
COGNITIVE SCIENCE 11, 481-518 (1987) 

Defeasible Reasoning 

JOHN L.POLLOCK 

University of Arizona 

What philosophers call defeosible reasoning is roughly the same OS nonmonotonic 

reasoning in Al. Some brief remarks ore mode about the nature of reasoning and 

the relationship between work in epistemology, Al, and cognitive psychology. 

This is followed by a general description of human rotionol architecture. This 

description has the consequence that defeasible reasoning has o more compli- 

coted structure than has generally been recognized in Al. We define a proposition 

to be worronfed if it would be believed by on ideal reasoner. A general theory of 

warrant, based on defeasible reasons. is developed. This theory is then used osa 

guide in the construction of o theory of defeosible reasoning, and (I computer 

program implementing that theory. The theory constructed deals with only o sub- 

set of defeosible reasoning, but it is an important subset. 

PART I 

1. INTRODUCTION 

A common misconception about reasoning is that reasoning is deducing, 
and in good reasoning the conclusions follow logically from the premises. It 
is now generally recognized both in philosophy and in AI that nondeductive 
reasoning is at least as common as deductive reasoning, and a reasonable 
epistemology must accommodate both. For instance, inductive reasoning is 
not deductive, and in perception, when one judges the color of something 
on the basis of how it looks to him, he is not reasoning deductively. Such 
reasoning is defeasible, in the sense that the premises taken by themselves 
may justify us in accepting the conclusion, but when additional information 
is added, that conclusion may no longer be justified. For example, some- 
thing’s looking red to me may justify me in believing that it is red, but if I 
subsequently learn that the object is illuminated by red lights and I know 
that that can make things look red when they are not, then I cease to be 
justified in believing that the object is red. 

Although the existence of nondefeasible reasoning is obvious once it is 
pointed out, its recognition was slow in coming to philosophy, and it has 
wrought fundamental changes in epistemology. It is interesting that work 
on machine reasoning in AI has followed a roughly parallel course. What is 
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called nonmonotonic reasoning in AI is much the same thing as defeasible 
reasoning in philosophy. Nonmonotonic reasoning became the subject of 
intense interest in AI at almost the same time philosophical theories of de- 
feasible reasoning were first being developed.’ 

Work in philosophy and computer science can be fruitfully integrated in 
the study of defeasible reasoning. Philosophy comes to the investigation 
with an extensive and sophisticated background knowledge about various 
kinds of reasoning. In designing a program for nonmonotonic reasoning, 
one must first know what it should do, and here the researcher in AI can 
learn from the philosopher. As I will argue below, current theories of non- 
monotonic reasoning coming out of AI are simplistic and overlook much of 
the fine structure of defeasible reasoning. Conversely, the philosopher can 
learn much from attempts to implement epistemological theories in concrete 
programs for machine reasoning. If a theory of reasoning is correct, it must 
be possible to build a machine that reasons that way. A theory that looks 
good in the abstract may not work when you write a program to implement 
it. From the comfort of his armchair, an epistemologist may be able to find 
a certain number of counterexamples to a false epistemological theory, but 
my experience has been that when a program is constructed to implement a 
theory, it will almost invariably work incorrectly at first, and diagnosing the 
difficulty leads directly to the discovery of counterexamples to the epistemo- 
logical theory. In effect, the use of computers constitutes a mechanical way 
of generating counterexamples. 

Philosophers know a lot about some aspects of defeasible reasoning. 
They know about prima facie reasons and defeaters, and they know quite a 
bit about what prima facie reasons there are. But they do not have a good 
understanding of precisely how these constituents are used in reasoning. 
This is analogous to knowing what primitive logical entailments there are, 
but not knowing the principles for constructing deductive arguments out of 
those entailments. The purpose of this paper is to investigate the structure 
of defeasible reasoning. Given an array of defeasible and nondefeasible 
reasons, how are they to be used in drawing conclusions? A satisfactory 
theory of defeasible reasoning ought to be sufficiently precise that it can be 
implemented in a computer program. Constructing such a computer pro- 
gram and seeing that it does the right thing will be a useful test of the theory, 
and simultaneously a contribution to AI. Thus, the purpose of this paper is 
to investigate defeasible reasoning from a theoretical point of view and then 
discuss a computer program that attempts to implement the theory. The 
results detailed here are only partial, I will construct a theory that appears 

’ The main philosophical work on defeasible reasoning has been done by Roderick Chis- 

helm, 1957. 1966, and 1977; and myself, 1967, 1970, 1974. 1986. The seminal works in AI are 

probably Doyle (1979). McCarthy (19801, Reiter (1978) and (1980). and McDermott and Doyle 
(1980). 
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correct given certain simplifying assumptions, but a fully adequate theory 
must relax those simplifying assumptions, and that will be the subject of 
further research. 

2. A SKETCH OF HUMAN RATIONAL ARCHITECTURE 

I will begin with some general remarks about human rational architecture. 
This section provides a brief sketch of the more detailed account defended 
in my (1986). In order to get on with the business of analyzing reasoning, I 
will assume without further defense a number of conclusions from that 
book. The reader who is worried about those assumptions should consult 
the book for further discussion and defense. 

Reasoning is guided by rules, and when the reasoning is in accordance 
with the rules the resultant beliefs are said to be justified. Epistemic rules 
are normative, and that suggests that their formulation is independent of 
psychology. But I have argued (Pollock, 1986) that that is a mistake. We 
know how to reason. That is, reasoning is governed by internalized rules. 
The possession of such internalized rules constitues procedural knowledge. 
Jointly, these rules comprise a production system. These rules are the rules 
for “correct reasoning”-the very rules that are the subject of epistemology. 
One does not always conform to these rules, but this is because the produc- 
tion system for reasoning is embedded in a larger system than can override 
it. Reasoning can be fruitfully compared to using language. We have proce- 
dural knowledge governing the production of grammatical utterances, but 
our utterances are not always grammatical. This gives rise to the “compe- 
tence/performance” distinction in linguistics. Precisely the same distinction 
needs to be made in connection with any procedural knowledge. In particu- 
lar, it can be made in connection with reasoning, and it is the existence of 
this distinction that is responsible for the use of normative language in epis- 
temology. What we “should” do is what the rules of our production system 
tell us to do, but we do not always conform to those rules because they are 
embedded in a larger system that can override them. 

Human reasoning begins from various kinds of input states, the most 
familiar of which are straightforward perceptual states. These are non- 
doxastic states. For instance, something can look red to you without your 
having any belief to that effect. Furthermore, you can reason from the way 
things look to conclusions about their objective properties without forming 
intermediate beliefs about your own perceptual states. If you look around, 
you will form myriad beliefs about your surroundings but few if any beliefs 
about how things look to you. You do not usually attend to the way things 
look to you. This is important in the present context because it means that if 
we are to describe this process in terms of reasoning, then we must acknowl- 
edge that reasons need not be beliefs. At the very least, perceptual states can 
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be reasons. In general, I will call the states from which reasoning begins 
foundational stales. 

Crudely put, reasoning proceeds in terms of reasons. Reasons are strung 
together into arguments and in this way the conclusions of the arguments 
become justified. The general notion of a reason can be defined as follows: 

(2.1) Being in states M,, . . . ,M, is a reason for S to believe Q if and only if it 
is logically possible for S to be justified in believing Q on the basis of 
being in states M,, ,M,. 

Usually, reasons are beliefs or sets of beliefs, and in that case, rather than 
talking about believing P being a reason for believing Q, I will say more sim- 
ply that P is a reason for Q (or more generally, that a finite set {P,, . . . ,P,} 
is a reason for Q). 

There are two kinds of reasons-defeasible and nondefeasible. Nonde- 
feasible reasons are those reasons that logically entail their conclusions. For 
instance, (P & Q) is a nondefeasible reason for P. Such reasons are conclu- 
sive reasons. Everyone has always recognized the existence of nondefeasible 
reasons, but defeasible reasons are a relatively new discovery in philosophy, 
as well as in allied disciplines like AI. Focusing first upon reasons that are 
beliefs, P is a defeasible reason for Q just in case P is a reason for Q, but 
adding additional information may destroy the reason connection. Such 
reasons are called “prima facie reasons.” This notion can be defined more 
precisely as follows: 

(2.2) P is a primafacie reason for S to believe Q if and only if P is a reason 
for S to believe Q and there is an R such that R is logically consistent 
with P but (P & R) is not a reason for S to believe Q. 

(To keep this and subsequent definitions simple, I just formulate them for 
the case of a reason that is a single proposition rather than a set of proposi- 
tions, but the general case is analogous.) There are lots of rather obvious 
examples of prima facie reasons. For instance, “X looks red to me” is a 
reason for me to believe that X is red, but it is defeasible because if I conjoin 
it with something like “Jones, who is very reliable, told me that X is not 
really red but just looks that way because of peculiar lighting conditions,” 
the resulting conjunction cannot justify me in believing that X is red and 
hence is no longer a reason. Similarly, observing lots of ravens and seeing 
that they are all black may justify me in believing that all ravens are black. 
But observing a single additional raven that is not black defeats the reason- 
ing. The R’s that defeat prima facie reasons are called “defeaters”: 

(2.3) R is a defeater for P as a prima facie reason for Q if and only if P is a 
reason for S to believe Q and R is logically consistent with P but (P & 
R) is not a reason for S to believe Q. 
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It is prima facie reasons and defeaters that are responsible for the nonmono- 
tonic character of human reasoning. 

There are two kinds of defeaters for prima facie reasons. “Rebutting 
defeaters” are reasons for denying the conclusion: 

(2.4) R is a rebutting defeater for P as a prima facie reason for Q if and only 
if R is a defeater and R is a reason for believing - Q. 

Rebutting defeaters are reasonably familiar, and they form the basis for 
most current AI work on nonmonotonic reasoning. But equally important 
are undercutting defeaters, which attack the connection between the reason 
and the conclusion rather than attacking the conclusion itself. For instance, 
“X looks red to me” is a prima facie reason for me to believe that X is red. 
Suppose I discover that X is illuminated by red lights and illumination by 
red lights often makes things look red when they are not. This is a defeater, 
but it is not a reason for denying that X is red (red things look red in red 
light too). Instead, this is a reason for denying that X wouldn’t look red to 
me unless it were red. 

(2.5) R is an undercutting defeater for P as a prima facie reason for S to be- 
lieve Q if and only if R is a defeater and R is a reason for denying that P 
wouldn’t be true unless Q were true. 

Undercutting defeaters have generally been overlooked both in philosophy 
and in AI. 

In (2.5), “P wouldn’t be true unless Q were true” is some kind of condi- 
tional. I will symbolize it as “P-Q.” This is clearly not a material condi- 
tional, but beyond that it is unclear how it is to be analyzed. Fortunately, 
that will make no difference to our present concerns.’ 

Defeaters are defeaters by virtue of being reasons for either -Q or 
-(P-Q). They may be only defeasible reasons for these conclusions, in 
which case their defeaters are “defeater defeaters.” There may similarly be 
defeater defeater defeaters, and so on. 

The concepts of conclusive reasons, prima facie reasons, rebutting de- 
featers, and undercutting defeaters, provide the building blocks for a theory 
of reasoning. My main purpose here is to discuss the general logical struc- 
ture of reasoning, but that can only be done against the background of 
some specific kinds of reasons. Thus, the next section will sketch some im- 
portant classes of reasons. These will then be used as examples in construct- 
ing a general theory of reasoning. 

2 I used to maintain that “(P-Q)” was analyzable as (-Q > - P). where ’ > ’ is the so- 

called “simple subjunctive”. (See Pollock [I976], chapters one and two, for an informal 

discussion of the simple subjunctive conditional.) Contraposition fails for subjunctive condi- 

tionals, so on this analysis, “(P-Q)” cannot be written more simply as “P>Q.” However, I 

am no longer convinced that this analysis is correct. 
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3. SOME SUBSTANTIVE REASONS 

3.1 Deductive Reasons 
Human reasoning proceeds in terms of a number of different kinds of rea- 
sons. I assume that there is a set of conclusive reasons enabling us to reason 
deductively, and that these are sufficiently inclusive to enable us to become 
justified in believing any theorem of the predicate calculus. These will in- 
clude reasons like the following: 

(3.1) (P & Q) is a conclusive reason for P and for Q. 

(3.2) {P,Q} is a conclusive reason for (P & Q) 

(3.3) {P,(PXQ) } is a conclusive reason for Q. 

It is of some interest to try to produce a list of reasons that plausibly repro- 
duce this aspect of human rational architecture, but I will not pursue that 
here. 

3.2 Perception 
Perception represents the basic source of human knowledge. Nonintellectual 
mechanisms put us into various perceptual states, and being in those per- 
ceptual states constitutes a prima facie reason for conclusions about the 
world around us. Philosophers have found it useful to adopt a technical 
“appeared to” terminology for the formulation of perceptual states. For in- 
stance, a perceptual state might consist of being appeared to as if there is 
something red before me. For appropriate choices of P, being appeared to 
as if P is a perceptual state. We need not worry here about how to delineate 
the range of appropriate P’s. Given such a P, we have the following prima 
facie reason: 

(3.4) “I am appeared to as if P” is a prima facie reason for me to believe P. 

For instance, “I am appeared to as if there is something red before me” is a 
prima facie reason for me to believe that there is something red before me. 

Any reason for denying P is a rebutting defeater for (3.4). All prima facie 
reasons are subject to a kind of undercutting defeater that I call reliability 
defeaters. In general, if P is a prima facie reason for Q then discovering that 
the present circumstances are of some type C under which P’s being true is 
not a reliable indicator of Q’s being true constitutes a defeater.’ Applying 
this to (3.4): 

(3.5) The following is an undercutting defeater for (3.4): 
The present circumstances are of some type C such that the condi- 
tional probability is low of P’s being true given that I am in circum- 
stances of type C and am appeared to as if P. 

’ A qualification is required on the circumstance type C. It must be “projectible,” in the 
sense discussed below. 
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3.3 Memory 
A common theme in epistemology and AI has been that we may arrive at a 
belief through reasoning, and then later reject that belief because we come 
to reject some other belief used in the reasoning supporting it. However, 
human beings tend to have difficulties remembering the reasoning support- 
ing a belief. When they first arrive at a belief, they may know what their 
reasoning was. Later, they may recall the belief and use that for constructing 
reasons for other beliefs. But at that time they may be unable to recall their 
reasons for the belief, or they may be able to do so only with great difficulty. 
Insofar as the reasons are stored at all, they are stored separately from the 
beliefs. Presumably, human memory is organized in this way for the sake of 
efficiency. Having arrived at a belief, it is usually safe to assume that the 
reasons for adopting it were unproblematic, so we are more interested in the 
belief than the reasons and it is more important to be able to recall the belief 
easily than it is to be able to recall the reasons. Thus, to facilitate search for 
appropriate stored beliefs, they are stored separately from their reasons. 
This, of course, is speculation, but it seems reasonable. 

If we cannot reliably recall our reasons for our beliefs, then we cannot 
reliably update our beliefs when we reject elements of the reasoning that 
underlay their acquisition. If one originally used P in reasoning to Q, but 
can no longer remember that fact, then he is not being irrational in retaining 
Q even though he later rejects P. We must regard his continued belief in Q 
as justified until he discovers that it was originally based upon reasoning 
that he would now reject. In other words, memory itself provides defeasible 
justification for remembered beliefs. The mental state consisting of a belief 
becoming occurrent by virtue of being supplied by memory will be called 
recollection. Then we must adopt the following mnemonic prima facie 
reason: 

(3.6) S’s recalling P is a prima facie reason for S to believe P. 

There are several undercutting defeaters for this prima facie reason. The 
simplest is: 

(3.7) The following is an undercutting defeater for (3.6): 
S now recalls P because he originally believed it on the basis of a set 

of beliefs one of which is false. 

This undercutting defeater must be generalized a bit, but I will not pursue 
that here.4 

Human beings can misremember (perhaps not a problem for computers), 
so we must also have: 

(3.8) The following is an undercutting defeater for (3.6): 
S did not originally believe P for reasons other than (3.6). 

’ For a fuller discussion, see my (1986), pages 46ff. 
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This is not a complete catalogue of defeaters for the mnemonic prima facie 
reason, but it will do for now. 

3.4 Statistical Syllogism 
Perception and memory provide the starting points for reasoning. Higher 
level reasoning often proceeds probabilistically. Perhaps the simplest kind 
of probabilistic reasoning is that involved in the statistical syllogism, which 
can be written roughly as follows: 

Most F’s are G 
This is an F. 

Therefore (prime facie), this is a G 

This can be written more accurately as follows: 

(3.9) “prob(Gx/Fx) is high, and Fa” is a prima facie reason for “Ga,” the 
strength of the reason being determined by how high the probability is. 

However, Principle (3.9) requires qualification. Without constraints on the 
properties F and G, it turns out that whenever (3.9) gives us a reason for 
believing Ga, and prob(Gx/Fx)< 1, we can construct other instances of (3.9) 
involving larger probabilities that give us an even better reason for believing 
- Ga.’ Of course, this can be iterated to generate an even better reason for 
Ga, and so on. The net result is that each reason supplied by (3.9) is defeated 
by a rebutting defeater also of the form of (3.9), and hence (3.9) is useless. 
To avoid this sort of difficulty, the properties to which (3.9) can appeal 
must be restricted. Just to have a label for the allowed properties, we will 
say that they are projecfible. A correct principle of statistical syllogism can 
then be formulated as follows: 

(3.10) If  G is projectible with respect to F then 
prob(Gx/Fx) is high, and Fa 

is a prima facie reason for ‘%a.” 

There is no good theory in the literature concerning what properties are pro- 
jectible. Piecemeal results are readily obtainable. For example, the above 
reasoning is blocked by the fact that disjunctions are not usually projectible 
(more accurately, the class of projectible properties is not closed under dis- 
junction). But no general theory of projectibility is available at this time.6 

In using statistical syllogism, we should be constrained to make our in- 
ferences on the basis of those probabilities that take into account as much 
information about a as possible. This is captured by the following under- 
cutting defeater: 

’ This is demonstrated in my (1983). 

’ For further discussion of this, see Pollock (in preparation) 
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(3.11) If  G is projectible with respect to (F & H) then 
prob(Gx/Fx & Hx) < prob(Gx/Fx) and Ha 

is an undercutting defeater for (3.10). 

For instance, suppose we know that the probability of a person getting to 
his destination by driving is .99, but the probability of a person getting to 
his destination by driving while he is so drunk he cannot stand up is only .5. 
If we know that Jones is driving home and is so drunk he cannot stand, the 
first probability gives us a prima facie reason for thinking he will get home. 
But the second probability gives us an undercutting defeater for that in- 
stance, leaving us unjustified in drawing any conclusion about whether 
Jones will get home. 

3.5 Induction 
There are several different kinds of inductive reasoning. I will just mention 
two. In enumerative induction, we reason from the fact that all the F’s we 
have observed have been G to the conclusion that all F’s are G. Such reason- 
ing is obviously defeasible, because further information can make us with- 
draw the conclusion without taking back our belief in the original data. 
Enumerative induction proceeds by the following rule: 

(3.12) If  F is projectible with respect to G then 
X is a set of F’s, and all the members of X are G 

is a prima facie reason for “All F’s are G.” 

It can be argued that the projectibility constraint here is the same as the con- 
straint on statistical syllogism.’ 

In statistical inducrion we reason from the fact that a certain proportion 
of all the F’s we have observed have been G to the conclusion that the proba- 
bility of an F being a G is approximately the same as that proportion: 

(3.13) If  F and “ - F” are projectible with respect to G, then 
X is a set of F’s, and the proportion of members of X that are G is r 

is a prima facie reason for “prob(Gx/Fx) is approximately r.” 

There are various kinds of “fair sample” undercutting defeaters for these 
prima facie reasons that attack the reasons on the grounds that the set X 
was somehow inappropriately chosen. The details of these defeaters are 
complicated, and in some cases, problematic, so I will not go into them here. 
I have argued elsewhere (1983, and in preparation) that the prima facie 
reasons involved in induction are not primitive, but rather can be derived 
from statisticat syllogism and a sufficiently strong calculus of probabilities. 

The above has been a sketch of some of the more important kinds of 
prima facie reasons that are involved in human reasoning. I turn next to the 

’ See my (1984) and (in preparation). 
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question of how such prima facie reasons are used in determining what one 
should believe. 

PART II 

4. WARRANT 

In constructing a theory of reasoning, it is useful to begin by considering the 
fiction of an ideal reasoner, or if you like, an ideal intelligent machine with 
no limits on memory or computational capacity. How should such a reasoner 
employ reasons and defeaters in deciding what to believe? Let us say that a 
proposition is warranted in an epistemic situation if and only if an ideal 
reasoner starting from that situation would be justified in believing the 
proposition. This section is devoted to giving a precise characterization of 
the set of warranted propositions. 

4.1 Linear Arguments 
Reasoning proceeds by arguments, and arguments are constructed by start- 
ing from perceptual and memory states, moving from them to beliefs, from 
those beliefs to new beliefs, and so on. What arguments can be constructed 
depends upon what perceptual and memory states one is in. Let us take 
these to comprise the epistemic basis. 

In the simplest case, an argument is a finite sequence of propositions 
each of which either describes the epistemic basis or is such that there is a set 
of earlier members of the sequence that constitutes a reason for it. We might 
call such arguments linear arguments. Not all arguments are linear argu- 
ments. There are more complicated kinds of “indirect” arguments that 
involve subsidiary arguments. Examples of indirect argument include condi- 
tionalization, reductio ad absurdurn, and the like. Indirect arguments pro- 
ceed by adopting as premises suppositions that have not been established, 
using those premises to obtain a conclusion, and then “discharging” the 
premises by using some rule like conditionalization or reductio ad absurdurn. 
Indirect arguments make the theory more complicated. It is best to begin by 
adopting the fiction that all arguments are linear arguments. An account of 
reasoning based on this simplifying assumption will be constructed, and 
then I will consider how it must be modified to accommodateindirect argu- 
ments. 

Confining our attention to linear arguments, we can take a line of an argu- 
ment to be an ordered triple < P,R, { m,n, . . . } > where P is a proposition (the 
proposition supported by the line), R is a rule of inference, and {m,n,. } 
is the set of line numbers of the previous lines to which the rule R appeals in 
justifying the present line. Linear arguments are finite sequences of such 
lines. If u is an argument, Ui is the proposition supported by its ith line. We 
say that an argument supports a conclusion P if and only if P is supported 
by some line of the argument. 
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Arguments are constructed in accordance with “rules of inference.” 
These are just rules for argument formation. They are not necessarily rules 
of deductive inference, but they will usually be analogous to rules of deduc- 
tive inference. I assume that the rules for linear argument formation include 
the following: 

Rule F: Foundations 
If P expresses a foundation state contained in the epistemic basis, 
< P,F,O> can be entered as any line of the argument. 

Rule R: Closure under reasons 
If {P ,,..., Pn} is a reason for Q and <P ,,... > ,..., <P, ,... > 
occur as lines i,, .,i, of an argument, <Q,R,{i,,. . .,in} > can be 
entered on any later line. 

4.2 Ultimately Undefeated Arguments 
Warrant is always relative to a set of foundational states (the epistemic basis) 
that provide the starting points for arguments. In the following, by “argu- 
ment” I always mean arguments relative to some fixed epistemic basis. 
Merely having an argument for a proposition does not guarantee that the 
proposition is warranted, because one might also have arguments for de- 
featers for some of the steps in the first argument. Iterating the process, one 
argument might be defeated by a second, but then the second argument 
could be defeated by a third thus reinstating the first, and so on. A proposi- 
tion is warranted only if it ultimately emerges from this process undefeated. 

We have temporarily adopted the fiction that we only have to contend 
with linear arguments. With this simplifying assumption we can give a fairly 
simple characterization of warrant. The defeat of one argument always re- 
sults from another argument supporting a defeater for some use of rule R, 
so where 77 is an argument with at least j lines and u is an argument with at 
least i lines, let us define: 

(4.1) < q,j > defeats < o,i > if and only if < o,i > is obtained by rule R using 
IPI, . . . ,P,} as a prima facie reason for Q, and qj is either -Q or - [(P, 
& . & Pn)-Q] 

Let us say that all arguments are level 0 arguments. Some level 0 argu- 
ments may provide us with defeaters for lines of other level 0 arguments, so 
let us say that an argument is a level I argument if and only if no level 0 
argument defeats any of its lines at level 1. As there are fewer level 1 argu- 
ments than level 0 arguments, fewer propositions will be supported by level 
1 arguments than level 0 arguments. In particular, fewer defeaters for level 0 
arguments will be supported by level 1 arguments than by level 0 arguments. 
Thus having moved to level 1 arguments, we may have removed some de- 
featers and thereby reinstated some level 0 arguments. Let us say that a level 
2 argument is a level 0 argument having no lines defeated by any level 1 
argument. Some level 0 arguments that were defeated at level 1 may be rein- 
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stated at level 2. Hence, level 2 arguments may support some defeaters that 
were not supported by level 1 arguments, thus defeating some level 0 argu- 
ments that were not defeated by level 1 arguments. Consequently, we take a 
/eve1 3 argument to be any level 0 argument not defeated by level 2 argu- 
ments; and so on. In general, a level n + I argument is any level 0 argument 
not defeated by level n arguments. More precisely: 

(4.2) (J is a level n + I argumenr if and only if u is a level 0 argument and there 
is no level n argument TJ such that for some i and j, < 7.j > defeats 
<o.i>. 

A given level 0 argument may be defeated and reinstated many times by 
this alternating process. Only if we eventually reach a point where it stays 
undefeated can we say that it warrants its conclusion. Let us say that an 
argument is ultimafely undefeated if and only if there is some m such that 
the argument is a level n argument for every n > m. On the simplifying as- 
sumption that all arguments are linear arguments, it seems that epistemo- 
logical warrant can then be characterized in terms of arguments that are 
ultimately undefeated: 

(4.3) P is warranted relative to an epistemic basis if and only if P is supported 
by some ultimately undefeated argument proceeding from that episte- 
mic basis. 

To illustrate, consider the three arguments diagrammed in Figure 1. < /3,k > 
defeats < ol,i + 1 > , and <y,m > defeats < @,j + 1 > . It is assumed that 
nothing defeats y. Thus y is ultimately undefeated. Neither CY nor /3 is a level 
1 argument, because both are defeated by level 0 arguments. As y is a level n 
argument for every n, 0 is defeated at every level greater than 0, so fi is not 
a level n argument for n>O. As a result 01 is reinstated at level 2, and is a 
level n argument for every n > 1. Hence (Y is ultimately undefeated, and V is 
warranted. 

a 

. 

P Y 
. . 

(i) to,:.., (j) (T,:..) 

. 
(m) (-(TsU),...) 

(RR, ii)) W, R, {j)) 
. . 

. 
(V,...) 

. 

(k) C-R,...) 

Figure 1 
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4.3 Collective Defeat 
Our analysis of warrant will have to be made slightly more complicated, but 
in order to appreciate the difficulty we must first note that the analysis entails 
an important principle of rationality, which I call the principle of collective 
defeat. The following form of the principle follows from the analysis: 

(4.4) If  we are warranted in believing R and there is a set P of propositions 
such that: 
(1) we have equally good defeasible arguments for believing each mem- 

ber of P; 
(2) for each P in P there is a finite subset Pp of P such that the conjunc- 

tion of R with the members of Pp provides a deductive argument 
for - P that is as strong as our initial argument is for P; and 

(3) none of these arguments is defeated except possibly by their inter- 
actions with one another; 

then none of the propositions in P is warranted on the basis of these 
defeasible arguments. 

The proof of this principle is as follows. Suppose we have such a set P and 
proposition R. For each P in P, combining the argument supporting R with 
the arguments supporting the members of P,, gives us an argument support- 
ing - P. Intuitively, we have equally strong support for both P and -P, and 
hence we could not reasonably believe either on this basis, that is, neither is 
warranted. This holds for each P in P, so none of them should be warranted. 
They “collectively defeat one another.” And, indeed, this is forthcoming 
from our analysis of warrant. We have level 0 arguments supporting each P. 
But these can be combined to generate level 0 arguments that also support 
rebutting defeaters for the argument for each P. Thus none of these are level 
1 arguments. But this means that none of the defeating arguments are level 1 
arguments either. Thus all of the arguments are level 2 arguments. But then 
they fail to be level 3 arguments, and so on. For each even number n, each P 
is supported by a level n argument, but that argument is not a level n + 1 
argument. Thus, the P’s are not supported by ultimately undefeated argu- 
ments, and hence are not warranted. 

The most common instances of (4.4) occur when P is a minimal finite set 
of propositions deductively inconsistent with R. In that case, for each P in 
P, {R} U (P - {P}) gives us a deductive reason for - p. Principle (4.4) can be 
illustrated by an example of this form that has played an important role in 
the philosophical foundations of probability theory. This is the lotferyparu- 
dox (due to Kyburg, 1961). Suppose we are warranted in believing we have 
a fair lottery with one million tickets. Let this be R. Then the probability of 
the ith ticket being drawn in such a lottery is .OOOOOl. By statistical syllogism 
(3. lo), this gives us a prima facie reason for believing that the ith ticket will 
not be drawn. Let the latter be Pi. But we have an analogous argument sup- 
porting each Pi. Furthermore, by R we are warranted in believing that some 
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ticket will be drawn, so these conclusions conflict with one another. Intui- 
tively, there is no reason to prefer some of the Pi’s over others, so we cannot 
be warranted in believing any of them unless we are warranted in believing 
all of them. But we cannot be warranted in believing all of them, because 
the set { R,P,, . . . rP1OOOOOO} is inconsistent. In fact, it is a minima1 inconsis- 
tent set. Hence by (4.7), we are not warranted in believing any of the Pi’s. 

4.4 Two Paradoxes of Defeasible Reasoning 
The simple account of warrant that I gave in section 4.2 has some unaccept- 
able consequences that will force its modification. This can be illustrated by 
looking at two apparent paradoxes of reasoning. First, let us look again at 
the lottery paradox. The lottery paradox is generated by supposing that we 
are warranted in believing a proposition R describing the lottery (it is a fair 
lottery, has one million tickets, and so on). Given that R is warranted, we 
get collective defeat for the proposition that any given ticket will not be 
drawn. But the present account makes it problematic how R can ever be 
warranted. Normally, we will believe R on the basis of being told that it is 
true (orally or in writing). In such a case, our evidence for R is statistical, 
proceeding in accordance with the statistical syllogism (3.10). That is, we 
know inductively that most things we are told that fall within a certain broad 
range are true, and that gives us a prima facie reason for believing R. So, we 
have only a defeasible reason for believing R. Let u be the argument support- 
ing R. Let Ti be the proposition that ticket i will be drawn. In accordance 
with the standard reasoning involved in the lottery paradox, we can extend u 
to generate a longer argument TI supporting -R. This is diagrammed in 
Figure 2. The final step of the argument is justified by the observation that 
if none of the tickets is drawn then the lottery is not fair. 

The difficulty is now that 7 defeats u by (4.1). Thus u and 1 defeat one 
another, with the result that neither is ultimately undefeated. In other words, 
R and -R are subject to collective defeat. This result is intuitively wrong. It 
should be possible for us to become warranted in believing R on the basis 
described. 

-T, -T2 * * - JI,OOO,OOO 

-R 

Figure 2. 
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Consider a second instance of paradoxical reasoning. Suppose we observe 
n A’s r of which are B’s, and then by statistical induction (3.13) we infer 
that prob(Bx/Ax)=rr/n. &pose that r/n is high. Then if we observe a fur- 
ther set of k A’s without knowing whether they are B’s, we can infer by 
statistical syllogism (3.10) that each one is a B. This gives us n + k A’s of 
which r + k are B’s. By (3.13), this in turn gives us a reason for thinking that 
prob(Bx/Ax) = (r + k)/(n + k). If k is large enough, (r + k)/(n + k) C r/n, and 
so we can infer that prob(Bx/Ax) f r/n, which contradicts our original con- 
clusion and undermines all of the reasoning. Making this more precise, we 
have two nested arguments diagrammed in Figure 3. u and 7 defeat one 
another by (4.1), so we have a case of collective defeat. But this is intui- 
tively wrong. All we actually have in this case is a reason for believing that 
prob(Bx/Ax) = r/n, and a bunch of A’s regarding which we do not know 
whether they are B’s. The latter should have no effect on our warrant for 
the former. But by (4. l), it does. I will call this theparadox of stafistical in- 
duction. 

I believe that these two paradoxes illustrate a single inadequacy in our 
analysis of warrant. In each case we begin with an argument u supporting a 
conclusion P, and then we extend (I to obtain an argument r] supporting 
-P. By (4. l), this is a case of collective defeat, but intuitively it seems that 
P should be warranted. What I think is happening here is that argument rl 
is faulty all by itself. It is self-defeating, and that removes it from conten- 
tion in any contest with conflicting arguments. Thus, it cannot enter into 
collective defeat with other arguments, and in particular it cannot enter into 
collective defeat with 0. 

Let us define more precisely: 

(43) u is self-defeafing if and only if u supports a defeater for one of its own 
defeasible steps, that is, for some i and j, <o,i> defeats <o,j >. 

In order to handle the paradoxes, it suffices to remove self-defeating argu- 
ments from competition with other arguments. This can be done by revising 

7 u Aa, 6 Ba, f3.m. 6Aa,~Ba,~Aa,+l~-Bar+16~~~bAa,~-Ba, 1 
prob (Bx/Ax) z r/n 

71’ 

I prab(Bx/Ax) z (;+k)/(n+k) e r/n 

Figure 3. 
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the definition of “level 0 argument” to require that level 0 arguments be 
non-self-defeating. With this modification to the definition of “level 0 argu- 
ment,” I believe that our theory of warrant for linear arguments is correct. 
The principle (4.4) of collective defeat then comes out true as formulated, 
but the paradoxes of defeasible reasoning are no longer cases of collective 
defeat because the paradoxical arguments are no longer level 0 arguments. 

5. A GENERAL THEORY OF WARRANT 

5.1 A General Analysis 
Now let us abandon the simplifying assumption that all arguments are linear. 
Indirect arguments differ from li?ear arguments in that they can adopt un- 
established premises as suppositions and then later discharge those premises. 
This gives them a more complicated form than linear arguments. To accom- 
modate this we must generalize the form of arguments. For this purpose, let us 
take a line of an argument to be an ordered quadruple < T,P,R,{ m,n,. . . } > 
where I’ is a finite set of propositions (the premise set of the line), and P, R, 
and {m,n, . . . } are as before. p(a,i) is the premise set of the ith line of u. We 
say that an argument supporfs a conclusion P if and only if P is supported 
by some line of the argument having an empty premise set. 

In constructing a theory of warrant for nonlinear arguments, we must 
decide how subsidiary arguments are to be integrated into their enclosing 
arguments. In actual reasoning, we often import conclusions supported by 
the enclosing argument into the subsidiary arguments without defending 
them anew. This is because to defend the conclusion anew within the sub- 
sidiary argument would just involve repeating the original argument intact. 
However, there must be constraints on the extent to which we can do this. 
Suppose, for example, that the subsidiary argument proceeds from the sup- 
position P, but the enclosing argument supports -P. Then obviously we 
cannot simply import -P into the subsidiary argument without making 
that argument self-defeating. More generally, if Q is supported by the en- 
closing argument, we cannot import Q into the subsidiary argument if the 
subsidiary argument supports a defeater for some step that is involved in 
getting Q. If we attempted to formulate a constraint to handle this, it would 
be complicated and it would not be obvious at this point whether we had it 
right. This suggests that a better alternative for the theory of warrant is to 
preclude ever importing conclusions from the enclosing argument into the 
subsidiary argument. Instead, we require them to be established anew within 
the subsidiary argument, even if that involves simply repeating the earlier 
argument intact. We lose nothing in terms of supportability by this strategy, 
and we avoid the serious danger of getting the rules wrong by trying to make 
them too elegant. Remember that the theory of warrant is not intended to 
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be a theory of reasoning. Given this more conservative characterization of 
warrant, it becomes a substantive question with an objectively determinable 
answer just when conclusions supported by the enclosing argument can be 
reproduced within the subsidiary argument without rendering the whole 
argument self-defeating. The answer to this question can then be used in 
constructing more elegant rules for reasoning. 

For nonlinear arguments we must modify our previous rules of inference 
and augment them with new rules. Given our conservative approach to the 
embedding of subsidiary arguments, rule F and rule R can be rewritten as 
follows: 

Rule F: Foundations 
If P expresses a foundation state contained in the espitemic basis, 
and r is any finite set of propositions, <r,P,F,O> can be entered 
as any line of the argument. 

Rule R: Closure under reasons 
If {Pl, . . . . P,}isareasonforQand <r,P ,,... > ,..., <r,P, ,... > 
occur as lines i,, . . .,i, of an argument, <r,Q,R,{i,,. . .,i,}> can 
be entered on any later line. 

In addition we will have at least the following two rules governing indirect 
arguments: 

Rule P: Premise introduction 
For any finite set r and any P in r, cr,P,P,O> can be entered as 
any line of the argument. 

Rule C: Conditionalization 
If cru{P},Q,... > occurs as the ith line of an argument then 
<P,(P3Q),C,{i}> can be entered on any later line. 

Conditionalization is a very pervasive form of inference. There are a num- 
ber of different kinds of conditionals-material, indicative, subjunctive, 
and so forth-and what is perhaps characteristics of conditionals is that 
they can all be inferred by some form of conditionalization. It can be shown 
that any conditional satisfying both rule C and modus ponens is equivalent 
to the material conditional,” but many kinds of conditionals satisfy weaker 
forms of conditionalization. In particular, I will assume the following weak 
form of conditionalization, related to the conditionals involved in under- 
cutting defeaters: 

* The proof is simple. Given such a conditional “-,‘I suppose {P,(P 3 Q) }. By modus 

ponens for “ 3 0’ we get Q, and then by strong conditionalization for “- ,‘I “(P-Q)” follows 

from the supposition {(P II Q)}. A second conditionalization (this time with respect to “ 3 ” 

gives us [(P 3 Q) 3 (P-Q)].” Conversely, using modus ponens for “-‘I and strong condi- 

tionalization for “ 3 ,” we get “[(P-Q) >(P>Q)].” So “[(P3Q)=(P-Q)]“becomes a 
theorem. 
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Rule WC: Weak conditionalization 

If c {P},Q,. . > occurs as the ith line of an argument then 
<O,(P-Q), SC, {i}> can be entered on any later line. 

The difference between conditionalization and weak conditionalization is 
that the latter requires you to discharge all your assumptions at once. Given 
modus ponens and the principle of exportation: 

IO’& Q)-Rl=‘P-(Q-WI 

conditionalization and weak conditionalization would be equivalent, but no 
conditional other than the material conditional seems to satisfy exportation. 

The preceding does not comprise a complete list of the rules of inference 
used in human argumentation. At the very least it must be augmented with 
some rule for quantifiers. But this partial list will be sufficient for present 
purposes. 

Our conservative approach to the construction of indirect arguments pre- 
cludes importing conclusions from the enclosing arguments into subsidiary 
arguments. This makes it easy to give a characterization of defeat for in- 
direct arguments. A line of one argument can defeat a line of another argu- 
ment only if they have the same premise sets: 

(5.1) < q,j > defeats < a,i > if and only if (1) < o,i > is obtained by rule R 
using {P,, . ,P,} as a prima facie reason for Q, (2) r)j is either -Q or 
-[(PI &. .& I’d-Q], and (3) p(tl,j)=p(o,i). 

Warrant is then characterized just as before in terms of successive levels 
of defeat and reinstatement. As before, a self-defeating argument is one in 
which one line defeats another, and we count every non-self-defeating argu- 
ment as a level 0 argument. Then we define the notions of a level n argument 
and an ultimately undefeated argument just as before, and a proposition is 
warranted if and only if it is supported by an ultimately undefeated argu- 
ment. 

5.2 Logical Properties of Warrant 
Our analysis of warrant enables us to prove that the set of warranted proposi- 
tions has a number of important properties. Let us symbolize “P is warranted 
relative to the epistemic basis E” as “F>E P.” Let us also define “war- 
ranted consequence”: 

(5.2) p k> E P if and only if there is an ultimately undefeated argument rela- 
tive to E that contains a line of the form < p,P,. . > . 

We can prove that these notions have a number of important logical proper- 
ties. Let us say that a proposition P is a deductive consequence of a set r of 
propositions (symbolized ‘I’ I- P’) if and only if there exists a deductive 
argument leading from members of r to the conclusion P. I have assumed 
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that there are enough conclusive reasons to allow us to carry out deductive 
reasoning in terms of them. This has the consequence: 

(5.3) If p k P then I’ b>E P. 

I will say that a set of propositions is deducrively consistent if and only if 
it does not have an explicit contradiction as a deductive consequence. The 
set of warranted propositions must be deductively consistent. (I assume here 
and throughout that an epistemic basis must be consistent.) If a contradiction 
could be derived from it, then reasoning from some warranted propositions 
would lead to the denial (and hence defeat) of other warranted propositions, 
in which case they would not be warranted. More generally: 

(5.4) If P is deductively consistent so is {PI p b>>~ P}. 

The set of warranted propositions must also be closed under deductive 
consequence: 

(5.5) If for every P in I’, +>>E P, and p k Q, then j=>E Q. 

To see this, suppose P,, . . . ,P, are warranted and Q is a deductive conse- 
quence of them. Then an argument supporting Q can be constructed by 
combining arguments for P,, . . . ,P, and adding onto the end an argument 
deducing Q from P, , . . . ,P,. The last part of the argument consists only of 
deductive nondefeasible steps of reasoning. If Q is not warranted, there 
must be an argument defeating the argument supporting Q. There can be no 
defeaters for the final steps, which are nondefeasible, so such a defeater 
would have to be a defeater for an earlier step. But the earlier steps all occur 
in the arguments supporting P,, . . . ,Pn, so one of those arguments would 
have to be defeated, which contradicts the assumption that P,, . . . ,P, are 
warranted. Thus, there can be no such defeater, and hence Q is warranted. 

More generally: 

(5.6) If for every P in I’, A +>>E P, and p I>>E Q, then A +>EQ. 

We also have the following analogue of the standard deduction theorem 
in classical logic: 

(5.7) If rU{P}/=>E Q then p ~=BE (P3Q). 

This follows more or less immediately from rule C, and contrasts with the 
nonmonotonic logic of McDermott and Doyle (1980). 

5.3 The Principle of Collective Defeat 
The principle (4.4) of collective defeat remains true in our general theory of 
warrant, and its proof remains essentially unchanged. At this point, I want 
to observe that it has an interesting analogue. Principle (4.4) is a principle of 
collective rebutting defeat. It only pertains to cases in which we have argu- 
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ments supporting both P and - P. But we can obtain a principle of collective 
undercutting defeat in precisely the same way: 

(5.8) If we are warranted in believing R and there is a set p of propositions 
such that: 
(1) we have equally good defeasible arguments for believing each mem- 

ber of p; 
(2) for each P in P, the supporting argument involves a defeasible step 

proceeding from some premises S,, ,S, to a conclusion T, and 
there is a finite subset Pp of P such that the conjunction of R with the 
members of Pp provides a deductive argument for - [(S,, . . . ,S.)-T] 
that is as strong as our initial argument is for P; and 

(3) none of these arguments is defeated except possibly by their inter- 
actions with one another; 

then none of the propositions in P is warranted on the basis of these 
defeasible arguments. 

A simple illustration of this principle will involve a pair of arguments having 
the structure diagrammed in Figure 4. For instance, R might be “People 
generally tell the truth.” Suppose P is “Jones says Smith is unreliable” and 
Q is “Smith says Jones is unreliable.” By statistical syllogism (3. lo), (P & R) 
is a prima facie reason for believing S: “Smith is unreliable”; and (Q & R) is 
a prima facie reason for believing T: “Jones is unreliable.” But S is an 
undercutting defeater for the reasoning from (Q & R) to T, and T is an un- 
dercutting defeater for the reasoning from (P & R) to S. Presented with this 
situation, what should we believe about Smith and Jones? The intuitive 
answer is, “Nothing.” We have no basis for deciding that one rather than 
the other is unreliable. Under the circumstances, we should withhold belief 
regarding their reliability. And that is just what principle (5.8) tells us. 

We have separate principles of collective defeat for rebutting defeaters 
and undercutting defeaters. Can we also have mixed cases of collective de- 
feat involving both rebutting and undercutting defeaters? Interestingly, that 
does not seem to be possible. Such cases would have the form diagrammed 
in Figure 5, or a generalization of that form, where all steps are defeasible. 
The idea here is that u provides rebutting defeat for 7, and T) provides under- 

R 

‘\/\J” 
S T 

I I 
-[(Q 6 R)‘,T] -[(P 6 R) as] 

Figure 4 
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Figure 5. 

cutting defeat for u. But the relation “provides rebutting defeat for” is 
symmetrical, so 7 also provides rebutting defeat for (J. Thus, this is a simple 
case of collective rebutting defeat, and the last step of 7 is irrelevant. 

5.4 The Principle of Joint Defeat 
Sometimes we are in a position of having a disjunction of defeaters war- 
ranted without the individual defeaters being warranted. The principle of 
joint defeat tells us that in such a case, the defeaters defeat even without 
being warranted. We have the following theorem: 

(5.9) Suppose P is a prima facie reason for Q and R is a prima facie reason 
for S, and T=“-(P-Q)” and U= “-(R-S)“. If “T v U” is war- 
ranted but neither T nor U is warranted, then no argument using either 
P as a reason for Q or R as a reason for S (in accordance with rule R) is 
ultimately undefeated. 

Proof: Suppose o is an argument using one of these reasons. For specificity, 
suppose (I uses R as a reason for S. Suppose p is an ultimately undefeated 
argument for “T v U.” We can construct an argument T) by adding the 
following lines to the end of I(: 

(0 <0,-(P-Q)v -(R-S),. . . > 
(i+l) <{P},P,P,{i+l}> 
(i+2) <{P},Q,R,{i+ l}> 
(i+3) <O,P-Q,WC,{ +2}> 

(last line of cc) 

(i +4) <0, - (R-S), deductive inference, {i,i+ 3) > 

Similarly, we can construct an argument y for <I#J, -(P-Q), . . . > . 7) and 
y defeat one another, so each fails to be a level n argument for odd n, but 
each is a level n argument for all even n. 7 defeats u, so u also fails to be a 
level n argument for any odd n. Thus u is not ultimately undefeated. 

More generally, we have: 

(5.10) Given a finite set of triples < Pi,Qt,Ri > where Pi is a prima facie reason 
for Qi and Ri = “ - (Pi-Qi),” if the disjunction of all the RI’S is war- 
ranted but the disjunction of every proper subset of the Rt’s is unwar- 
ranted, then no argument using Pi as a reason for Qt in an application 
of rule R is ultimately undefeated. 
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This is fhe principle of joint defeat. The principle can be generalized in vari- 
ous ways. For example, it can be combined with collective undercutting 
defeat to give us cases of collective joint defeat. 

5.5 Prima Facie Warrant and Default Assumptions 
AI studies of nonmonotonic reasoning have focused on reasoning from 
default assumptions. By contrast, the nonmontonicity of defeasible reason- 
ing results from the operation of prima facie reasons. The latter can be 
viewed as a kind of default assumption, but they are not assumptions in the 
sense of beliefs. For instance, in making a perceptual judgment about an 
object X, human beings do not usually have the explicit belief that if X 
looks red then it is red. The prima facie reason plays aprocessing role. It is a 
constituent of the production system governing reasoning, and it can play 
that role without the corresponding conditional having any explicit repre- 
sentation in thought. 

Default assumptions in familiar AI programs play a role analogous to 
beliefs that are held until they must be given up. We can define a similar 
notion in the theory of warrant: 

(5.11) P is prima facie worranred if and only if, relative to every epistemic 
basis, P is automatically warranted in the absence of a reason for be- 
lieving - P. 

Prima facie warranted propositions are much like the traditional construal 
of default assumptions, except that they can be prima facie warranted with- 
out being believed. 

Are there any prima facie warranted propositions? It is easily established 
that there are. If P is a prima facie reason for Q, then by WC we are auto- 
matically warranted in believing (P-Q) unless we have an undercutting 
defeater for the prima facie reason. But an undercutting defeater is just a 
reason for denying the conditional, so it follows that the conditional is 
prima facie warranted. 

Are there any other prima facie warranted propositions? At one time, I 
thought that the propositions comprising the epistemic basis were prima 
facie warranted (Pollock, 1974), but I have recently argued that they are not 
(Pollock, 1986). I suspect that the only legitimate examples of prima facie 
warrant are conditionals derived from prima facie reasons. Still, the notion 
may prove useful for AI for the practical purpose of modeling everyday 
reasoning. Ordinary default assumptions are not really prima facie war- 
ranted propositions. Rather, they are beliefs based upon defeasible reasons. 
But for practical purposes we may not want to trace the epistemological 
connections all the way back back to the epistemic basis. Thus, it may be 
useful to model much everyday reasoning by pretending that various “high 
level” beliefs are prima facie warranted. 
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Although some of the applications of default reasoning in AI can be 
modeled on defeasible reasoning in the manner I have suggested, much can- 
not. The use of default assumptions in AI is often aimed at planning (making 
airline reservations, scheduling meetings, etc.) rather than believing. We can 
plan to do something in a certain way if we can (i.e., schedule the meeting 
on Wednesday if possible). It does not seem that this can be subsumed under 
defeasible reasoning as a theory of belief formation. The use of defaults in 
planning is actually the more general of the two and subsumes defeasible 
reasoning. Defeasible reasoning can be regarded as proceeding in terms of 
default instructions of the form, “Reason this way if you can.” The very 
fact of this subsumption, combined with the complex logical structure of 
defeasible reasoning, seems to indicate the default reasoning in planning 
must, in general, have a more complex structure than has been recognized 
heretofore. 

The fact that the conditionals corresponding to prima facie reasons are 
prima facie warranted suggests an alternative reconstruction of human 
reasoning. Rather than taking the prima facie reasons to be the basic con- 
stituents of reasoning, why not take the prima facie warranted conditionals 
to be basic and describe the reasoning as proceeding deductively (by modus 
ponens) from the conditionals? Then the only thing that would have to be 
defeasible about the reasoning would be the warrant of the premises. As a 
purely psychological observation, human reasoning does not proceed in this 
way. As I remarked above, humans do not explicitly store the conditionals 
as beliefs. Reasons play the role of rules of inference rather than premises. 
This may seem like a rather incidental feature of human reasoning-a “psy- 
chological accident” so to speak. It may seem that we could build an intelli- 
gent machine that reasoned in the manner described rather than in the human 
fashion, and the resulting reasoning would look much more like standard 
AI accounts of nonmonotonic reasoning. This, however, is false. The diffi- 
culty is that reasons come in schemas rather than as individual reasons, and 
the schemas encompass infinitely many cases. For instance, “X looks red to 
me” is a prima facie reason for me to believe “X is red,” and this is true 
regardless of what term X is. Replacing this reason schema by explicitly 
stored prima facie warranted conditionals would :equire storing infinitely 
many conditionals, and that is impossible. It might seem that we could in- 
stead take the universal generalization “( Vx)[(X looks red to me)-(X is 
red)]” to be prima facie warranted, and store it. But this would not do the 
same job. The conditional would be defeated by finding a single case of an 
object that looks red but is not red, and once that happens the conditional 
would not warrant any further inferences regarding the colors of other ob- 
jects. In contrast to this, different instances of prima facie reasoning re- 
garding the colors of different objects are relatively independent of one 
another. Defeating one does not defeat the others, at least until we get so 
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many counter instances that we are warranted in concluding inductively that 
this prima facie reason is generally unreliable. So it seems the defeasible 
reasoning cannot be replaced by default reasoning from prima facie war- 
ranted propositions. 

PART III 

6. JUSTIFIED BELIEF AND RULES FOR REASONING 

I glossed “warrant” as “what an ideal reasoner would believe.” An ideal 
reasoner is one unconstrained by a finite memory or processing capacity. 
Warrant is an ideal to which “real” epistemic agents aspire. But we cannot 
expect real epistemic agents to believe only warranted propositions. Warrant 
is a “global” concept defined in terms of the set of all possible arguments 
available to an epistemic agent at isingle time. No one can actually survey 
that infinite totality and decide what to believe by applying the definition of 
“warrant” to it. That definition involves the comparison of infinitely many 
arguments and, in cases of collective defeat, the infinite cycling of argu- 
ments through defeat and reinstatement. This could not reflect the way we 
actually reason. Actual rules for reasoning must appeal exclusively to “local” 
considerations-readily accessible features of the epistemic situation. 

Insofar as we reason in accordance with our built-in rules for reasoning, 
whatever they may be, our beliefs are said to be jusrified, but this does not 
guarantee that they are warranted. Justification only approximates warrant. 
We can, for example, be justified in holding deductively inconsistent beliefs 
if we are unaware that they are inconsistent and we got to them in reasonable 
ways, but deductively inconsist beliefs can never be warranted. Warrant is at 
most an ideal to which justified reasoning aspires. Actual reasoning takes 
the form of working out arguments and defeating and reinstating them in 
the same manner as is involved in the definition of warrant, but we are limited 
in how many arguments and how many steps of defeat and reinstatement we 
can go through. If we could keep going indefinitely, our rules for reasoning 
would lead to warranted beliefs, but of course, we cannot. Instead, our 
rules for justified belief formation involve the presumption that the reason- 
ing we have done at any given time is “all right” unless we have some con- 
crete reason, in the form of a defeating argument, for thinking otherwise. 
This is a kind of second-order default assumption about the existence of 
defeating arguments. 

Let us try to be more specific about the rules for justified belief forma- 
tion. In this section I will make some general remarks about the form of the 
rules for defeasible reasoning, and in the next section I will attempt to con- 
struct concrete rules of this form. 

The most natural assumption is that rules for reasoning tell us to form 
certain beliefs if we already have other appropriately related beliefs. Such 
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rules prescribe the formation of beliefs whenever we believe the premises 
from which they can be obtained. But actual rules for reasoning do not take 
this form. The simplest rules are “permission rules,” telling us that it is all 
right to form various kinds of beliefs, but not that we must form them. For 
example, a common mistake is to formulate a rule of modus ponens as 
follows: 

(6.1) If  one believes both P and (P>Q) then he should believe Q. 

But this is wrong. One does not automatically have an epistemic obligation 
to believe everything he can infer from his various beliefs. As Gilbert Har- 
man (1986) has observed, such an obligation would lead to unmanageable 
clutter in one’s beliefs. Normally, one only draws conclusions insofar as one 
is interested in the conclusions or there is reason to believe that the conclu- 
sions bear upon matters that interest one. Thus modusponens should be at 
most a permission rule, allowing us to draw a certain conclusion rather than 
mandating our drawing that conclusion.’ It is such epistemic permission 
rules that have been the focus of much work in epistemology. 

On the other hand, a production system for belief formation must tell us 
to adopt particular beliefs under various circumstances. It cannot just tell us 
to do so if we want. Thus, there must be rules prescribing belief formation, 
but what the above observations indicate is that these rules must appeal not 
just to what other beliefs we have, but also to what our interests are. This 
suggests that rules prescribing belief formation must have forms more like 
the following: 

(6.2) If  you have beliefs P,, . ,P, and you are interested in whether Q is true 
then you should believe Q. 

For now, I will not worry about how one becomes interested in various 
propositions, although this is a matter that must eventually be addressed. 

It appears that there must be three kinds of rules for belief formation. 
First, there are adopfion rules telling us that we should adopt beliefs if we 
care about whether they are true and we have arguments supporting them. 
These rules create a “prima facie obligation” to adopt beliefs. Second, 
there are defeat rules canceling that prima facie obligation when we discover 
defeating arguments for the initial arguments. This second category of rules 
consists of obligation rules prescribing the withholding of belief. Again, 
these rules create only prima facie obligations, because defeating arguments 
can themselves be defeated. This leads to the third class of rules-the rein- 
stafement rules-which concern reinstatement from defeat. Reinstatement 
occurs when defeaters are themselves defeated. 

’ This is still simplistic, because sometimes what we should do is reject either P or (P>Q) 

rather than coming to believe Q. 
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There are two kinds of candidates for adoption rules. The simplest pro- 
posal would be that whenever {P,, . . . ,P,} is a reason for Q, we have a rule 
of roughly the form: 

(6.3) If you believe P,, . . ,Pn and you have no defeating beliefs and you care 
whether Q then you should believe Q. 

Alternatively, observing that when you believe Q on the basis of P,, . . . ,P,, 
your belief in Q is not justified unless your belief in PI,. . . ,P, is justified, it 
might be insisted that correct rules should have the form: 

(6.4) If you justifiably believe P,, . ,P, and you have no defeating beliefs 
and you care whether Q then you should believe Q. 

However, it seems that in order for a system to implement a rule of the form 
of (6.4) it would first have to form beliefs about how it came to believe 
PI, . . . ,P,. This would lead to an infinite regress. To avoid any such regress, 
rules for belief formation must be local in the sense that they can be instanti- 
ated without first forming other beliefs. A system can instantiate (6.3) with- 
out first forming the belief that it believes P,, . . . ,P,, because a system can 
be built to respond directly and “nondoxastically” to what beliefs it has. 
But without a computationally impractical amount of recordkeeping it 
could not similarly respond directly to the justificational status of its beliefs. 
Human beings do not keep track of their arguments to any great extent. The 
production system for human reasoning just assumes that beliefs are justi- 
fied until proven otherwise. Furthermore, it seems that a reasoning machine 
must work similarly. If it had to keep track of all its arguments its memory 
would rapidly become so cluttered that memory searches would be immense 
tasks and would slow reasoning down to a crawl.“’ So in other words, our 
positive rules for belief formation take the form of (6.3). 

Our defeat rules pertain to the discovery of defeaters for the arguments 
on the basis of which beliefs are held. A natural hypothesis is that whenever 
{P,, . . . ,P,} is a prima facie reason for Q and R is a reason for either -Q or 
- [(PI & . . . & P,)- Q], we must have a rule something like the following: 

(6.5) If you believe Q on the basis of an argument one line of which is ob- 
tained by rule R using {P,, . ,P,} as a prima facie reason for Q, then 
if you adopt R as a new belief, you should cease to believe Q on this 
basis. 

But the implementation of this rule requires the system to keep track not 
only of its beliefs but also of the arguments on the basis of which it holds 
the beliefs, and we have seen that that is impractical. This suggests that in 
place of (6.5), what we actually have is a “doxastic” rule more like: 

I0 In this connection, compare Doyle’s (1979) truth maintainance system, which does keep 

track of all its arguments. 
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(6.6) If (1) you believe that you believe Q on the basis of an argument one 
line of which is obtained by using P as a prima facie reason for Q, and 
(2) you believe a defeater, then you should cease to believe Q on this 
basis. 

I am, however, uncomfortable with (6.6). (6.6) has the consequence that 
defeat requires higher-order monitoring of our reasoning processes. It is in- 
disputable that such higher-order monitoring sometimes occurs, but it is a 
complicated process and I do not think that defeat requires it. Defeat often 
proceeds in a more automatic fashion. If I believe Q on the basis of a prima 
facie reason P, and then I adopt a new belief R that is a prima facie reason 
for -Q, I just automatically retract Q without having to think about the 
matter. How to construct rules for defeat that work in such an automatic 
fashion without higher-order monitoring is one of the problems that I will 
face in the next section. In a recent book (Pollock, 1986) I argued that this 
was impossible, but it turns out to be fairly easy. 

A major problem that must be faced in the construction of rules for 
reasoning is that they must avoid infinite cycling. The theory of warrant 
handles collective defeat in terms of infinite cycling between competing 
arguments, but actual reasoning must work in some simpler fashion. 

With these preliminary remarks as a background, I turn now to the con- 
struction of a concrete system of rules for defeasible reasoning. This system, 
and the computer program implementing it, will be called “OSCAR.“” 

7. OSCAR: A FRAMEWORK FOR DEFEASIBLE REASONING 

The problem of constructing a general framework for defeasible reasoning 
is a difficult one, and I do not at this time have an entirely general solution 
to the problem. Instead, my strategy is to adopt some simplifying assump- 
tions and construct a theory of defeasible reasoning based on those assump- 
tions. My strategy for future research will then be to remove the simplifying 
assumptions one at a time, each time making the theory more sophisticated 
in order to handle the greater generality. 

I will make the following simplifying assumptions: 

1. The most important simplification will result from confining my atten- 
tion to linear arguments. I will pretend that all arguments are linear so 
that we do not have to contend, for example, with conditional argu- 
ments. 

2. I will take the,system to be interested in everything, so that it draws all 
possible conclusions. In order for this to work, we must be careful what 
reason schemes we make available to OSCAR. If we give him all of 

‘I ‘Oscar’ is the hero in “The Fable of Oscar” (Chapter Five of Pollock. 1986). For the 
further significance of OSCAR, see my (in press). 
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logic, the result will be a combinatorial explosion. He could, for exam- 
ple, spend all his time forming longer and longer conjunctions out of 
just two initial beliefs. The general framework of OSCAR will impose 
no constraints on reasons, but in actually running OSCAR we will have 
to observe constraints. There is no cure for this short of building in in- 
terest constraints, and that must await further developments in OSCAR. 

3. My final simplifying assumption will be that all reasons have the same 
strength. This has the consequence that whenever we have a reason for 
P and a reason for - P, we have a case of collective defeat. Of course, 
this consequence is not realistic, because in actual practice we can have 
a strong reason for P and a weak reason for -P, and still be at least 
mildly justified in believing P. 

I will now discuss a system of rules for defeasible reasoning based upon 
these assumptions, and then I will discuss briefly how the rules will have to 
be modified in order to relax these assumptions. 

Any realistic system of reasoning must be “computationally feasible,” 
in the sense that it prescribes reasoning that can be carried out in realistic 
amounts of time. In order to accomplish this, it must avoid various sources 
of “combinatorial explosion.” For example, Gilbert Harman’s (1984) well 
known objection to basing reasoning on condtional probability amounts to 
the observation that it requires storing and retrieving unreasonably large 
sets of probabilities. Some of the reasoning systems that have been proposed 
in AI are subject to the same difficulty. For example, Jon Doyle’s truth 
maintenance system (1979) requires the reasoner to keep track of all of his 
arguments and be able to access them for purposes of defeat and reinstate- 
ment. But that puts a tremendous burden on memory, because storing an 
argument takes much more memory than storing a belief, and as beliefs 
build upon one another in a cumulative fashion their supporting arguments 
become progressively longer. Human beings accomplish defeasible reason- 
ing without being very good at remembering arguments. 

In the interest of computational efficiency, it is desirable for a system to 
avoid, insofar as possible, having to search its full set of beliefs. This can be 
done by storing newly adopted beliefs separately from other beliefs, and 
searching only the set of newly adopted beliefs in determining what new 
reasoning it should carry out. In this connection, OSCAR assumes that any- 
thing that can be inferred from old beliefs has already been inferred. Thus, 
all beliefs are stored in the set beliefs, and newly adopted beliefs are stored 
in the set adoptionset. Each time a cycle of reasoning is completed, adoption- 
sef is cleared. The rules for belief adoption will then have the form: 

Where p is a reason for q, if peadoptionset and this reason is undefeated, then 
adopt q. 

The major problem that I have addressed in this version of OSCAR is 
how to handle defeat and reinstatement without storing all of the arguments 
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on the basis of which beliefs are adopted. It turns out that this can be done 
by storing only the “immediate bases ” for beliefs, and the bases for defeat. 
More specifically, rather than storing the entire argument, we just store the 
last step. If we inferred Q from P, we store that fact, but no more of the 
argument. Of course, human beings do sometimes remember their argu- 
ments, but my concern here is to construct a “basic” system of defeasible 
reasoning that can accomplish its goals with as little higher-order monitor- 
ing as possible. Given such a system, we can consider later how it might be 
streamlined by allowing higher-order monitoring to play a role when it is 
available. 

In addition to keeping track of the reason for holding a belief, we must 
keep track of whether that reason is defeasible or conclusive. This makes a 
difference to the way in which defeat works (see particularly the rule BACK- 
TRACK below). Taking explicit account of the fact that reasons are sets of 
propositions, let us define: 

(7.1) S believes P on X if and only if S believes P on the basis of the defeasible 
reason X. 

(7.2) S believes P con X if and only if S believes P on the basis of the conclu- 
sive reason X. 

These are to be understood in such a way that an agent can believe some- 
thing on or con several different bases at the same time. I will take onset to 
be the set of pairs < Q,X > such that Q is believed on X, and comet will be 
the set of pairs <Q,X> such that Q is believed con X. 

We must also keep track of the bases upon which reasons are defeated. In 
the case of undercutting defeat, that is simple. Suppose X (a set of proposi- 
tions) is a prima facie reason for Q, and AX is the conjunction of all the 
members of X. If this reason is defeated by undercutting, then the agent 
believes - ( AX-Q), and the basis for that is stored in onset or conset. Re- 
instatement then results from anything leading the agent to retract belief in 
-(AX-Q). 

Rebutting defeat is more complicated. Consider a pair of arguments lead- 
ing to contradictory conclusions, as in Figure 6, where {P} is a prima facie 
reason for R, {Q} is a prima facie reason for S, and the remaining reasons 
are conclusive. As this is a case of collective defeat, neither V nor - V should 
be believed. When we encounter collective defeat, we must do more than 
just reject the conclusions. It must be possible for a collectively defeated 
argument to be reinstated by its competitors becoming defeated. Thus, for 
instance, if we acquire an undercutting defeater for the move from P to R, 
that should reinstate the argument from Q to -V. However, given that we 
only search newly adopted beliefs in deciding what new beliefs to adopt, we 
will not automatically “rediscover” the argument from Q to -V after de- 
feating the argument from P to V. Thus, we must store facts about collective 
defeat in a way that will make reinstatement possible. It will not suffice to 
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Figure 6. 

just store the sets of propositions that enter into collective defeat, because 
we must also know what it takes to defeat some and reinstate others. A 
proposition is always defeated by defeating the last defeasible step of the 
argument supporting it. The last defeasible step can be defeated either by 
retracting belief in the premise or by undercutting the prima facie reason 
involved. Thus when a set of arguments collectively defeat one another, 
what OSCAR will store is the set of their last defeasible steps. For instance, 
in the above example, OSCAR will store the set { < R, { P) > , <S,(Q) > j. 
Reinstatement is then accomplished by defeating one of those last defeasible 
steps, readopting the conclusions of the others, and then repeating the earlier 
purely deductive reasoning that initially led to collective defeat. Thus if 
OSCAR acquires a defeater for < R,{ P) > , he will readopt belief in S, and 
that will automatically lead him to repeat the deductive reasoning leading 
to the conclusion -V. OSCAR will keep track of such rebutting defeat by 
putting the pair {<R,{P}>,<S,{Q}>} in the set rebut. 

In rebutting defeat, we must backtrack to the last defeasible step of rea- 
soning and then take that to be rebutted. This is made precise in terms of the 
notion of a nearest defeasible ancestor. In the simple case where all reasons 
are unit sets, this notion can be defined as follows: 

(7.3) Where p is a belief, q is a nandefeasible ancestor of p if and only if 
there is a sequence < p,, . ,pn > (i > 1) of beliefs such that p = pn, q = p, , 
and for each i<n, <pi+I,(pi}>ecqn.ref. A pair <r,(s)> is a neuresl 
nondefeasible ancesfor of p if and only if r is a nondefeasible ancestor 
of p and <r,{s}>eonset. 

In the general case, where reasons can be arbitrarily large finite sets, the 
definition is more complicated. First, define recursively: 

(7.4) 1. If <p,X>econsel then X is a nondefeasible ancestor-set of p. 
2. If x is a nondefeasible ancestor-set of p, qeX. and <q,Y>~conset, 

then (X-{q})UY is a nondefeusible ancestor-set of q. 

(7.5) q is a nondefeasible ancestor of a proposition p if and only if q is a 
member of some nondefeasible ancestor-set of p. 

(7.6) q is a nondefeusibte ancestor of a set X if and only if q is a nondefeasible 
ancestor of some member of X. 
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(7.7) X is a newest defeusible ancesfor of a proposition p if and only if X is a 
set of ordered pairs, the domain of X is a nondefeasible ancestor-set of 
p. and X C onsef. 

A nearest defeasible ancestor of p is (roughly) the set of bottom nodes of a 
deductive argument leading upward to p. It is these that are involved in 
collective defeat. 

Finally: 

(7.8) X is a nearesf defeusible ancestor of {p,, . . . ,p,} if and only if there are 
XI,. . . ,Xn such that for each i, Xi is a nearest defeasible ancestor for pi, 
andX=X,U...UX,. 

When two chains of reasoning lead to contradictory conclusions, we take 
the nearest nondefeasible ancestors to rebut one another, and we put the 
corresponding pairs of pairs in rebut. Let us define: 

(7.9) An individual proposition P is rebuffed if and only if for some set A in 
rebuf and for some X, cP,X>tA. 

I have already noted the OSCAR distinguishes between newly adopted 
beliefs and previously held beliefs. When he adopts a new belief, he then 
looks to see what consequences that has for his other beliefs. It may lead him 
to adopt further new beliefs, and it may lead him to retract old beliefs. 
OSCAR keeps track of newly adopted beliefs in adoptionset. Similarly, 
newly retracted propositions are put in the set retractionset. When a new 
belief is adopted, the rules of defeasible reasoning will be applied repeatedly 
in a certain order until no further adoptions or retractions can be obtained. 
This requires us to keep track of whether new adoptions or retractions occur 
at various points in the processing, and this will be done with the adoption- 
flug and the retructionflug, whose values are initially 0, but are reset to 1 
whenever there is a new adoption or retraction. In deciding what to do at 
various points, the system will look at the value of these flags. If the flags 
are both 0 then no new adoptions or retractions have occurred. In that case, 
adoptionset and retractionset are cleared and the system is ready to process 
new inputs. 

Let us define: 

(7.10) Adopting a belief consists of (1) inserting it into beIiefs if it is not already 
there, (2) putting it in odoptionset, (3) deleting it from retractionset, 
and (4) setting adoptionflog equal to 1. To adopt P on X is to insert 
< P,X > in onset and adopt P. To adopt P con X is to insert < P,X > 
in consel and adopt P. 

Similarly: 

(7.11) retructing a belief P consists of (1) deleting it from beliefs, (2) inserting it 
in retractionset, (3) deleting it from adoptionset if it is there, (4) deleting 



512 POLLOCK 

all pairs of the form < P,X> from onset, and (5) setting refrucfionflag 
equal to 1. (For technical reasons connected with the rule (BACK- 
TRACK), we do not also delete pairs of the form < P,X> from comer.) 

I remarked above that reasons come in schemas. For example, for any term 
X, “X looks red to me” is a prima facie reason for “X looks red.” Here, 
“X looks red to me” and “X is red” express proposition-forms. In general, 
a reason schema is a pair < X,P > where P is a proposition-form and X is a 
set of proposition-forms. 

Corresponding to a proposition-form p there are two functions whole,, 
and parts,. Applied to a proposition having the form p, parts, generates an 
assignment of propositional constituents to the variables of p. Conversely, 
applied to such an assignment, whole, generates the corresponding proposi- 
tion. An assignment is a set of pairs <x,a> where X is a metalinguistic 
variable (a variable occurring in the formulation of proposition-forms) and 
a is the object assigned to that variable by the assignment. It is convenient to 
simply identify a proposition-form p with the pair of functions <whole,,, 
parts,>. Given an assignment s, I will take p!s to be whole,(s), that is, the 
proposition of form p resulting from the assignment s. Similarly, where X is a 
set {P,, . . . ,p”} of proposition-forms, I will take X!s to be {p,!s,. . . ,pn!s}. 

Given these preliminaries, we now formulate our rules for adoption, 
defeat, and reinstatement precisely as follows: 

Adoption 

(ADOPT-ON) 
Where < X,q > is a prima facie reason scheme: 
For any variable assignment s, if you adopt X!s then if you do not believe 
- ( AX!s- q!s) and you do not believe - q!s and neither q!s nor -q!s is 

rebutted, then adopt q!s on X’s I* . . 

(ADOPT-CON) 
Where < X,q > is a conclusive reason scheme: 
For any variable-assignment s, if you adopt X!s then if you do not believe 
-q!s and neither q!s nor -q!s is rebutted, then adopt q!s con X!s. 

Retraction 

(a) By undercutting defeat: 

(UNDERCUT) 
Where < X,q > is a prima facie reason scheme: 
For any variable-assignment s, if you adopt - (AX!s-q!s and you believe 
q!s on X!s, then delete <q!s,X!s> from onset, and retract q!s if you do 
not believe it on or con any other basis: 

‘I In order to avoid complicating the rules throughout, I take - -q to be q. That way we 

do not have to adopt replicas of our rules throughout for double negations. 
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(b) By rebutting defeat: 

(REBUTa) 
Where < X,q > is a prima facie reason scheme: 
For any variable-assignment s, if you believe - q!s and you adopt X!s, and 
either you do not believe -( AX!s-q!s) or it is newly adopted, then find 
the nearest defeasible ancestors A of - q!s and retract -q!s and all the 
intermediate nondefeasible ancestors, and add the sets AU { < q!s,X!s> } 
to rebut. 

(REBUTb) 
Where <X,q> is a conclusive reason scheme: 
For any variable-assignment s, if you believe -q!s and you adopt X!s then 
(1) find the nearest defeasible ancestors A of X!s and retract all members of 
X!s and all its intermediate nondefeasible ancestors, (2) find the nearest 
defeasible ancestors B of -q!s and retract -q!s and all its intermediate 
nondefeasible ancestors, and (3) add all the sets AUB to rebut. 

Enlarging Collective Defeat: 

(NEG-COL-DEFa) 
Where < X,q > is a prima facie reason scheme: 
For any variable-assignment s, if you adopt X!s and you do not believe 
-(AX!s-q!s) and -q!s is rebutted, then for each Y such that < -q!s, 
Y>~Urebul, add {<q!s,X!s>,< -q!s,Y>} to rebut. 

(NEG-COL-DEFb) 
Where < X,q > is a conclusive reason scheme: 
For any variable-assignment s, if you adopt X!s and - q!s is rebutted, then 
find the nearest defeasible ancestors A of X!s and retract all the intermedi- 
ate nondefeasible ancestors, and for each Y such that c - q!s,Y > appears 
in rebut, add all the sets AU { < -q!s,Y > } to rebut. 

(POS-COL-DEFa) 
Where <X,q> is a prima facie reason scheme: 
For any variable-assignment s, if you adopt X!s and do not believe - ( AX!s- 
q!s), and q!s is rebutted, then for each Y and A such that c q!s,Y >eA and 
Aerebuf, add { <q!s,X!s> }U(A- { <q!s,Y> }) to rebuf. 

(POS-COL-DEFb) 
Where c X,q > is a conclusive reason scheme: 
For any variable-assignment s, if you adopt X!s, and q!s is rebutted, then 
find the nearest defeasible ancestors A of X!s and retract all the intermedi- 
ate nondefeasible ancestors, and for each B and Y such that { < q!s,Y > }eB 
and Berebuf, add the sets AU (B - { < q!s,Y > }) to rebut. 

Hereditary Retraction: 

(H-RETRACT) 
For any X and q, if you believe q on X or q con X, but you retract some 
member of X, then retract q and delete <q,X> from conserUonsef. 
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Backtracking for Conclusive Reasons: 

(BACKTRACK) 
For any X and q, if you believe q con X but you retract q, then retract X. 

Reinstatement: 
Reinstatement is handled by treating propositions as newly adopted (even if 
they have been believed all along) when sources of defeat are removed, and 
then seeing what can be inferred from them. 

(a) from undercutting defeat: 

(U-REINSTATE) 
Where < X,q > is a prima facie reason scheme: 
For any variable-assignment s, if you believe X!s and retract -( AX!s-q!s) 
and neither q!s nor -q!s is rebutted, then adopt every member of X!s. 

(b) from rebutting defeat: 

by undercutting: 

(R-REINSTATE/U) 
Where <X,q> is a prima facie reason scheme: 
For any variable-assignment x. if you adopt -( hX!s-q!s) and <q!s, 
X!s > eA where Acrebut, then delete A from rebut and adopt every member 
of U(range(A-{<q!s,X!s>})). 

by retracting: 

(R-REINSTATE/R) 
If you retract some member of X and { < q,X> }cA where Aerebut, then 
delete A from rebut and adopt every member of U (range (A - { < q,X > })). 

We can combine these rules straightforwardly in the architecture represented 
by Figure 7. There are more efficient architectures. This architecture in- 
volves needless repetitions of the searches, in the adoption module, for 
instances of reason schemes. However, these details are not important for 
the purposes of this paper. 

8. ASSESSMENT OF OSCAR 

How well does the present OSCAR perform? OSCAR is not an entirely 
realistic model of human defeasible reasoning, because it is based upon the 
simplifying assumptions listed at the beginning of the previous section. 
Nevertheless, OSCAR is a start at developing a realistic theory of defeasible 
reasoning. OSCAR does most things right, but suffers from some defects 
connected with those simplifying assumptions. One case worth mentioning 
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Figure 7. 

is the following. Suppose A is a prima facie reason for P which is a conclu- 
sive reason for Q; B is a prima facie reason for R which is a conclusive rea- 
son for Q; and C is a prima facie reason for S which is a conclusive reason 
for -Q: 
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A- - -> p -----> Q 

B _ _ -> R ____ -> Q 

Cm _ -> S b-w--> -Q 

Given the input { A,C}, rebutting defeat occurs with the result that beliefs is 
just {A,C}, and rebut is [{ <P,A> ,<S,C> }]. So far so good, but now if 
we give OSCAR the new input {B}, we would like this to add B to beliefs 
(which it does) and add { <R,B> ,<S,C> } to rebur. The latter fails. In- 
stead, OSCAR adopts R on B and then adopts Q con R. This is because 
there is no mention of Q itself in rebut. Instead, it is the nearest defeasible 
ancestors of Q that went into rebut. There is an ad hoc way of handling this 
in OSCAR. If S is a conclusive reason for -Q then S entails -Q, and so Q 
entails -S. This suggests that we might require that the set of conclusive 
reasons be closed under contraposition: whenever a proposition D is a con- 
clusive reason for another proposition E, -E is also a conclusive reason for 
-D. If we impose this constraint on OSCAR then he will reason correctly 
in this case. 

Humans handle this case differently. They use conditional reasoning to 
get the same result. If S is a conclusive reason for - Q then by conditional 
reasoning they can obtain (S 3 - Q) even when S is not believed. Then once 
they reason (like OSCAR) from B to R to Q, they can go on to -S, and then 
the rule (NEG-COL-DEFb) will lead to the retraction of Q, R, and -S, and 
the addition of { < R,B> , c S,C> } to rebuf. But OSCAR cannot reason 
this way until we give him conditional reasoning. 

The main case in which OSCAR goes badly wrong is with collective 
undercutting defeat. He cannot handle this at all. Recall that a simple ex- 
ample of this occurs when Jones says “Smith is unreliable” and Smith says 
“Jones is unreliable.” In such a case, we should not believe either. Suppose 
we take P to be a prima facie reason for Q, and Q to be a conclusive reason 
for -(R-S), and in turn take R to be a prima facie reason for S and S to be 
a conclusive reason for - (Pd Q): 

p- - -> Q _____ > _ (R-S) 
R- - -> S ---__ > a (P-Q) 

Then giving OSCAR the input {P,R} puts him into an infinite loop. I do 
not believe that this can be resolved without conditional reasoning. The dif- 
ficulty can be seen by comparing collective undercutting defeat with collec- 
tive rebutting defeat. The presence of collective rebutting defeat is signalled 
by the appearance of an explicit contradiction as the next step a reasoner 
would otherwise take. This hits the reasoner squarely in the face and cannot 
be ignored. But collective undercutting defeat can be much more subtle. We 
might have a long chain of reasoning like that in Figure 8, where all the steps 
are defeasible. This should be a case of collective undercutting defeat, but 
to discover such collective defeat the reasoner may have to trace his reason- 
ing back arbitrarily far, in this case, all the way back to p, and q,. We do not 
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want to require that OSCAR check for this every time he makes an infer- 
ence, because the overhead would be immense and his reasoning would be 
slowed to a crawl. 

I suggest that the way this is handled in human beings is that we do not 
usually worry about collective undercutting defeat, and we only take the 
inferences involved to be defeated if we happen upon it. We do not auto- 
matically check for it. Happening upon it consists of adopting certain con- 
ditionals. Specifically, we can use a rule something like the following: 

Where A is a prima facie reason for B and P is a prima facie reason for Q, if you 
come to believe B on A and Q on P, and also the conditionals [B- -(P-Q)] 
and [Q-- (A-B)], take <Q,P> and <B,A> to be subject to collective 
undercutting defeat. 

However, such a rule can only be implemented in a system that includes 
conditional reasoning, so there is no way to build it into the present version 
of OSCAR. 

I have not implemented the “self-defeating” constraint that I used to re- 
solve the paradoxes of defeasible reasoning. Again, we do not want OSCAR 
to have to continually check whether his arguments are self-defeating, be- 
cause that requires backtracking arbitrarily far. I suggest that this too is best 
handled in terms of conditional reasoning, but I will not go into it here. 

OSCAR draws all possible conclusions from his input. We have, in effect, 
taken him to be interested in everything. This has the consequence that we 
must be careful what reason schemes we give him. For instance, if we allow 
him to use addition: 

p is a conclusive reason for ‘(p v q)’ 

then his reasoning can never stop. He will just go on inferring longer and 
longer disjunctions. Thus to test OSCAR I have had to be judicious in my 
choice of reason schemes. To rectify this we must incorporate interest-driven 
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reasoning. My next project is to design a system of interest-driven deductive 
reasoning, incorporating subsidiary arguments and conditionalization. 
Then I will integrate that into the present OSCAR to create an interest-driven 
system that does both defeasible and deductive reasoning in full generality. 

REFERENCES 

Chisholm, R.M. (1957). Perceiving. Ithaca, NY: Cornell University Press. 

Chisholm, R.M. (1966). Theory ojknowledge. Englewood Cliffs, NJ: Prentice-Hall. 

Chisholm, R.M. (1977). Theory oJknow/edge (2nd ed.).Englewood Cliffs, NJ: Prentice-Hal). 

Doyle, J. (1979). A truth maintenance system. Ar/ijciaf Infelligence. I2. 231-272. 

Harman, G. (1984). Positive versus negative undermining in belief revision. Nous, 18, 39-49. 

Harman. G. (1986). Change in view. Cambridge, MA: MIT Press. 

Kyburg. H., Jr. (1961). Probabifiiyand fhelogicof ralional belief. Middletown, CT: Wesleyan 

University Press. 

McCarthy, J. (1980). Circumscription-a form of non-monotonic reasoning. ArfijiciallnfeNi- 

genre, 13, 27-39. 

McDermott, D., & Doyle, J. (1980). Non-monotonic logic I. Arrijicial Intelligence. 13, 41-72. 

Pollock, J.L. (1967). Criteria and our knowledge of the material world. Pl~ilosophicalReview. 

76, 28-62. 

Pollock. J.L. (1970). The structure of epistemic juslification. American Philosophical Quar- 

rerl,v. (Monograph series 4: 62-78). 

Pollock, J.L. (1974). Knowledge and jusr/Jica/ion. Princeton: Princeton University Press. 

Pollock. J.L. (1976). Subjuncfiw reasoning. Dordrecht: Reide). 

Pollock, J.L. (1983). Epistemology and probability. Synfhese, 55, 231-252. 

Pollock, J.L. (1984). A solution to the problem of induction. Nous, 18. 423-462. 

Pollock. J.L. (1986). Comemporary theories o/know/edge. Totowa, NJ: Rowman and Allan- 

held. 

Pollock, J-L. (in press). How to build a person. Phifosophiral Perspectives, 1. 

Pollock. J.L. (in preparation). Nomic probabi/i/y and /he foundarions of inducfion. 

Reiter, R. (1978). On reasoning by default. Theoretical Issues in Natural Language Processing- 

2, 210-218. 

Reiter, R. (1980). A logic for default reasoning. Ar/iJicia/ Infelligence, 13, 81-132. 


