Analysis by Default (Days 2 and 3) *** Working draft *** Version of: July 7, 2016 ## **Outline** #### 1. Common law constraint Contested lexical items in the law Common law constraint A formal model of constraint Constraining meaning ## 2. Default logic Prioritized default theories Variable priorities and undercutting ## 3. Coding constraint into default logic A direct encoding An encoding into variable priority theories #### 4. Elaborations A fortiori constraint Dimensions and magnitudes Boolean definitions # Part 1. Common Law Constraint ## Some contested lexical items • "Sandwich" Is a burrito a sandwich? "Potato chip" Are Pringles potato chips? "Vessel" Is the Super Scoop a Vessel? • "Employee" Are Uber drivers employees, or contractors? "Trade secret" Is the Lynchburg Lemonade recipe a trade secret? ## Constraint in the common law - 1. Several approaches: - There is no such thing - Coherence accounts - Constraint depends on rules - The rules are defeasible - The rules are strict Rules must be applied as stated Distinguishing allowed ## 2. Distinguishing: Identifying differences between facts of precedent and current cases, to explain why precedent rule should not be applied to current case, with the result that the rule is modified ## 3. Example: Case 1: Can Emma watch TV? Facts: age 9, no dinner, did homework Rule: at least $9 \rightarrow TV$ Outcome: TV Case 2: Can Max watch TV? Facts: age 14, no dinner, no homework Rule: no homework → no TV Outcome: no TV ### 4. A problem: How can a court be constrained by rules, if it is able to modify those rules at will? ## 5. A solution (Raz/Simpson): Courts can modify previous rules, but not entirely at will—subject to two conditions: - Can only narrow previous rules, by adding further restrictions (that distinguish that case from this one) - The narrowed rules must continue to yield same results in the earlier cases ## 6. A further problem: Why suppose that courts can modify rules in exactly *this* way? ## 7. My goal: Answer this question . . . But then the answer suggests a different view of common law reasoning # Factors, reasons, rules, cases 1. Factors for π and δ : $$F^{\pi} = \{f_1^{\pi}, \dots, f_n^{\pi}\}$$ $$F^{\delta} = \{f_1^{\delta}, \dots, f_m^{\delta}\}$$ $$F = F^{\pi} \cup F^{\delta}$$ #### 2. Examples: In domentic domain: Age 9 or older Didn't eat dinner Hit sister Had a bad dentist visit In trade secrets doman (Rissland, Ashley): Took measures to protect information Confidentiality agreement Information publicly available Information reverse-engineerable 3. Fact situation: $$X \subseteq F$$ $$X^{\pi} = X \cap F^{\pi}$$ $$X^{\delta} = X \cap F^{\delta}$$ 4. (Factor) reason: $X \subseteq F^s$, where s is π or δ Example: $\{f_1^\pi, f_2^\pi\}$ is a reason, $\{f_1^\pi, f_3^\delta\}$ is not 5. When a reason holds: $$X \models R \text{ iff } R \subseteq X$$ $$X \models \neg \phi \text{ iff } X \not\models \phi$$ $$X \models \phi \land \psi \text{ iff } X \models \phi \text{ and } X \models \psi$$ Example: $\{f_1^{\pi}, f_3^{\pi}, f_2^{\delta}, f_3^{\delta}\} \models \{f_1^{\pi}, f_3^{\pi}\} \land \neg \{f_1^{\delta}\}$ 6. Rule: Where R^s is a reason for s and $R_1^{\overline{s}}, \dots R_i^{\overline{s}}$ are reasons for \overline{s} , a rule for s has form: $$R^s \wedge \neg R_1^{\overline{s}} \wedge \ldots \wedge \neg R_i^{\overline{s}} \to s$$ $(R^s \text{ would be the } reason \text{ for the decision})$ Example: $$\{f_1^{\pi}, f_3^{\pi}\} \land \neg \{f_1^{\delta}\} \land \neg \{f_2^{\delta}, f_4^{\delta}\} \rightarrow \pi$$ Some housekeeping functions: $$Prem(r) = R^s \wedge \neg R_1^{\overline{s}} \wedge \dots \wedge \neg R_i^{\overline{s}}$$ $Prem^s(r) = R^s$ $Conc(r) = s$ 7. Case: $c = \langle X, r, s \rangle$, where $$Facts(c) = X$$ $Rule(c) = r$ $Outcome(c) = s$ subject to condition that $$X \models Prem(r)$$ 8. Example: $c_1 = \langle X_1, r_1, s_1 \rangle$, where $$X_{1} = \{f_{1}^{\pi}, f_{2}^{\pi}, f_{3}^{\pi}, f_{1}^{\delta}, f_{2}^{\delta}, f_{3}^{\delta}, f_{4}^{\delta}\}$$ $$r_{1} = \{f_{1}^{\pi}, f_{2}^{\pi}\} \land \neg \{f_{1}^{\delta}, f_{5}^{\delta}\} \rightarrow \pi$$ $$s_{1} = \pi$$ 9. A case base Γ is a set of cases ## The reason model 1. Consider $c_2 = \langle X_2, r_2, s_2 \rangle$, with $$X_2 = \{f_1^{\pi}, f_2^{\pi}, f_1^{\delta}, f_2^{\delta}\}$$ $r_2 = \{f_1^{\pi}\} \to \pi$ $s_2 = \pi$ What is the court telling us with c_2 ? Two things: - $Prem^{\pi}(r_2) = \{f_1^{\pi}\}$ is a sufficient reason for π - $Prem^{\pi}(r_2)$ is stronger than the strongest reason present for δ The strongest reason present for δ is: $$X_2^{\delta} = \{f_1^{\delta}, f_2^{\delta}\}$$ Therefore: $$X_2^{\delta} <_{c_2} Prem^{\pi}(r_2)$$ or $$\{f_1^{\delta}, f_2^{\delta}\} <_{c_2} \{f_1^{\pi}\}$$ 2. Continue with $c_2 = \langle X_2, r_2, s_2 \rangle$, with $$X_{2} = \{f_{1}^{\pi}, f_{2}^{\pi}, f_{1}^{\delta}, f_{2}^{\delta}\}$$ $$r_{2} = \{f_{1}^{\pi}\} \to \pi$$ $$s_{2} = \pi$$ So we have $X_2^{\delta} <_{c_2} Prem^{\pi}(r_2)$ — anything else? Yes. If W weaker than X_2^{δ} and Z is stronger than $Prem^{\pi}(r_2)$, we have: $$W <_{c_2} Z$$ Example: since $$\{f_1^{\delta}, f_2^{\delta}\} <_{c_2} \{f_1^{\pi}\}$$ we have $$\{f_1^{\delta}\} <_{c_2} \{f_1^{\pi}, f_4^{\pi}\}$$ 3. Preference derived from a case $c = \langle X, r, s \rangle$: $$W <_c Z$$ iff $W \subseteq X^{\overline{s}}$ and $Prem^s(r) \subseteq Z$ 4. Preference derived from a case base Γ : $W <_{\Gamma} Z$ iff there is c in Γ such that $W <_{c} Z$ 5. The case base Γ is inconsistent iff there are reasons X and Y such that $$X <_{\Gamma} Y$$ and $Y <_{\Gamma} X$ The case base is consistent iff it is not inconsistent 6. The reason model of constraint: Given Γ and new fact situation X, the reason model of constraint requires a decision based on some rule r for outcome s such that $\Gamma \cup \{\langle X, r, s \rangle\}$ consistent. # 7. Example: $\Gamma = \{c_2\}$, where $$c_2=\langle X_2,r_2,s_2 angle$$, with $X_2=\{f_1^\pi,f_2^\pi,f_1^\delta,f_2^\delta\}$ $r_2=\{f_1^\pi\} o\pi$ $s_2=\pi$ New fact situation $$X_3 = \{f_1^{\pi}, f_1^{\delta}, f_2^{\delta}, f_3^{\delta}\}$$ Suppose court wants to decide this case for δ on the basis of $\{f_1^{\delta}, f_2^{\delta}\}$, leading to $$c_3 = \langle X_3, r_3, s_3 \rangle$$, with $$X_{3} = \{f_{1}^{\pi}, f_{2}^{\pi}, f_{1}^{\delta}, f_{2}^{\delta}\}$$ $$r_{3} = \{f_{1}^{\delta}, f_{2}^{\delta}\} \to \delta$$ $$s_{3} = \delta$$ Then new case base is $\Gamma' = \{c_2, c_3\}$, but this is inconsistent: $$\{f_1^{\delta}, f_2^{\delta}\} <_{c_2} \{f_1^{\pi}\}$$ $$\{f_1^{\pi}\} <_{c_3} \{f_1^{\delta}, f_2^{\delta}\}$$ and both $c_2, c_3 \in \Gamma'$ So decision ruled out by reason constraint 8. Another path: $\Gamma = \{c_2\}$ again, where $$c_2=\langle X_2,r_2,s_2 angle$$, with $$X_2=\{f_1^\pi,f_2^\pi,f_1^\delta,f_2^\delta\}$$ $$r_2=\{f_1^\pi\}\to\pi$$ $$s_2=\pi$$ New fact situation $$X_4 = X_3 = \{f_1^{\pi}, f_1^{\delta}, f_2^{\delta}, f_3^{\delta}\}$$ Now decide this case for δ on the basis of $\{f_1^{\delta}, f_3^{\delta}\}$, leading to $\Gamma = \{c_2, c_4\}$, where $$c_4=\langle X_4,r_4,s_4 angle$$, with $X_4=\{f_1^\pi,f_2^\pi,f_1^\delta,f_2^\delta\}$ $r_4=\{f_1^\delta,f_3^\delta\} o\delta$ $s_4=\delta$ This case base is consistent, with constraints $$\{f_1^{\delta}, f_2^{\delta}\} <_{c_2} \{f_1^{\pi}\}$$ $\{f_1^{\pi}\} <_{c_4} \{f_1^{\delta}, f_3^{\delta}\}$ 9. Hypothesis: this is how case law develops—by building up a stronger and stronger ordering on reasons #### 10. Now: two models of precedential constraint #### Standard model: - What's important is rules - Constrained to make decisions that can be accommodated by rule modification, in accord with Raz/Simpson conditions - As law develops, rules become more complicated #### Reason model: - What's important is ordering relation on reasons - Constrained to make decisions consistent with this ordering - As law develops, ordering becomes stronger What is the relation between them? # 11. Central result (equivalence): Given Γ and a new situation X, a decision based on some rule r favoring s satisfies the standard model of constraint iff it satisfied the reason model of constraint # Quasi-technical issues 1. Preference ordering is not transitive. Consider $\Gamma = \{c_5, c_6, c_7\}$, where $$c_5=\langle X_5,r_5,s_5 angle$$, with $$X_5=\{f_1^\pi,f_1^\delta\}$$ $$r_5=\{f_1^\pi\}\to\pi$$ $s_5=\pi$ $$c_6=\langle X_6,r_6,s_6 angle$$, with $$X_6=\{f_1^\pi,f_2^\delta\}$$ $$r_6=\{f_2^\delta\}\to\delta$$ $s_6=\delta$ $$c_7=\langle X_7,r_7,s_7 angle$$, with $$X_7=\{f_2^\pi,f_2^\delta\}$$ $$r_7=\{f_2^\pi\}\to\pi$$ $s_7=\pi$ Then have $$\{f_1^\delta\} <_{\Gamma} \{f_1^\pi\} <_{\Gamma} \{f_2^\delta\} <_{\Gamma} \{f_2^\pi\}$$ But not $$\{f_1^\delta\} <_{\Gamma} \{f_2^\pi\}$$ Solution: replace $<_{\Gamma}$ with its transitive closure in definition of inconsistency #### Old version: The case base Γ is consistent iff there are no reasons X and Y such that $$X <_{\Gamma} Y$$ and $Y <_{\Gamma} X$ New version: The case base Γ is consistent iff there are no reasons X and Y such that $$X \prec_{\Gamma} Y$$ and $Y \prec_{\Gamma} X$ where \prec_{Γ} is the transitive closure of $<_{\Gamma}$ Question: do we want the solution?? 2. Our definitions assume consistency of background case base. But even it it's inconsistent, we can modify definitions to require that new decisions introduce "no more" inconsistency #### Old version: Given Γ and new fact situation X, the reason model of constraint requires a decision based on some rule r for outcome s such that $\Gamma \cup \{\langle X, r, s \rangle\}$ consistent. #### New version: Given Γ and new fact situation X, the reason model of constraint requires a decision based on some rule r for outcome s such that: whenever $Y<_{\Gamma\cup\{\langle X,r,s\rangle\}}Z$ and $Z<_{\Gamma\cup\{\langle X,r,s\rangle\}}Y$, we also have $Y<_{\Gamma}Z$ and $Z<_{\Gamma}Y$. #### 3. The law is not the rules Example: recall $\Gamma=\{c_2\}$, where $c_2=\langle X_2,r_2,s_2\rangle$, with $X_2=\{f_1^\pi,f_2^\pi,f_1^\delta,f_2^\delta\}$ $r_2=\{f_1^\pi\}\to\pi$ $s_2=\pi$ Recall that $$X_3 = \{f_1^{\pi}, f_1^{\delta}, f_2^{\delta}, f_3^{\delta}\}$$ could be decided for δ on the basis of $\{f_1^{\delta}, f_3^{\delta}\}$, leading to $\Gamma = \{c_2, c_3\}$, where $$c_3 = \langle X_3, r_3, s_3 \rangle$$, with $$X_{3} = \{f_{1}^{\pi}, f_{1}^{\delta}, f_{2}^{\delta}, f_{3}^{\delta}, \}$$ $$r_{3} = \{f_{1}^{\delta}, f_{3}^{\delta}\} \to \delta$$ $$s_{3} = \delta$$ and so imposing constraints $$\{f_1^{\delta}, f_2^{\delta}\} <_{c_2} \{f_1^{\pi}\}$$ $\{f_1^{\pi}\} <_{c_3} \{f_1^{\delta}, f_3^{\delta}\}$ But suppose that, prior to facing X_3 , the court confronted the situation $$X_8 = \{f_1^{\pi}, f_2^{\pi}, f_1^{\delta}, f_3^{\delta}\}$$ and decided for π through an application of the rule r_2 , leading to $\Gamma = \{c_2, c_8\}$, where $$c_8=\langle X_8,r_8,s_8 angle$$, with $X_8=\{f_1^\pi,f_2^\pi,f_1^\delta,f_3^\delta\}$ $r_8=\{f_1^\pi\} o\pi$ $s_8=\pi$ so imposing the constraint $$\{f_1^{\delta}, f_3^{\delta}\} <_{c_8} \{f_1^{\pi}\}$$ But with this new constraint, the c_3 decision is no longer possible Upshot: the sequence $$c_2, c_3$$ is allowable, but the sequence $$c_2, c_8, c_3$$ is not, even though c_8 results simply from an application of the c_2 rule ## Semantics of the contested lexicon 1. Idea: Same theory, but instead of π, δ focus on v, \overline{v} where v is some contested lexical item 2. Example (Super Scoop): v = vessel with factors $f_1^v =$ subject to Coast Guard regulations $f_2^v = {\sf captain} \ {\sf and} \ {\sf crew}$ f_3^v = navigation lights $f_4^v = \text{ballast tanks}$ $f_5^v = \text{galley for crew}$ $f_1^{\overline{v}}$ = no self-propulsion $f_2^{\overline{v}} =$ primary business not navigation $f_3^{\overline{v}} = \text{not moving at time}$ Previous case (the Betty F): $$c_9 = \langle X_9, r_9, s_9 \rangle$$, with $$X_9 = \{f_1^v, f_2^v, f_3^v, f_4^v, f_1^{\overline{v}}, f_2^{\overline{v}}, f_3^{\overline{v}}\}$$ $$r_9 = \{f_2^{\overline{v}}, f_3^{\overline{v}}\} \to \overline{v}$$ $$s_9 = \overline{v}$$ So $\Gamma = \{c_9\}$ and have $$\{f_1^v, f_2^v, f_3^v, f_4^v\} <_{\Gamma} \{f_2^{\overline{v}}, f_3^{\overline{v}}\}$$ New fact situation (the Super Scoop): $$X_{10} = \{f_1^v, f_2^v, f_3^v, f_4^v, f_2^{\overline{v}}, f_3^{\overline{v}}\}$$ Court constrained to decide for \overline{v} , leading to $\Gamma' = \{c_9, c_{10}\}$ with $$c_{10} = \langle X_{10}, r_{10}, s_{10} \rangle$$, with $$X_{10} = \{ f_1^v, f_2^v, f_3^v, f_4^v, f_2^{\overline{v}}, f_3^{\overline{v}} \}$$ $$r_{10} = \{ f_2^{\overline{v}}, f_3^{\overline{v}} \} \to \overline{v}$$ $$s_{10} = \overline{v}$$ ## 3. Example (Super Scoop, modified): As before $\Gamma = \{c_9\}$ with $$c_9=\langle X_9,r_9,s_9 angle$$, with $$X_9=\{f_1^v,f_2^v,f_3^v,f_4^v,f_1^{\overline{v}},f_2^{\overline{v}},f_3^{\overline{v}}\}$$ $$r_9=\{f_2^{\overline{v}},f_3^{\overline{v}}\}\to \overline{v}$$ $$s_9=\overline{v}$$ So $$\{f_1^v, f_2^v, f_3^v, f_4^v\} <_{\Gamma} \{f_2^{\overline{v}}, f_3^{\overline{v}}\}$$ Imagine (modified Super Scoop): $$X'_{10} = \{f_1^v, f_2^v, f_3^v, f_4^v, f_5^v, f_2^{\overline{v}}, f_3^{\overline{v}}\}$$ Now court can decide for v on basis, say, of $$\{f_5^v\} \rightarrow v$$ leading to $$\{f_2^{\overline{v}},f_3^{\overline{v}}\}<\{f_5^v\}$$ But is that sensible?? Part 2. Default Logic ## Fixed priority default theories #### 1. Example: Tweety is a bird Therefore, Tweety is able to fly Why? There is a default that birds fly Tweety is a penguin Therefore, Tweety is not able to fly Because there is a (stronger) default that penguins don't fly ## 2. Another example: I promised to meet Ann for lunch Therefore, I ought to meet Ann for lunch Why? I should do what I promise, by default I see a drowning child Therefore, I ought to rescue the child (and so) not meet Ann for lunch Because there is a (stronger) default that favors rescuing the child 3. Default rules: $X \rightarrow Y$ Example: $B(t) \rightarrow F(t)$ Instance of: $B(x) \rightarrow F(x)$ ("Birds fly") 4. Premise and conclusion: If $\delta = X \rightarrow Y$, then $$Prem(\delta) = X$$ $$Conc(\delta) = Y$$ If \mathcal{D} set of defaults, then $$Conc(\mathcal{D}) = \{Conc(\delta) : \delta \in \mathcal{D}\}\$$ 5. Priority ordering on defaults (strict, partial) $\delta < \delta'$ means: δ' stronger than δ 6. Priorities have different sources: Specificity Reliability Authority Our own reasoning For now, take priorities as fixed, leading to ... ## 7. A fixed priority default theory is a tuple $$\langle \mathcal{W}, \mathcal{D}, < \rangle$$ where ${\cal W}$ contains ordinary statements, ${\cal D}$ contains defaults, and < is an ordering 8. Example (Tweety Triangle): $$\mathcal{W} = \{P, P \Rightarrow B\} \mathcal{D} = \{\delta_1, \delta_2\} \delta_1 = B \rightarrow F \delta_2 = P \rightarrow \neg F \delta_1 < \delta_2$$ 9. Another example (Drowning child): $$\mathcal{W} = \{P, D, \neg (M \land R)\} \mathcal{D} = \{\delta_1, \delta_2\} \delta_1 = P \to M \delta_2 = D \to R \delta_1 < \delta_2$$ - 10. Main question: what can we conclude from such a theory? - 11. An extension \mathcal{E} of $\langle \mathcal{W}, \mathcal{D}, < \rangle$ is a belief set an ideal reasoner might settle on, based this information Usually defined directly, but we take roundabout route . . . - 12. A *scenario* based on $\langle \mathcal{W}, \mathcal{D}, < \rangle$ is some subset \mathcal{S} of the defaults \mathcal{D} - 13. A proper scenario is the "right" subset of defaults - 14. An extension \mathcal{E} based on $\langle \mathcal{W}, \mathcal{D}, < \rangle$ is a set $$\mathcal{E} = Th(\mathcal{W} \cup Conc(\mathcal{S}))$$ where ${\cal S}$ is a proper scenario 15. Returning to example: $\langle \mathcal{W}, \mathcal{D}, \langle \rangle$ where $$\mathcal{W} = \{P, P \Rightarrow B\} \mathcal{D} = \{\delta_1, \delta_2\} \delta_1 = B \rightarrow F \delta_2 = P \rightarrow \neg F \delta_1 < \delta_2$$ Four possible scenarios: $$S_1 = \emptyset$$ $$S_2 = \{\delta_1\}$$ $$S_3 = \{\delta_2\}$$ $$S_4 = \{\delta_1, \delta_2\}$$ But only S_3 proper ("right"), so extension is $$\mathcal{E}_3 = Th(\mathcal{W} \cup Conc(\mathcal{S}_3))$$ $$= Th(\{P, P \supset B\} \cup \{\neg F\})$$ $$= Th(\{P, P \supset B, \neg F\}),$$ 16. Immediate goal: specify proper scenarios # **Binding defaults** 1. Defined through preliminary concepts: Triggering Conflict Defeat 2. Triggered defaults: $$Triggered_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) = \{\delta \in \mathcal{D} : \mathcal{W} \cup Conc(\mathcal{S}) \vdash Prem(\delta)\}$$ 3. Example: $\langle \mathcal{W}, \mathcal{D}, < \rangle$ with $$\mathcal{W} = \{B\} \mathcal{D} = \{\delta_1, \delta_2\} \delta_1 = B \to F \delta_2 = P \to \neg F \delta_1 < \delta_2$$ Then $$Triggered_{\mathcal{W},\mathcal{D},<}(\emptyset) = \{\delta_1\}$$ #### 5. Conflicted defaults: $$Conflicted_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) = \{\delta \in \mathcal{D} : \mathcal{W} \cup Conc(\mathcal{S}) \vdash \neg Conc(\delta)\}$$ ## 6. Example (Nixon Diamond): Take $\langle \mathcal{W}, \mathcal{D}, < \rangle$ with $$\mathcal{W} = \{Q, R\} \mathcal{D} = \{\delta_1, \delta_2\} \delta_1 = Q \to P \delta_2 = R \to \neg P < = \emptyset.$$ Then $$\begin{array}{lcl} \mathit{Triggered}_{\mathcal{W},\mathcal{D},<}(\emptyset) & = & \{\delta_1,\delta_2\} \\ \mathit{Conflicted}_{\mathcal{W},\mathcal{D},<}(\emptyset) & = & \emptyset \end{array}$$ But $$\begin{array}{lcl} \textit{Conflicted}_{\mathcal{W},\mathcal{D},<}(\{\delta_1\}) & = & \{\delta_2\} \\ \textit{Conflicted}_{\mathcal{W},\mathcal{D},<}(\{\delta_2\}) & = & \{\delta_1\} \end{array}$$ 7. Basic idea: A default is defeated if there is a stronger reason supporting a contrary conclusion $$Defeated_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) = \{ \delta \in \mathcal{D} : \exists \delta' \in Triggered_{\mathcal{W},\mathcal{D},<}(\mathcal{S}).$$ $$(1) \ \delta < \delta'$$ $$(2) \ Conc(\delta') \vdash \neg Conc(\delta) \}.$$ 8. Example of defeat (Tweety, again): $\langle \mathcal{W}, \mathcal{D}, < \rangle$ where $$\mathcal{W} = \{P, P \Rightarrow B\}$$ $$\mathcal{D} = \{\delta_1, \delta_2\}$$ $$\delta_1 = B \rightarrow F$$ $$\delta_2 = P \rightarrow \neg F$$ $$\delta_1 < \delta_2$$ Here, δ_1 is defeated: $$Defeated_{\mathcal{W},\mathcal{D},<}(\emptyset) = \{\delta_1\}$$ 9. Finally, binding defaults: $$Binding_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) = \{\delta \in \mathcal{D} : \delta \in Triggered_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) \\ \delta \not\in Conflicted_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) \\ \delta \not\in Defeated_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) \}$$ 10. Stable scenarios: S is stable just in case $$S = Binding_{W,D,<}(S)$$ 11. Example (Tweety, yet again): four scenarios $$S_1 = \emptyset$$ $$S_2 = \{\delta_1\}$$ $$S_3 = \{\delta_2\}$$ $$S_4 = \{\delta_1, \delta_2\}$$ Only $S_3 = \{\delta_2\}$ is stable, because $$S_3 = Binding_{W,D,<}(S_3)$$ # Three complications 1. Complication #1: Can we just identify the proper scenarios with the stable scenarios? Almost ... but not quite 2. Problem is "groundedness" Take $\langle \mathcal{W}, \mathcal{D}, < \rangle$ with $$\mathcal{W} = \emptyset \mathcal{D} = \{\delta_1\} \delta_1 = A \to A < = \emptyset.$$ Then $S_1 = \{\delta_1\}$ is a stable scenario, but shouldn't be proper The belief set generated by S_1 is $$Th(\mathcal{W} \cup Conc(\mathcal{S})) = Th(\{A\})$$ but that's not right! #### 3. Solution: Let Formulas provable from $$\mathcal{W}$$ when ordinary inference rules supplemented with defaults from \mathcal{S} Then given theory $\langle \mathcal{W}, \mathcal{D}, < \rangle$, define scenario \mathcal{S} as grounded in \mathcal{W} iff $$Th(\mathcal{W} \cup Conc(\mathcal{S})) \subseteq Th_{\mathcal{S}}(\mathcal{W})$$ Finally, given $\langle \mathcal{W}, \mathcal{D}, < \rangle$, define \mathcal{S} as *proper* scenario based on this theory iff ${\mathcal S}$ is (i) stable and (ii) grounded in ${\mathcal W}$ 4. Complication #2: Some theories have *no* proper scenarios, and so no extensions Example: $\langle \mathcal{W}, \mathcal{D}, < \rangle$ with $$\mathcal{W} = \emptyset \mathcal{D} = \{\delta_1, \delta_2\} \delta_1 = \top \to A \delta_2 = A \to \neg A \delta_1 < \delta_2$$ 5. Options: Syntactic restrictions to rule out "vicious cycles" Move to argumentation framework and opt for "preferred" extensions 6. Complication #3: Some theories have *multiple* proper scenarios, and so multiple extensions Example (Nixon Diamond, again): Take $\langle \mathcal{W}, \mathcal{D}, < \rangle$ with $$\mathcal{W} = \{Q, R\} \mathcal{D} = \{\delta_1, \delta_2\} \delta_1 = Q \to P \delta_2 = R \to \neg P < = \emptyset.$$ Then two proper scenarios $$S_1 = \{\delta_1\}$$ $$S_2 = \{\delta_2\}$$ and so two extensions: $$\mathcal{E}_1 = Th(\{Q, R, P\})$$ $$\mathcal{E}_2 = Th(\{Q, R, \neg P\})$$ #### 7. Consider three options: A. Choice: pick an arbitrary proper scenario Sensible, actually But hard to codify as a consequence relation - B. Brave/credulous: give some weight to any conclusion A contained in *some* extension - ullet Endorse A whenever A is contained in some extension Example: P and $\neg P$ in Nixon case • Endorse $\mathcal{B}(A)$ —A is "believable" —whenever A is contained in some extension Example: $\mathcal{B}(P)$ and $\mathcal{B}(\neg P)$ in Nixon case C. Cautious/"Skeptical": endorse A as conclusion whenever A contained in *every* extension Defines reasonable consequence relation: supports neither P nor $\neg P$ in Nixon case Note: most popular option, but some problems . . . 8. Complication #3 is *not* a problem for normative interpretation Given a default theory Δ , two option for natural deontic logic: Conflict account: Accept $\bigcirc A$ iff $A \in \mathcal{E}$ for some extension \mathcal{E} of Δ (This generalizes van Fraassen) Disjunctive account: Accept $\bigcirc A$ iff $A \in \mathcal{E}$ for some extension \mathcal{E} of Δ (This generalizes Kratzer) # 9. Example (Dinner with twins): Take $$\langle \mathcal{W}, \mathcal{D}, < \rangle$$ with $$\mathcal{W} = \{A1, A2, \neg (D1 \land D2)\}$$ $$\mathcal{D} = \{\delta_1, \delta_2\}$$ $$\delta_1 = A1 \rightarrow D1$$ $$\delta_2 = A2 \rightarrow D2$$ $$< = \emptyset.$$ Two proper scenarios $$S_1 = \{\delta_1\}$$ $$S_2 = \{\delta_2\}$$ and so two extensions: $$\mathcal{E}_1 = Th(\{A1, A2, \neg (D1 \land D2)\}, D1)$$ $\mathcal{E}_2 = Th(\{A1, A2, \neg (D1 \land D2)\}, D2)$ The upshot is Conflict account: $\bigcirc(D1)$, $\bigcirc(D2)$ Disjunctive account: $\bigcirc(D1 \lor D2)$ # Elaborating default logic 1. Discuss here only two things: Ability to reason about priorities Treatment of "undercutting" or "exclusionary" defeat 2. Begin with first problem So far, fixed priorities on default rules But we can reason about default priorities . . . and then use the priorities we arrive at to control our reasoning #### 3. Five steps: - #1. Add priority statements $(\delta_7 < \delta_9)$ to object language - #2. Introduce new *variable priority* default theories $\langle \mathcal{W}, \mathcal{D} \rangle$ with priority statements now belonging to $\ensuremath{\mathcal{W}}$ and $\ensuremath{\mathcal{D}}$ #3. Add strict priority axioms to \mathcal{W} : $$\delta < \delta' \Rightarrow \neg(\delta' < \delta)$$ $$(\delta < \delta' \land \delta' < \delta'') \Rightarrow \delta < \delta''$$ #4. Lift priorities from object to meta language $$\delta <_{\mathcal{S}} \delta'$$ iff $\mathcal{W} \cup Conc(\mathcal{S}) \vdash \delta < \delta'$. #5. Proper scenarios for new default theories: ${\mathcal S}$ is a *proper scenario* based on $\langle {\mathcal W}, {\mathcal D} \rangle$ iff \mathcal{S} is a proper scenario based on $\langle \mathcal{W}, \mathcal{D}, \langle \mathcal{S} \rangle$ # 4. Example (Extended Nixon Diamond): Consider $\langle \mathcal{W}, \mathcal{D} \rangle$ where \mathcal{W} contains Q, P \mathcal{D} contains $$\delta_{1} = Q \rightarrow P \delta_{2} = R \rightarrow \neg P \delta_{3} = T \rightarrow \delta_{2} < \delta_{1} \delta_{4} = T \rightarrow \delta_{1} < \delta_{2} \delta_{5} = T \rightarrow \delta_{4} < \delta_{3}$$ Then unique proper scenario is $$\mathcal{S} = \{\delta_1, \delta_3, \delta_5\}$$ ## 5. Example (Perfected security interest): Consider $\langle \mathcal{W}, \mathcal{D} \rangle$ where \mathcal{W} contains Possession $\neg Documents$ $Later(\delta_{SMA}, \delta_{UCC})$ $Federal(\delta_{SMA})$ $State(\delta_{\mathit{UCC}})$ #### \mathcal{D} contains $$\delta_{UCC} = Possession \rightarrow Perfected$$ $$\delta_{SMA} = \neg Documents \rightarrow \neg Perfected$$ $$\delta_{LP} = Later(\delta, \delta') \rightarrow \delta < \delta'$$ $$\delta_{LS} = Federal(\delta) \wedge State(\delta') \rightarrow \delta' < \delta$$ $$\delta_{LSLP} = \top \rightarrow \delta_{LS} < \delta_{LP}$$ Unique proper scenario is $$\mathcal{S} = \{\delta_{LSLP}, \delta_{LP}, \delta_{UCC}\}$$ 6. *Undercutting* defeat (epistemology), compared to rebutting defeat Example: The object looks red My reliable friend says it is not red Drug 1 makes everything look red 7. Exclusionary reasons (practical reasoning) Example (Colin's dilemma, from Raz): Should son go to private school?? The school provides good education He'll meet fancy friends The school is expensive Decision would undermine public education Promise: only consider son's interests ... 8. How can this be represented? #### 9. Four steps: - #1. New predicate Out, so that $Out(\delta)$ means that δ is undercut, or excluded - #2. Introduce new exclusionary default theories as theories in a language containing Out. - #3. Lift notion of exclusion from object to meta language: where $\mathcal S$ is scenario based on theory with $\mathcal W$ as hard information $$\delta \in Excluded_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) \text{ iff } \mathcal{W} \cup Conc(\mathcal{S}) \vdash Out(\delta)$$ #4. Binding defaults cannot be excluded: $$Binding_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) = \{\delta \in \mathcal{D} : \delta \in Triggered_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) \\ \delta \not\in Conflicted_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) \\ \delta \not\in Defeated_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) \\ \delta \not\in Excluded_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) \}$$ ## 11. Example (Drugs): Take $\langle \mathcal{W}, \mathcal{D} \rangle$ where \mathcal{D} contains $$\delta_1 = L \to R$$ $$\delta_2 = S \to \neg R$$ $$\delta_3 = D1 \to Out(\delta_1)$$ ${\cal W}$ contains L, $D{\bf 1}$, and $\delta_1 < \delta_2$, $\delta_1 < \delta_3$ (L = Looks red, R = Red, S = Statement by friend, $D{\bf 1}$ = Drug 1) So proper scenario is $$S = \{\delta_3\}$$ generating the extension $$\mathcal{E} = Th(\mathcal{W} \cup \{Out(\delta_1)\})$$ ## 12. Example (More drugs): Take $\langle \mathcal{W}, \mathcal{D} \rangle$ where ${\cal W}$ contains L, D1, D2, $\delta_1 < \delta_2$, and $\delta_1 < \delta_3 < \delta_4$ ${\cal D}$ contains $$\delta_1 = L \to R$$ $$\delta_2 = S \to \neg R$$ $$\delta_3 = D1 \to Out(\delta_1)$$ $$\delta_4 = D2 \to Out(\delta_3)$$ So proper scenario is $$\mathcal{S} = \{\delta_1, \delta_4\}$$ generating the extension $$\mathcal{E} = Th(\mathcal{W} \cup \{R, Out(\delta_3)\})$$ ## 13. Example (Colin again): Let \mathcal{D} contain $$\delta_1 = E \to S \delta_2 = U \to \neg S \delta_3 = \neg Welfare(\delta_2) \to Out(\delta_2)$$ $(E=\mbox{Provides good education},\ S=\mbox{Send son to private school},\ U=\mbox{Undermine support for public education})$ The default δ_3 is itself an instance of $$\neg Welfare(\delta) \rightarrow Out(\delta),$$ Let W contain E, U, and $\neg Welfare(\delta_2)$ Then proper scenario is $$S = \{\delta_1, \delta_3\}$$ generating the extension $$\mathcal{E} = Th(\mathcal{W} \cup \{S, Out(\delta_2)\})$$ # 14. Example (The officers): P =Some action to perform (or not) A =Captain's command to perform P B = Major's command not to perform P ${\cal C}=$ Colonel's command to ignore Major's command Captain < Major < Colonel # Part 3. Coding Constrainting into Default Logic # Interpreting case bases: fixed priority #### 1. Factor defaults: Where $X\subseteq F^s$ is a factor reason, $X\to s$ is a factor default Example: $\{f_1^{\pi}, f_2^{\pi}\} \to \pi$ is a factor default #### 2. \mathcal{F} is the set of factor defaults #### 3. Weak ordering of factor defaults: Where r and r' are factor defaults for same side, $r \leq r'$ iff $Prem(r) \subseteq Prem(r')$ Example: If $r=\{f_1^\pi\}\to \pi$ and $r'=\{f_1^\pi,f_2^\pi\}\to \pi$, then $r\leq r'$ ## 4. Preference derived from a case $c = \langle X, r, s \rangle$: Where $r'=X^{\overline{s}}\to \overline{s}$ is strongest rule for losing side, $r''<_c r'''$ iff $r''\leq r'$ and $r\leq r'''$. #### 5. Preference derived from a case base Γ : $r <_{\Gamma} r'$ iff $r <_{c} r'$ for some $c \in \Gamma$ # 6. Decision problem: X, Γ $$\Delta_{X,\Gamma} = \langle \mathcal{W}_X, \mathcal{D}_{\mathcal{F}}, <_{\Gamma} \rangle$$, where $$\mathcal{W}_X = X$$ $$\mathcal{D}_{\mathcal{F}} = \mathcal{F}$$ $$<_{\Gamma} = \text{preference derived from } \Gamma$$ #### 7. Fact: Given X, Γ , and r a factor default favoring side s, then: r belongs to a stable scenario based on $\Delta_{X,\Gamma}$ iff $\Gamma \cup \{\langle X,r,s \rangle\}$ is reason consistent ## 8. Example (from vessel domain): #### Recall factors: $f_1^v =$ subject to Coast Guard regulations $f_2^v = \text{captain and crew}$ f_3^v = navigation lights f_4^v = ballast tanks $f_5^v = \text{galley for crew}$ $f_1^{\overline{v}} = \text{no self-propulsion}$ $f_2^{\overline{v}} =$ primary business not navigation $f_3^{\overline{v}} = \text{not moving at time}$ Case base $\Gamma = \{c_{11}\}$, where $$c_{11} = \langle X_{11}, r_{11}, s_{11} \rangle$$, with $$X_{11} = \{f_1^v, f_3^v, f_1^{\overline{v}}\}$$ $$r_{11} = \{f_1^{\overline{v}}\} \to \overline{v}$$ $$s_{11} = \overline{v}$$ so that $$\{f_1^v, f_3^v\} <_{\Gamma} \{f_1^{\overline{v}}\}$$ New situation: $$X_{12} = \{f_1^v, f_4^v, f_1^{\overline{v}}\}$$ Relevant factor defaults: $$r_1 = \{f_1^v\} \to v$$ $$r_2 = \{f_4^v\} \to v$$ $$r_3 = \{f_1^v, f_4^v\} \to v$$ $$r_4 = \{f_1^{\overline{v}}\} \to \overline{v}$$ So decision problem is $$\Delta_{X_{12},\Gamma} = \langle \mathcal{W}_X, \mathcal{D}_{\mathcal{F}}, <_{\Gamma} \rangle$$, where $$\mathcal{W}_{X_{12}} = \{f_1^v, f_4^v, f_1^{\overline{v}}\}\$$ $$\mathcal{D}_{\mathcal{F}} = \{r_1, r_2, r_3, r_4\}\$$ $$r_1 <_{\Gamma} r_4$$ with proper scenarios $$S_1 = \{r_4\}$$ $S_2 = \{r_2, r_3\}$ # Interpreting case bases: variable priorities #### 1. Value defaults: Where r and r^\prime are factor defaults favoring opposite sides, a value default has the form $$op r \prec r'$$ Example: $$r_5 = \top \rightarrow r_4 \prec r_1$$ - 2. \mathcal{V} is the set of Value defaults - 3. Decision problem: X, \mathcal{V} $$\Delta_{X,\mathcal{V}} = \langle \mathcal{W}_X, \mathcal{D}_{\mathcal{F},\mathcal{V}} \rangle$$, where $$\mathcal{W}_X = X$$ $\mathcal{D}_{\mathcal{F},\mathcal{V}} = \mathcal{F} \cup \mathcal{V}$ #### 4. Example: Recall factors: $f_1^v =$ subject to Coast Guard regulations f_3^v = navagation lights $f_4^v = \text{ballast tanks}$ $f_1^{\overline{v}} = \text{no self-propulsion}$ Recall relevant factor defaults: $$r_1 = \{f_1^v\} \to v$$ $$r_2 = \{f_4^v\} \to v$$ $$r_3 = \{f_1^v, f_4^v\} \to v$$ $$r_4 = \{f_1^{\overline{v}}\} \to \overline{v}$$ Recall value default: $$r_5 = \top \rightarrow r_4 \prec r_1$$ And consider agent with values $$\mathcal{V}_1 = \{r_5\}$$ confronting the fact situation $$X_{12} = \{f_1^v, f_4^v, f_1^{\overline{v}}\}$$ ## So decision problem is $$\Delta_{X_{12},\mathcal{V}_1} = \langle \mathcal{W}_{X_{12}}, \mathcal{D}_{\mathcal{F},\mathcal{V}_1} \rangle$$, where $\mathcal{W}_{X_{12}} = \{f_1^v, f_4^v, f_1^{\overline{v}}\}$ $\mathcal{D}_{\mathcal{F},\mathcal{V}_1} = \mathcal{F} \cup \mathcal{V}_1$ $= \{r_1, r_2, r_3, r_4\} \cup \{r_5\}$ $= \{r_1, r_2, r_3, r_4, r_5\}$ with proper scenario $$S_1 = \{r_1, r_2, r_3, r_5\}$$ 5. Case default derived from $c = \langle X, r, s \rangle$: Where $r'=X^{\overline{s}}\to \overline{s}$ is strongest rule for losing side, the case default derived from c is $$c \to r' \prec r$$ Example: the case default derived from the case $$c_{11}=\langle X_{11},r_{11},s_{11} angle$$, with $$X_{11}=\{f_1^v,f_3^v,f_1^{\overline{v}}\}$$ $$r_{11}=\{f_1^{\overline{v}}\}\to \overline{v}$$ $$s_{11}=\overline{v}$$ is $$r_6 = c_{11} \rightarrow r_7 \prec r_4$$ where $$r_7 = \{f_1^v, f_3^v\} \to v$$ 6. \mathcal{C}_{Γ} is the set of case defaults derived from Γ 7. Close \prec under \preceq representing weak ordering on defaults $$(r \prec r' \land r' \preceq r'') \supset r \prec r''$$ $$(r \preceq r' \land r' \prec r'') \supset r \prec r''$$ Example: Where $$r_1 = \{f_1^v\} \to v$$ $r_7 = \{f_1^v, f_3^v\} \to v$ $r_4 = \{f_1^{\overline{v}}\} \to \overline{v}$ $r_6 = c_{11} \to r_7 \prec r_4$ Have $$r_1 \leq r_7$$ and $r_7 \prec r_4$ So $$r_1 \prec r_4$$ 8. What if value and case defaults conflict? Example: $$r_6 = c_{11} \rightarrow r_7 \prec r_4$$ and $$r_5 = \top \rightarrow r_4 \prec r_1$$ #### 9. Precedent defaults Where r is a value default and r^\prime is a case default, a precedent default has the form $$\top \rightarrow r \prec r'$$ Example: given value and case defaults $$r_5 = T \rightarrow r_4 \prec r_1$$ $r_6 = c_{11} \rightarrow r_7 \prec r_4$ then $$r_8 = \top \rightarrow r_5 \prec r_6$$ is a precedent default 10. $\mathcal{P}_{\mathcal{V},\Gamma}$ is the entire set of precedent defaults ranking case defaults from \mathcal{C}_{Γ} over value defaults from \mathcal{V} # 11. Decision problem: X, \mathcal{V}, Γ $$\Delta_{X,\mathcal{V},\Gamma} = \langle \mathcal{W}_X, \mathcal{D}_{\mathcal{F},\mathcal{V},\Gamma} \rangle$$, where $$\mathcal{W}_X = X \cup \Gamma$$ $$\mathcal{D}_{\mathcal{F},\mathcal{V},\Gamma} = \mathcal{F} \cup \mathcal{V} \cup \mathcal{C}_{\Gamma} \cup \mathcal{P}_{\mathcal{V},\Gamma}$$ #### 12. Fact: Given X, \mathcal{V}, Γ , and r a factor default favoring s, then: r belongs to a stable scenario based on $\Delta_{X,\mathcal{V},\Gamma}$ iff $X \cup \{\langle X,r,s \rangle\}$ is reason consistent #### 13. Example: Recall factors: f_1^v = subject to Coast Guard regulations f_3^v = navagation lights $f_4^v = \text{ballast tanks}$ $f_{\rm 1}^{\overline{v}}=$ no self-propulsion Recall relevant factor defaults (\mathcal{F}) : $$r_{1} = \{f_{1}^{v}\} \rightarrow v$$ $$r_{2} = \{f_{4}^{v}\} \rightarrow v$$ $$r_{3} = \{f_{1}^{v}, f_{4}^{v}\} \rightarrow v$$ $$r_{7} = \{f_{1}^{v}, f_{3}^{v}\} \rightarrow v$$ $$r_{4} = \{f_{1}^{\overline{v}}\} \rightarrow \overline{v}$$ Recall value default (\mathcal{V}_1) : $$r_5 = \top \rightarrow r_4 \prec r_1$$ Add case defaults derived from $\Gamma_1 = \{c_{11}\}\ (\mathcal{C}_{\Gamma_1})$ $$r_6 = c_{11} \rightarrow r_7 \prec r_4$$ (and so $r_1 \prec r_4$) Add precedent defaults comparing case and value defaults $(\mathcal{P}_{\mathcal{V}_1,\Gamma_1})$ $$r_8 = \top \rightarrow r_5 \prec r_6$$ And consider again the situation $$X_{12} = \{f_1^v, f_4^v, f_1^{\overline{v}}\}$$ #### So decision problem is $$\Delta_{X_{12},\mathcal{V}_1,\Gamma_1} = \langle \mathcal{W}_{X_{12}}, \mathcal{D}_{\mathcal{F},\mathcal{V}_1,\Gamma_1} \rangle$$, where $$\mathcal{W}_{X_{12}} = X_{12} \cup \Gamma_{1} = \{f_{1}^{v}, f_{4}^{v}, f_{1}^{\overline{v}}\} \cup \{c_{11}\} = \{f_{1}^{v}, f_{4}^{v}, f_{1}^{\overline{v}}, c_{11}\} \mathcal{D}_{\mathcal{F}, \mathcal{V}_{1}, \Gamma_{1}} = \mathcal{F} \cup \mathcal{V}_{1} \cup \mathcal{C}_{\Gamma_{1}} \cup \mathcal{P}_{\mathcal{V}_{1}, \Gamma_{1}} = \{r_{1}, r_{2}, r_{3}, r_{4}\} \cup \{r_{5}\} \cup \{r_{6}\} \cup \{r_{8}\} = \{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{8}\}$$ with proper scenarios $$S_1 = \{r_4, r_6, r_8\}$$ $S_2 = \{r_2, r_3, r_6, r_8\}$ # Stepping back a bit ... 1. Suppose court now makes decision for v ("vessel") on the basis of r_2 : "It's a vessel because it has ballast tanks" This has a dynamic effect, updating case base to $$\Gamma_2 = \Gamma_1 \cup \{\langle X_{12}, r_2, v \rangle\}$$ and so changing the meaning of "vessel" so that, in future cases, $\{f_1^{\overline{v}}\}$ can never outweigh $\{f_4^v\}$. . . nor can it outweigh $\{f_1^v,f_4^v\}$, $\{f_3^v,f_4^v\}$, $\{f_1^v,f_3^v,f_4^v\}$, etc 2. Making the same decision on the basis of r_3 "It's a vessel because it is subject to Coast Guard regulations and has ballast tanks" has as similar effect, but less extensive 3. Even applying the existing rule r_4 underlying constraints "It's not a vessel because it's not self-propelled" changes the meaning of the term, by changing #### 4. Conjecture: This sort of constraint reflects a principle of conversational integrity at work whenever we say, as part of a conversation, things like John is bald Sarah is a good student That apple is large Target shooting is a sport but simply placed under a microscope in discussion of legal precedent #### 5. Upshot: The "justification of precedent" might have to do not so much with concerns of equity predictibility efficiency as we the application of this general conversational principle: we want to make sure the courts are having the same conversation