats an argument r )  if and only if: 
(1) r )  contains a line (X, q,  a) obtained by the rule Reason from some 

earlier lines ( X I ,  p I ,  a,), . . . , )X,, p,, a,) where { P I ,  . . . , p, }  is a 
prima facie reason for q;  and 

(a) r is 1741 and a - j3 < 60; or 
(b) r is 1 - ( h  8~ . . . & p,) 

(2) u contains a line (X, r ,  j3) where either: 

411. 

VI. CONCLUSIONS 

I have proposed an analysis of warrant that accommodates reasons of 
varying strengths, and I have made a proposal regarding the criterion of cor- 
rectness for an automated defeasible reasoner. This is that it should provide a 
d.e. approximation to the set of warranted propositions. Constructing such a 
reasoner is no trivial task, however. I have designed an implementation of the 
theory described here that aims at satisfying this desideratum, but it is not yet 
adequately tested.* 

*This is described in Ref. 1 .  
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