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Abstract The sentences of deontic logic may be understood as describing what an agent

ought to do when faced with a given set of norms. If these norms come into conflict, the best

the agent can be expected to do is to follow a maximal subset of the norms. Intuitively, a

priority ordering of the norms can be helpful in determining the relevant sets and resolve con-

flicts, but a formal resolution mechanism has been difficult to provide. In particular, reasoning

about prioritized conditional imperatives is overshadowed by problems such as the ‘order

puzzle’ that are not satisfactorily resolved by existing approaches. The paper provides a new

proposal as to how these problems may be overcome.
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1 Drinking and driving

Imagine you have been invited to a party. Before the event, you become the recipient of

various imperative sentences:

(1) Your mother says: if you drink anything, then don’t drive.

(2) Your best friend says: if you go to the party, then you do the driving.

(3) Some acquaintance says: if you go to the party, then have a drink with me.

Suppose that as a rule you do what your mother tells you—after all, she is the most important

person in your life. Also, the last time you went to a party your best friend did the driving, so

it really is your turn now. You can enjoy yourself without a drink, though it would be nice to

have a drink with your acquaintance—your best friend would not mind if you had one drink,

and your acquaintance does not care that you may be driving—but your mother would not

approve of such a behavior. Making up your mind,
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(4) You go to the party.

I think that intuitively it is quite clear what you must do: obey your mother and your best

friend, and hence do the driving and not accept your acquaintance’s invitation. However, it

is not so clear what formal algorithm could explain this reasoning.

An example of a similar form was first employed in epistemic logic,1 and has been termed

the ‘order puzzle’ (cf. Horty [21]). For the epistemic version, consider the following sen-

tences:

(5) You remember from physics: if you are in a car, lightning won’t strike you.

(6) The coroner tells you: he was struck by lightning.

(7) Your neighbor says: he must have been drinking and driving.

Suppose that driving includes being in a car, that you firmly believe in what you remem-

ber from physics, that you believe that information by medical officers is normally based

on competent investigation, and that you usually don’t question your neighbor’s observa-

tions, but think that sometimes she is just speculating. It seems quite clear what happens:

you keep believing what you remember from school, and don’t doubt what the coroner told

you, but question your neighbor’s information, maybe answering: “This can’t be true, as the

authorities found he was struck by lightning, and you can’t be struck by lightning in a car.”

In both cases, the problem as to how the underlying reasoning can be formally recon-

structed seems so far unsolved. Both involve a priority ordering of the sentences involved.

While the paper discusses the imperative side of things from the angle of philosophical (deon-

tic) logic, its solution seems also relevant for the similarly structured problems of conditional

beliefs and desires and the modeling of agent reasoning in the face of such conditionals.

Sections 2 and 3 present the formal framework for the discussion of conditional imperatives

and resulting obligations. Section 4 examines various proposals as to how a priority ordering

may be used to resolve conflicts, it turns out that all of these do not solve the ‘order puzzle.’

A postulate at the beginning of Sect. 5 summarizes our intuitions in this matter, but also

delegates the solution to the problem to a proper definition of what it means that conditional

imperatives conflict in a given situation. Three such definitions are studied, of which the

third seems to solve the problems. Section 6 gives theorems of a corresponding deontic logic

and Sect. 7 points at remaining problems for the representation of conditional imperatives.

Section 8 concludes.

2 Formal preliminaries

To formally discuss problems such as the one presented above, I shall use a simple frame-

work: let I be a set of objects, they are meant to be (conditional) imperatives. Two functions

g and f associate with each imperative an antecedent and a consequent—these are sentences

from the language of a basic logic that here will be the language LP L of propositional

logic.2 g(i) may be thought of as describing the ‘grounds’, or circumstances in which the

consequent of i is to hold, and f (i) as associating the sentence that describes what must be

1 Cf. Rintanen [34] p. 234, who in turn credits Gerhard Brewka with its invention.

2 PL is based on a language LP L , defined from a set of proposition letters Prop = {p1, p2, ...}, Boolean

connectives ¬, ∧, ∨,→, ↔ and brackets (, ) as usual. The truth of a LP L -sentence (I use upper case letters

A, B, C, ...) is defined recursively using valuations v : Prop → {1, 0} (I write v |� A), starting with v |� p

iff v(p) = 1 and continuing as usual. If A ∈ LP L is true for all valuations it is called a tautology. PL is the

set of all tautologies, and used to define provability, consistency and derivability (I write Ŵ ⊢P L A) as usual.

⊤ is an arbitrary tautology, and ⊥ is ¬⊤.
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the case if the imperative i is satisfied, its ‘deontic focus’ or ‘demand.’3 In accordance with

tradition (cf. Hofstadter and McKinsey [19]), I write A ⇒!B for an i ∈ I with g(i) = A and

f (i) = B, and !A means an unconditional imperative ⊤ ⇒!A. Note that A ⇒!B is just the

name for a conditional imperative that demands B to be made true in a situation where A is

true—it is not an object that is assigned truth values. A useful construction is the ‘materiali-

zation’ m(i) of an imperative i , which is the material implication g(i) → f (i) that may be

thought of as corresponding to a conditional imperative. For any i ∈ I and � ⊆ I , instead of

f (i), g(i), m(i), f (�), g(�) and m(�), I may use the superscripted i f, i g, im,� f,�g and

�m for better readability.

Let I be a tuple 〈I, f, g〉, let W ⊆ LP L be a set of sentences, representing ‘real world

facts,’ and � ⊆ I be a subset of the imperatives: then we define

TriggeredI(W,�) = {i ∈ �|W ⊢P L g(i)}.

So an imperative i ∈ � is triggered if its antecedent is true given W . Tradition wants it that

a conditional imperative can only be fulfilled or violated if its condition is the case.4 So I

define:

SatisfiedI(W,�) = {i ∈ �|W ⊢P L i g ∧ i f },

ViolatedI(W,�) = {i ∈ �|W ⊢P L i g ∧ ¬i f },

An imperative in SatisfiedI(W,�) [ViolatedI(W,�)] is called satisfied [violated] given the

facts W . It is of course possible that an imperative is neither satisfied nor violated given the

facts W . If an imperative is triggered, but not violated, we call the imperative satisfiable:

SatisfiableI(W,�) = {i ∈ TriggeredI(W,�)|W 0P L ¬i f }.

Moreover, the following definition will play a major rôle in what follows:

ObeyableI(W,�) = {Ŵ ⊆ �|Ŵm ∪ W 0P L ⊥}.

So a subset Ŵ of � is obeyable given W iff it is not the case that for some {i1, . . . , in} ⊆ Ŵ

we have W ⊢P L (i
g
1 ∧¬i

f
1 )∨ . . .∨ (i

g
n ∧¬i

f
n ): otherwise we know that whatever we do, i.e.

given any maxiconsistent subset V of LP L that extends W ⊆ V , at least one imperative in Ŵ

is violated.5 We speak of a conflict of imperatives when the triggered imperatives cannot all

be satisfied given the facts W , i.e. when TriggeredI(W,�) f ∪ W ⊢P L ⊥. More generally

speaking I will also call imperatives conflicting if they are not obeyable in the given situation.

As prioritized conditional imperatives are our concern here, we let all imperatives in I be

ordered by some priority relation <⊆ I × I . The relation < is assumed to be a strict partial

order on I , i.e. < is irreflexive and transitive, and additionally we assume < to be well-

founded, i.e. infinite descending chains are excluded. For any i1, i2 ∈ I, i1 < i2 means that

i1 takes priority over i2 (ranks higher than i2, is more important than i2, etc.). A tuple 〈I, f, g〉

will be called a conditional imperative structure, and 〈I, f, g,<〉 a prioritized conditional

imperative structure. If all imperatives in I are unconditional, we may drop any reference to

the relation g in the tuples and call these basic imperative structures and prioritized imper-

ative structures respectively.

3 In analogy to Reiter’s default logic one might add a third function e that describes exceptional circumstances

in which the imperative is not to be applied. I will not address this additional complexity here.

4 Cf. Rescher [33], Sosa [38], van Fraassen [9]. Also cf. Greenspan [11]: “Oughts do not arise, it seems, until

it is too late to keep their conditions from being fulfilled.”

5 Terms differ here, e.g. Downing [8] uses the term ‘compliable’ instead of ‘obeyable.’
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3 Deontic concepts

Given a set of imperatives, one may truly or falsely state that their addressee must, or must

not, perform some act or achieve some state of affairs according to what the addressee was

ordered to do. Regarding the ‘drinking and driving’ example, I think it is true that the agent

ought to do the driving, as this is what the second-ranking imperative, uttered by the agent’s

best friend, requires her to do, but that it would be false to say that the agent ought to drink

and drive. Statements that something ought to be done or achieved are called ‘normative’ or

‘deontic statements,’ and the ultimate goal of deontic logic is to find a logical semantics that

models the situation and defines the deontic concepts in such a way that the formal results

coincide with our natural inclinations in the matter.

3.1 Deontic operators for unconditional imperatives

For unconditional imperatives, such definitions are straightforward. Given a basic imperative

structure I = 〈I, f 〉, a monadic deontic O-operator, that formalizes ‘it ought to be that A (is

realized)’ by O A, is defined by

(td-m1) I |� O A if and only if (iff) I f ⊢P L A.

So obligation is defined in terms of what the satisfaction of all imperatives logically implies.6

With the usual truth definitions for Boolean operators, it can easily be seen that such a def-

inition produces a normal modal operator, i.e. one that is defined by the following axiom

schemes plus modus ponens:

(Ext) If ⊢P L A ↔ B, then O A ↔ O B is a theorem.

(M) O(A ∧ B) → (O A ∧ O B)

(C) (O A ∧ O B) → O(A ∧ B)

(N) O⊤

Furthermore, (td-m1) defines standard deontic logic SDL, which adds

(D) O A → ¬O¬A

iff the imperatives are assumed to be non-conflicting and so I f is PL-consistent, i.e. I f
0P L ⊥.

It is immediate that in the case of conflicts, (td-m1) pronounces everything as obligatory, and

in particular defines O⊥ true, thus making the impossible obligatory. If conflicts are not

excluded, a solution is to only consider (maximal) subsets of the imperatives whose demands

are consistent and define the O-operator with respect to these (I write I fC for the set of all

‘C-remainders,’ i.e. maximal subsets Ŵ of I such that Ŵ f
0P L C):

(td-m2) I |� O A iff ∀Ŵ ∈ I f⊥ : Ŵ f ⊢P L A

Quite similarly, a dyadic deontic operator O(A/C), meaning that A ought to be true given

that C is true, can be defined with respect to the maximal subsets of imperatives that do not

conflict in these circumstances:

(td-d1) I |� O(A/C) iff ∀Ŵ ∈ I f¬C : Ŵ f ⊢P L A

6 Such a definition of obligation was proposed e.g. by Alchourrón and Bulygin [1].
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So A is obligatory given that C is true if A is what the imperatives in any ¬C-remainder

demand.7 In the case of conflicts, this definition produces a “disjunctive solution:” e.g. if

there are two imperatives !A and !B with ⊢P L C → (A → ¬B), then neither O(A/C) nor

O(B/C) but O(A ∨ B/C) is true.8

Often, we want to use the information that we have about the circumstances also for

reasoning about the obligations in these circumstances. E.g. if the set of imperatives is {!(p1∨

p2)}, ordering me to either send you a card or phone you, and I cannot send you a card, i.e.

¬p1 is true, I should be able to conclude that I should phone you, and so O(p2/¬p1) should

be true. Such ‘circumstantial reasoning’ is achieved by the following change to the truth

definition:

(td-d1+) I |� O(A/C) iff ∀Ŵ ∈ I f¬C : Ŵ f ∪ {C} ⊢P L A

So A is obligatory given C is (invariably) true iff all maximal subsets of the imperatives’

demands (the imperatives’ associated descriptive sentences) that are consistent with the cir-

cumstances C , plus C , derive A. With the usual truth conditions for Boolean operators, a

semantics that employs (td-d1+) has a sound and (weakly) complete axiom system PD that

extends the system P of Kraus et al. [22], defined by these axiom schemes

(DExt) If ⊢P L A ↔ B then O(A/C) ↔ O(B/C) is a theorem.

(DM) O(A ∧ B/C) → (O(A/C) ∧ O(B/C))

(DC) O(A/C) ∧ O(B/C) → O(A ∧ B/C)

(DN) O(⊤/C)

(ExtC) If ⊢P L C ↔ D then O(A/C) ↔ O(A/D) is a theorem.

(CCMon) O(A ∧ D/C) → O(A/C ∧ D)

(CExt) If ⊢P L C → (A ↔ B) then O(A/C) ↔ O(B/C) is a theorem.

(Or) O(A/C) ∧ O(A/D) → O(A/C ∨ D)

with the additional (restricted, dyadic) ‘deontic’ axiom scheme

(DD-R) If 0P L ¬C then ⊢PD O(A/C) → ¬O(¬A/C)

(sometimes called “preservation of classical consistency”), hence the name PD.9

3.2 Deontic operators for conditional imperatives

Unlike their unconditional counterparts, conditional imperatives have been found hard to

reason about. von Wright [41] called conditional norms the “touchstone of normative logic,”

and van Fraassen [9] wrote with regard to logics for conditional imperatives: “There may

7 Though statements like O(¬C/C) are syntactically well-formed, they are thus defined false for any pos-

sible situation C—this is the same for any dyadic deontic logic since Hansson [15] and Lewis [23] (for the

motivation cf. [26] pp. 158–159). Similarly, imperatives like C ⇒!¬C are treated as violated as soon as they

are triggered by the facts. There exist meaningful natural-language imperatives like ‘close the window if it

is open,’ but I think that in these the proposition in the antecedent is different from the negation of the one

corresponding to the consequent, in that the second refers to a different point of time (‘see to it that the window

is closed some time in the near future if it is open now’), so they should not be represented by C ⇒!¬C .

8 For alternative solutions to the problem of conflicts cf. Goble [10] and Hansen [12], [13].

9 For proofs, and an additional “credulous ought” that defines O(A/C) true if the truth of A is required to

satisfy all imperatives in some ¬C-remainder, cf. Hansen [13].
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be systematic relations governing this moral dynamics, but I can only profess ignorance of

them.”

Representing a conditional imperative as an unconditional imperative that demands a mate-

rial conditional to be made true yields undesired results. Most notorious is the problem of

contraposition: consider a set I with the only imperative !(p1 → p2), meaning e.g. ‘if it rains,

take an umbrella.’ (td-d1) makes true O(p2/p1), but also O(¬p1/¬p2), so if you cannot

take your umbrella (your wife took it) you must see to it that it does not rain, which is hardly

what the speaker meant you to do. One may think that such problems arise from the fact that

antecedents of conditional imperatives often describe states of the affairs that the agent is not

supposed to, and often cannot, control. But consider the set {!(p1 → p2), !(¬p1 → p3)},

it yields O(p2/¬p3) with (td-d1). Here, p2 is what the consequent of some imperative

demands, so it supposedly describes something the agent can control. Now let the impera-

tives be interpreted as ordering me to wear a rain coat if it rains, and my best suit if it does

not: it is clear nonsense that I am obliged to wear a raincoat given that I can’t wear my best

suit (e.g. it is in the laundry). Such problems are the reason why we use special models for

conditional imperatives that separate antecedents and consequents (conditional imperative

structures), and write p1⇒!p2 instead of !(p1 → p2). But this only delegates the problem

from the level of representation to that of semantics, where now new truth definitions must

be found.

Let I = 〈I, f, g〉 be a conditional imperative structure, and let us ignore for the moment

the further complication of possible conflicts between imperatives. Then the following seems

a natural way to define what ought to be the case in circumstances where C is assumed to be

true:

(td-cd1) I |� O(A/C) iff [TriggeredI({C}, I )] f ⊢P L A

So dyadic obligation is defined in terms what is necessary to satisfy all imperatives that are

triggered in the assumed circumstances. E.g. if I = {p1 ⇒!p2}, with its only imperative

interpreted as “if you have a cold, stay in bed,” then O(p2/p1) truly states that I must stay

in bed given that I have a cold.

Like in the unconditional case, it seems important to be able to use ‘circumstantial reason-

ing,’ i.e. employ the information about the situation not only to determine if an imperative

is triggered, but also for reasoning with its consequent. E.g. if the set of imperatives is

{p1⇒!(p2 ∨ p3)}, with its imperative interpreted as expressing “if you have a cold, either

stay in bed or wear a scarf,” one would like to obtain O(p3/p1 ∧¬p2), expressing that given

that I have a cold and don’t stay in bed, I must wear a scarf. So (td-cd1) may be changed

into

(td-cd1+) I |� O(A/C) iff [TriggeredI({C}, I )] f ∪ {C} ⊢P L A.

Though the step from (td-cd1) to (td-cd1+) seems quite reasonable, such definitions have

also been criticized for defining the assumed circumstances as obligatory. In the above exam-

ple, (td-cd1+) also makes true O(p1/p1 ∧ ¬p2), so given that you have a cold it is true that

you ought to have it. The criticism loses much of its edge in the present setting, where one

can point to the distinction between imperatives (there is no imperative that demands p1)

and ought sentences that describe what must be true given the facts and the satisfaction of all

triggered imperatives: then the truth of O(p1/p1) seems no more paradoxical than the truth

of O⊤ that is accepted in most systems of deontic logic.
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3.3 Further modifications

In Makinson and van der Torre’s [25] more general theory of ‘input/output logic,’ (td-cd1)

is termed ‘simple-minded output,’ and (td-cd1+) is its ‘throughput version.’10 As the names

suggests, the authors also discuss more refined operations, which again might be consid-

ered for reasoning about conditional imperatives. One modification addresses the possibility

of ‘reasoning by cases’ that e.g. makes true O(p2 ∨ p4/p1 ∨ p3) for a set of imperatives

I = {p1⇒!p2, p3⇒!p4}. This may be achieved by the following definition, where LP L⊥¬C

is the set of all maximal subsets of the language LP L that are consistent with C :11

(td-cd2) I |� O(A/C) iff ∀V ∈ LP L⊥¬C : [TriggeredI(V, I )] f ⊢P L A

In the example, each set V ⊂ LP L that is maximally consistent with p1 ∨ p3 either contains

p1, then p1⇒!p2 is triggered and so p2 and also p2 ∨ p4 is implied by [TriggeredI(V, I )] f ,

or it contains ¬p1, but then it cannot also contain ¬p3 and so must contain p3, so p3⇒!p4

is triggered and therefore p4 and also p2 ∨ p4 implied, so for all sets V, p2 ∨ p4 is implied

and so O(p2 ∨ p4/p1 ∨ p3) made true.

In order to add ‘circumstantial reasoning’ to (td-cd3)—or, in Makinson and van der Torre’s

terms, for its ‘throughput version’—one might, in the vein of (td-d1+) and (td-cd1+), try

this definition:

(td-cd2−) I |� O(A/C) iff ∀V ∈ LP L⊥¬C : [TriggeredI(V, I )] f ∪ {C} ⊢P L A

But the definition seems too weak. Consider the set {p1⇒!(¬p2 ∨ p4), p3⇒!p4} and the

situation (p1 ∧ p2) ∨ p3. We would expect a reasoning as follows: in this situation, either

p1 ∧ p2 is true, so the first imperative is triggered but we cannot satisfy it by bringing about

¬p2, and so must bring about p4. Or p3 is true, then the second imperative is triggered and

we must again bring about p4. So we must bring about p4 in the given situation. But the

definition fails to make true O(p4/(p1 ∧ p2) ∨ p3). Like Makinson and van der Torre [25],

I therefore combine reasoning by cases with a stronger version of throughput:

(td-cd2+) I |� O(A/C) iff ∀V ∈ LP L⊥¬C : [TriggeredI(V, I )] f ∪ V ⊢P L A

As is easy to see, this resolves the difficulty: for {p1⇒!(¬p2 ∨ p4), p3⇒!p4}, O(p4/(p1 ∧

p2) ∨ p3) is now true, as desired. But this modification has an unwanted consequence: it

makes reasoning about conditional imperatives collapse into reasoning about consequences

of their materializations (cf. [26] p. 156):

Observation 1 By (td − cd2+), I |� O(A/C) iff m(I ) ∪ {C} ⊢P L A.

Proof For the right-to-left direction, for any imperative i ∈ I and any set V ∈ LP L⊥¬C ,

either V includes g(i), so i ∈ TriggeredI(V, I ) and therefore [TriggeredI(V, I )] f ⊢P L

g(i) → f (i), or it does not include g(i), but then it includes ¬g(i) by maximality, hence

V ⊢P L g(i) → f (i). So [TriggeredI(V, I )] f ∪ V ⊢P L g(i) → f (i). For the left-to-

right direction, if m(I ) ∪ {C} 0P L A then m(I ) ∪ {C} ∪ {¬A} is consistent, so there is

a V ∈ LP L⊥¬C such that m(I ) ∪ {C} ∪ {¬A} ⊆ V . It is immediate that for each i ∈

10 If I resembles the generating set G of input/output logic, then O(A/C) means that A is an output given

the input C (Makinson and van der Torre write A ∈ out (G, {C})). Though these authors liken their generating

set G to a body of conditional norms, it should be noted that they do not themselves introduce dyadic deontic

operators.

11 Makinson and van der Torre’s [25] call the resulting operator ‘basic output,’ of which a syntactical version

was first presented by Świrydowicz [39] p. 32.
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TriggeredI(V, I ), m(I ) ∪ V ⊢P L f (i), so if [TriggeredI(V, I )] f ∪ V ⊢P L A then m(I ) ∪

V ⊢P L A and since m(I ) ⊆ V also V ⊢P L A. Since V was consistent and included ¬A, it

cannot also derive A, and so by contraposition [TriggeredI(V, I )] f ∪ V 0P L A.

But such an equivalence makes all the problems of identifying conditional imperatives with

unconditional ones that demand their materializations reappear, in particular the problem of

contraposition.12 So it seems we must choose between ‘reasoning by cases’ and ‘circumstan-

tial reasoning.’ Another modification that these authors consider is that of ‘reusable output:’

when an imperative is triggered that demands A, and A is the trigger for some imperative

A ⇒!B, then we also ought to do B. Such a modification can easily be incorporated into a

truth definition and its ‘throughput’ version:

(td-cd3) I |� O(A/C) iff [Triggered∗
I
({C}, I )] f ⊢P L A

(td-cd3+) I |� O(A/C) iff [Triggered∗
I
({C}, I )] f ∪ {C} ⊢P L A

where Triggered∗
I
(W, Ŵ) means the smallest subset of Ŵ ⊆ I such that for all i ∈ Ŵ, if

[Triggered∗
I
(W, Ŵ)] f ∪ W ⊢P L g(i) then i ∈ Triggered∗

I
(W, Ŵ). Moreover, the two mod-

ifications of ‘reasoning by cases’ and ‘reusable output’ can be combined to produce the

following definition and its ‘throughput’ variant:

(td-cd4) I |� O(A/C) iff ∀V ∈ LP L⊥¬C : [Triggered∗
I
(V, I )] f ⊢P L A

(td-cd4+) I |� O(A/C) iff ∀V ∈ LP L⊥¬C : [Triggered∗
I
(V, I )] f ∪ V ⊢P L A

The topic of ‘reusable output’ is discussed under the name of ‘deontic detachment’ in the

deontic logic literature, and there is no agreement whether such a procedure is admissi-

ble (Makinson [24] p. 43 argues in favor, whereas Hansson [16] p. 155 disagrees). E.g. let

I = {!p1, p1 ⇒!p2}, and for its interpretation assume that it is imperative for the proper

execution of your job that you develop novel methods, which make you eligible for a bonus,

and that if you develop such novel methods you owe it to yourself to apply for the bonus.

Truth definitions that accept ‘deontic detachment’ make true O(p2/⊤), and so tell us that

you ought to apply for the bonus, which seems weird since it may be that you never invent

anything. However, proponents of deontic detachment may argue that in such a situation,

O(p1 ∧ p2/⊤) should hold, i.e. you ought to invent new methods and apply for the bonus,

and that the reluctance to also accept O(p2/⊤) is—like the inference from “you ought to put

on your parachute and jump” to “you ought to jump”—just a variant of Ross’ Paradox that

is usually considered harmless.

For (td-cd4) we once again obtain O(p2/¬p3) for I = {p1⇒!p2,¬p1⇒!p3}: for any

V ∈ LP L⊥p3,¬p3 ∈ V , furthermore either p1 ∈ V and so p1⇒!p2 ∈ Triggered∗
I
(V, I ),

or ¬p1 ∈ V , then ¬p1⇒!p3 ∈ Triggered∗
I
(V, I ), and since {p3} ∪ {¬p3} ⊢P L p1, again

p1⇒!p2 is in Triggered∗
I
(V, I ), hence [Triggered∗

I
(V, I )] f ⊢P L p2 for all V ∈ LP L⊥p3.

But as we saw above, this result seems counterintuitive.13 Note that (td-cd4+) is again equiv-

alent to I |� O(A/C) iff m(I ) ∪ {C} ⊢P L A and thus to (td-cd2+) (cf. [25] observation 16;

[26], p. 156). ⊓⊔

Observation 2 By (td-cd4+), I |� O(A/C) iff m(I ) ∪ {C} ⊢P L A.

Proof Similar to the proof of observation 1. For the left-to-right direction, use that for each

i ∈ Triggered∗
I
(V, I ), m(I ) ∪ V ⊢P L f (i), which is immediate. ⊓⊔

12 (td-cd2−) does not fare much better: though it does not include contraposition, it again makes O(p2/¬p3)

true for I = {p1⇒!p2,¬p1⇒!p3}, which is counterintuitive.

13 With respect to their out4-operation that corresponds to (td-cd4), Makinson and van der Torre [25] speak

of a ‘ghostly contraposition’.
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3.4 Operators for prioritized conditional imperatives

This paper focuses on prioritized conditional imperatives, and for these there is a further hur-

dle to finding the proper truth definitions for deontic concepts. Priorities are only required

if the imperatives cannot all be obeyed—otherwise there is no reason not to obey all, and

the priority ordering is not used. So the truth definitions must be able to deliver meaningful

results for possibly conflicting imperatives. The intuitive idea is to use the information in the

ordering to choose subsets of the set of imperatives under consideration that contain only

the more important imperatives and leave out less important, conflicting ones, so that the

resulting ‘preferred subset’ (or rather, subsets, since the choice may not always be uniquely

determined by the ordering) only contains imperatives that do not conflict in the given situa-

tion. More generally, let I be a prioritized conditional imperative structure 〈I, g, f,<〉, and

let � be a subset of I . Then PI(W,�) contains just the subsets of � that are thus preferred

given the world facts W . The above truth definitions can then be adapted such that they now

describe something as obligatory iff it is so with respect to all the preferred subsets of the

imperatives, i.e. they take on the following forms:

I |� O(A/C) iff ∀Ŵ ∈ PI({C}, I ) :

(td-pcd1) [TriggeredI({C}, Ŵ)] f ⊢P L A,

(td-pcd1+) [TriggeredI({C}, Ŵ)] f ∪ {C} ⊢P L A,

(td-pcd2) ∀V ∈ LP L⊥¬C : [TriggeredI(V, Ŵ)] f ⊢P L A,

(td-pcd2+) ∀V ∈ LP L⊥¬C : [TriggeredI(V, Ŵ)] f ∪ V ⊢P L A,

(td-pcd3) [Triggered∗
I
({C}, Ŵ)] f ⊢P L A,

(td-pcd3+) [Triggered∗
I
({C}, Ŵ)] f ∪ {C} ⊢P L A,

(td-pcd4) ∀V ∈ LP L⊥¬C : [Triggered∗
I
(V, Ŵ)] f ⊢P L A,

(td-pcd4+) ∀V ∈ LP L⊥¬C : [Triggered∗
I
(V, Ŵ)] f ∪ V ⊢P L A.

So e.g. (td − pcd1) defines A as obligatory if the truth of A is required to satisfy the trig-

gered imperatives in any preferred subset. Of course, the crucial and as yet missing element

is the decision procedure that determines the set PI({C}, I ) of preferred subsets. The next

section discusses several proposals to define such subsets; a new proposal is presented in the

section that follows it.

4 Identifying the preferred subsets

4.1 Brewka’s preferred subtheories

The idea that normative conflicts can be overcome by use of a priority ordering of the norms

involved dates back at least to Ross [35] and is also most prominent in von Wright’s work (cf.

[40] p. 68, 80).14 However, it has turned out to be difficult to determine the exact mechanism

by which such a resolution of conflicts can be achieved. This is true even when only uncon-

ditional imperatives are considered. Discussing various proposals for resolution of conflicts

between unconditional imperatives, I have argued in [14] that an ‘incremental’ definition

should be used for determining the relevant subsets. Based on earlier methods by Rescher

[32], such a definition was first introduced by Brewka [3] for reasoning with prioritized

14 But cf. already Watts [42] part II, ch. V, sec. III, principle 10: “Where two duties seem to stand in opposition

to each other, and we cannot practise both, the less must give way to the greater, and the omission of the less

is not sinful.”
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defaults. For any priority relation <, the idea is to consider all the ‘full prioritizations’ ≺ of

< (strict well orders that preserve <), and then work one’s way from the top of the strict

order downwards by adding the ≺-next-higher imperative to the thus constructed ‘preferred

subtheory’ if its demand is consistent with the given facts and the demands of the imperatives

that were added before. For the present setting, the definition can be given as follows:

Definition 1 (Brewka’s preferred subtheories) Let I = 〈I, f, g,<〉 be a prioritized condi-

tional imperative structure, � be a subset of I , and W ⊆ LP L be a set of PL-sentences.

Then Ŵ ∈ P
B
I

(W,�) iff (i) W 0P L ⊥, and (ii) Ŵ is obtained from a full prioritization ≺ by

defining

Ŵi =

{

⋃

j ≺ i Ŵ j ∪ {i} if W ∪

[

⋃

j ≺ i Ŵ j ∪ {i}
] f

0P L ⊥, and
⋃

j ≺ i Ŵ j otherwise,

for any i ∈ �, and letting Ŵ =
⋃

i∈� Ŵi .

Clause (i) ensures that for an inconsistent set of assumed ‘facts,’ no set is preferred. Some-

what roundabout, owed to the possibility of infinite ascending subchains, clause (ii) then

recursively defines a set Ŵ ∈ P
B
I
(W,�) for each full prioritization ≺: take the ≺-first i (the

exclusion of infinite descending subchains guarantees that it exists) and if W ∪ {i f } 0P L ⊥

then let Ŵi = {i}; otherwise Ŵi is left empty.15 Similarly, any ≺-later i is tested for possible

addition to the set
⋃

j ≺ i Ŵ j of elements that were added in the step for a j ∈ � that occurs

≺-prior to i . Ŵ is then the union of all these sets.

To see how this definition works, consider the set I = {!(p1 ∨ p2), !¬p1, !¬p2}, with the

ranking !(p1 ∨ p2) < !¬p2 and !¬p1 < !¬p2. For an interpretation, let !(p1 ∨ p2)) be your

mother’s request that you buy cucumbers or spinach for dinner, !¬p1 be your father’s wish

that no cucumbers are bought, and !¬p2 your sister’s desire that you don’t buy any spinach.

We have two full prioritizations !(p1∨ p2) < !¬p1 < !¬p2 and !¬p1 < !(p1∨ p2) < !¬p2—

let these be termed ≺1 and ≺2, respectively. The construction for ≺1 adds the imperative

!(p1 ∨ p2) in the first step and, since no conflict with the situation arises, !¬p1 in the second

step. In the third and last step, nothing is added since !¬p2 conflicts with the demands of

the already added imperatives. For ≺2 the only difference is that the first two imperatives

are added in inverse order. Thus P
B
I
(W, I ) = {{!(p1 ∨ p2), !¬p1}}. Using (td − pcd1) we

obtain O(¬p1 ∧ p2/⊤), which means that you have to buy spinach and not cucumbers, thus

fulfilling your parents’ requests but not your sister’s, which seems reasonable.

As I showed in [14], Brewka’s method is extremely successful for dealing with uncon-

ditional imperatives. It is provably equivalent for such imperatives to methods proposed

by Ryan [36] and Sakama and Inoue [37], and it avoids problems of other approaches by

Alchourrón and Makinson [2], Prakken [30] and Prakken and Sartor [31]. Moreover, an

equally intuitive maximization method proposed by Nebel [28], [29], that adds first a maxi-

mal set of the highest-ranking imperatives, then a maximal set of second-ranking imperatives,

etc., but for its construction requires the ordering to be based on a complete preorder, can

be shown to be embedded in Brewka’s approach for such orderings. So my aim will be to

retain Brewka’s method for the unconditional case—in fact, all proposals that follow meet

this criterion. However, when it is applied without change to conditional imperatives, the

15 As usual, the union of an empty set of sets is taken to be the empty set.
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algorithm may lead to incorrect results. E.g. consider a set I with two equally ranking imper-

atives {p1⇒!p2,¬p1⇒!¬p2}, meaning e.g. “if you go out, wear your boots” and “if you

don’t go out, don’t wear your boots:” since the consequents contradict each other, an unmod-

ified application of Brewka’s method produces P
B
I
({p1}, I ) = {{p1⇒!p2}, {¬p1⇒!¬p2}},

which fails to make true O(p2/p1) by any truth definition of Sect. 3.4: the right set contains

no imperatives that are triggered by p1. So we cannot derive that you ought to wear your

boots, given that you are going out. But intuitively there is no conflict, since the obligations

arise in mutually exclusive circumstances only.

4.2 A naïve approach

A straightforward way to adopt Brewka’s method to the case of conditional imperatives is to

use not all imperatives for the construction, but only those that are triggered by the facts W ,

i.e. to use TriggeredI(W,�) instead of �:

Definition 2 (The naïve approach) Let I = 〈I, f, g,<〉 be a prioritized conditional imper-

ative structure, � be a subset of I , and W ⊆ LP L be a set of PL-sentences. Then Ŵ ∈

P
n
I
(W,�) iff Ŵ ∈ P

B
I

(W, TriggeredI(W,�)).

The change resolves our earlier problems with Brewka’s method: consider again the set of

imperatives {p1⇒!p2,¬p1⇒!¬p2}, where the imperatives were interpreted as ordering me

to wear my boots when I go out, and not wear my boots when I don’t. The new defini-

tion produces P
n
I
({p1}, I ) = {{p1 ⇒!p2}}, its only ‘preferred’ subset containing just the

one imperative that is triggered given the facts {p1}. By all truth definitions of Sect. 3.4,

O(p2/p1) is now true, so given that you go out, you ought to wear your boots, which is as

it should be.

The naïve approach is similar to Horty’s proposal in [20] in that conflicts are only removed

between imperatives that are triggered (though the exact mechanism differs from Horty’s).

When I nevertheless call it ‘naïve,’ this is because there are conceivable counterexamples to

this method. Consider the set of prioritized imperatives !p1 < p1⇒!p2 < !¬p2, and for an

interpretation suppose that your job requires you to go outside p1, that your mother, who is

concerned for your health, told you to wear a scarf p2 if you go outside, and that your friends

don’t want you to wear a scarf, whether you go outside or not. In the default situation ⊤

only the first imperative and the third are triggered, i.e. TriggeredI({⊤}, I ) = {!p1, !¬p2}.

Since their demands are consistent with each other, we obtain P
n
I
({⊤}, I ) = {{!p1, !¬p2}},

for which all truth definitions of Sect. 3.4 make O(p1 ∧ ¬p2/⊤) true. So you ought to go

out and not wear a scarf, thus satisfying the first and the third imperative, but violating the

second-ranking imperative. But arguably, if an imperative is to be violated, it should not be

the second-ranking p1⇒!p2, but the lowest ranking !¬p2 instead.

4.3 The stepwise approach

To avoid the difficulties of the ‘naïve’ approach, it seems we must not just take into account

the imperatives that are triggered, but also those that become triggered when higher ranking

imperatives are satisfied. To this effect, the following modification may seem

reasonable:

Definition 3 (The stepwise approach) Let I = 〈I, f, g,<〉 be a prioritized conditional

imperative structure, � be a subset of I , and W ⊆ LP L be a set of PL-sentences. Then
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Ŵ ∈ P
s(W,�) iff (i) W 0PL ⊥, and (ii) Ŵ is obtained from a full prioritization ≺ by

defining

Ŵi =

{

⋃

j ≺ i Ŵ j ∪ {i} if i ∈ SatisfiableI(W ∪

[

⋃

j ≺ i Ŵ j

] f

,�), and
⋃

j ≺ i Ŵ j otherwise,

for any i ∈ �, and letting Ŵ =
⋃

i∈� Ŵi .

So at each step one considers what happens if the imperatives that were included so far are

satisfied, and adds the current imperative only if it is satisfiable given W and the satisfaction

of these previous imperatives. Note that satisfiability of an imperative, like its satisfaction and

violation, presupposes that the imperative is triggered. The new definition not only includes,

at each step, those imperatives that are triggered and can be satisfied given the facts and the

supposed satisfaction of the previously added imperatives: it also includes those that become

triggered when a previously added imperative is satisfied.

This modification avoids the previous difficulty: consider again the set of prioritized

imperatives !p1<p1⇒!p2<!¬p2. There is just one full prioritization, which for W = {⊤}

yields in the first step the set {!p1}, and in the second step {!p1, p1⇒!p2}, since p1⇒!p2 is

triggered when the previously added imperative !p1 is assumed to be satisfied. In the third

step, nothing is added: though the imperative !¬p2 is triggered, it cannot be satisfied together

with the previously added imperatives. So we obtain P
s
I
({⊤}, I ) = {{!p1, p1⇒!p2}}, and

hence O(p1/⊤), but not O(p1 ∧¬p2/⊤), is defined true by all truth definitions of Sect. 3.4.

Operators that accept ‘deontic detachment’ (td-pcd3(+), 4(+)) make true O(p1 ∧ p2/⊤), so

you must go out and wear a scarf, which is as it should be.

However, a small change in the ordering shows that this definition does not suffice: let

the imperatives now be ranked p1 ⇒!p2 < !p1 < !¬p2. (For the interpretation, assume

that the conditional imperative to wear a scarf when leaving the house was uttered by some

high-ranking authority, e.g. a doctor.) Then again P
s
I
({⊤}, I ) = {{!p1, !¬p2}}: in the first

step, nothing is added since p1⇒!p2 is neither triggered by the facts nor by the assumed

satisfaction of previously added imperatives (there are none). In the next two steps, !p1 and

!¬p2 are added, as each is consistent with the facts and the satisfaction of the previously

added imperatives. So again all truth definitions of Sect. 3.4 make true O(p1 ∧ ¬p2/⊤), i.e.

you ought to go out and not wear a scarf, satisfying the second and third ranking imperatives

at the expense of the highest ranking one. But surely, if one must violate an imperative, it

should be one of the lower-ranking ones instead.

4.4 The reconsidering approach

The merits of the stepwise approach were that it did not only consider the imperatives that are

triggered, but also those that become triggered when already added imperatives are satisfied.

Such considerations applied to those imperatives that follow in the procedure. Yet the satis-

faction of already added imperatives might also trigger higher-ranking imperatives, which by

this method are not considered again. So it seems necessary, at each step, to reconsider also

the higher-ranking imperatives. An algorithm that does that was first introduced for default

theory by Marek and Truszczyński [27] p. 72, and later employed by Brewka in [4]; it can

be reformulated for the present setting as follows:

Definition 4 (The reconsidering approach) Let I = 〈I, f, g,<〉 be a prioritized conditional

imperative structure, � be a subset of I , and W ⊆ LP L be a set of PL-sentences. Then
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Ŵ ∈ P
r
I
(W,�) iff (i) W 0P L ⊥, and (ii) Ŵ is obtained from a full prioritization ≺ by

defining

Ŵi =
⋃

j ≺ i
Ŵ j ∪ min≺

[

SatisfiableI

(

W ∪

[

⋃

j ≺ i
Ŵ j

] f

,�

)

\
⋃

j ≺ i
Ŵ j

]

for i ∈ �, and letting Ŵ =
⋃

i∈� Ŵi .
16

The definition reconsiders at each step the whole ordering, and adds the ≺-first17 impera-

tive (due to the definition of ≺ there is just one) that has not been added previously and is

satisfiable given both the facts W and the consequents of the previously added imperatives.

To see how the definition works, consider again the example which the stepwise approach

failed, i.e. the set of prioritized imperatives p1⇒!p2 < !p1 < !¬p2. We are interested in the

preferred sets for the default circumstances ⊤, i.e. the sets in P
r
I
({⊤}, I ). I is already fully

prioritized, so there is just one such set. Applying the algorithm, we find the minimal (highest

ranking) element in SatisfiableI({⊤}, I ) is !p1, so this element is added in the first step. In

the second step, we look for the minimal element in SatisfiableI({⊤} ∪ {!p1}
f , I ), other

than the previously added !p1. It is p1⇒!p2, since the assumed satisfaction of all previously

added imperatives triggers it, and its consequent can be true together with {⊤} ∪ {p1}. So

p1⇒!p2 is added in this step. In the remaining third step, nothing is added: !¬p2 is not in

SatisfiableI({⊤}∪{!p1, p1⇒!p2}
f , I ), and all other elements in this set have been previously

added. So P
r
I
({⊤}, I ) = {{!p1, p1⇒!p2}}. Now all truth definitions of Sect. 3.4 make true

O(p1/⊤), but not O(p1 ∧ ¬!p2/⊤), and operators that accept ‘deontic detachment’ make

true O(p1 ∧ p2/⊤). So, in the given interpretation, you must go out (as your job requires)

and wear a scarf (as the doctor ordered you to do in case you go out), which is as it should

be.

However, again problems remain. Let the imperatives now be prioritized in the order

p1 ⇒!p2 < !¬p2 < !p1. Let p1 ⇒!p2 stand for the doctor’s order to wear a scarf when

going outside, let !¬p2 stand for your friends’ expectation that you don’t wear a scarf, and let

!p1 represent your sister’s wish that you leave the house. Construct the set in P
r
I
({⊤}, I )—

since I remains fully prioritized, there is again just one such set. The minimal element

in SatisfiableI({⊤}, I ) is !¬p2, and so is added in the first step. The minimal element in

SatisfiableI({⊤} ∪ {!¬p2}
f , I ), other than !¬p2, is !p1 which therefore gets added in the

second step. Nothing is added in the remaining step: !¬p2 and !p1 have already been added,

and p1 ⇒!p2 is not in SatisfiableI({⊤} ∪ {!¬p2, !p1}
f , I ): though it is triggered by the

assumed satisfaction of !p1, its consequent is contradicted by the assumed satisfaction of

!¬p2. So P
r
I
({⊤}, I ) = {{!p1, !¬p2}}. Hence all truth definitions of Sect. 3.4 again make

true O(p1 ∧¬p2/⊤), so you ought to go out without a scarf, again satisfying the second and

third ranking imperatives at the expense of the first, which seems the wrong solution.

4.5 A fixpoint approach

To eliminate cases in which the ‘reconsidering approach’ still adds imperatives that can

only be satisfied at the expense of violating a higher-ranking one, a ‘fixpoint’ approach was

first proposed for default reasoning by Brewka and Eiter [5]. It tests each set that may be

considered as preferred to see if it really includes all the elements that should be included:

16 Note that in ‘Ŵi , ’ i is used just as an index—it does not mean that i is considered for addition at this step,

and may be added at an earlier or later step (or not at all).

17 For any ordering < on some set Ŵ, min<Ŵ = {i ∈ Ŵ|∀i ′ ∈ Ŵ : if i ′ �= i, then i ′ ≮ i}, and max<Ŵ = {i ∈

Ŵ|∀i ′ ∈ Ŵ : if i ′ �= i, then i ≮ i ′}, as usual.
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imperatives that are triggered given the facts and the assumed satisfaction of all imperatives

in the set, and would be added by Brewka’s [3] original method that adds the higher ranking

imperatives first. The procedure translates as follows:

Definition 5 (The fixpoint approach) Let I = 〈I, f, g,<〉 be a prioritized conditional

imperative structure, � be a subset of I , and W ⊆ LP L be a set of PL-sentences. Then

Ŵ ∈ P
f
I
(W,�) iff Ŵ ∈ P

B
I

(W, TriggeredI(W ∪ Ŵ f ,�)).

To see how this definition works, consider the above set of prioritized imperatives p1 ⇒

!p2 < !¬p2 < !p1. It is immediate that the set {!p1, !¬p2} cannot be in P
f
I
({⊤}, I ):

if we assume all imperatives in this set to be satisfied, then all imperatives are triggered,

i.e. TriggeredI({⊤} ∪ {!p1, !¬p2}
f , I ) = I . By Brewka’s original method, P

B
I
(W, I ) =

{{p1⇒!p2, !p1}}: < is already fully prioritized, and for this full prioritization the method

adds p1⇒!p2 in the first step, !¬p2 cannot be added in the second step since its consequent

contradicts the consequent of the previously added p1 ⇒!p2, and in the third step !p1 is

added. So since the considered set {!p1, !¬p2} is not in P
B
I
(W, I ), it is not a ‘fixpoint.’

Rather, as may be checked, the only ‘fixpoint’ in P
f
I
({⊤}, I ) is {p1⇒!p2, !p1}. Then all

truth definitions of Sect. 3.4 make true O(p1/⊤), but no longer O(p1 ∧¬p2/⊤). Moreover,

truth definitions that allow ‘deontic detachment’ make true O(p1 ∧ p2/⊤). In the given

interpretation this means that you must leave the house at your sisters request and wear a

scarf, as the doctor ordered you to do in case you go out.

Though the construction now no longer makes true O(p1 ∧ ¬p2/⊤), its solution for

the example, that determines the set {p1⇒!p2, !p1} as the fixpoint of the set of prioritized

imperatives p1 ⇒!p2 < !¬p2 < !p1, seems questionable. Though this now includes the

doctor’s order, you now have no obligation anymore to satisfy the imperative that is second

ranking, i.e. your friends’ request that you don’t wear a scarf; truth definitions that accept

‘deontic detachment’ even oblige you to violate it by wearing a scarf. Now consider the

situation without the third ranking imperative !p1: it can easily be verified that for a set

I = {p1 ⇒!p2, !¬p2} the only fixpoint in P
f
I
({⊤}, I ) is {!¬p2}. So for the reduced set,

(td − pcd1) makes true O(¬p2/⊤), i.e. you ought to obey your friends’ wish. That the satis-

faction of this higher ranking imperative !¬p2 should no longer be obligatory when a lower

ranking imperative !p1 is added, seems hard to explain. If the ranking is taken seriously, I

think one should still satisfy the higher ranking imperatives, regardless of what lower ranking

imperatives are added.

For another problem consider the set of prioritized imperatives p1 ⇒!p2 <!(p1 ∧¬p2) <

!p3. For an interpretation, let the first imperative be again the doctor’s order to wear a scarf

in case you go out, the second one be your friends’ request to go out and not wear a scarf,

and the third be the wish of your aunt that you write her a letter. It is easily proved that the set

has no fixpoint, and so there is also none that contains !p3, hence all truth definitions make

O(p3/⊤) false, so you do not even have to write to your aunt. But even if the presence of

a higher ranking conditional imperative and a lower ranking imperative to violate it poses a

problem (why should it? after all, the lower ranking imperative is outranked), it is hard to see

why the subject should be left off the hook for all other, completely unrelated obligations.18

18 The lack of fixpoints is a well-known problem of such definitions (cf. e.g. Caminada and Sakama [7]).

Another approach to conditional imperatives by Makinson in [24] has trouble resolving the same example:

for the default circumstances ⊤ it produces the set {!(p1 ∧ ¬p2), !p3}. p1⇒!p2 is not considered, since its

only ‘label’ (roughly: a conjunction of the circumstances, the imperatives’ antecedents that would trigger∗ it,

and its consequent) is inconsistent (it is ⊤ ∧ (p1 ∧ ¬p2) ∧ p2). But why should the agent not be free to obey

p1⇒!p2, and not violate it by satisfying !(p1 ∧ ¬p2)?
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4.6 Discussion

For a discussion of our results so far, let us return to the ‘drinking and driving’ example from

the introduction. Let the three imperatives:

(1) Your mother says: if you drink anything, then don’t drive.

(2) Your best friend says: if you go to the party, then you do the driving.

(3) Some acquaintance says: if you go to the party, then have a drink with me.

be represented by the set of prioritized imperatives p1 ⇒¬p2 < p3⇒p2 < p3⇒p1. Let the

set of facts be {p3}, i.e. you go to the party. Brewka’s original method is not tailored to

be directly employed on conditional imperatives, as it ignores the antecedents altogether.

The next three approaches, the naïve, the stepwise and the reconsidering ones, produce

P
n
I
({p3}, I ) = P

s
I
({p3}, I ) = P

r
I
({p3}, I ) = {{p3⇒!p2, p3⇒!p1}}, which by all truth

definitions of Sect. 3.4 makes true O(p1 ∧ p2/p3), so you ought to drink and drive. The

fixpoint approach produces P
f
I
({p3}, I ) = {{p1⇒!¬p2, p3⇒!p1}}, so all truth definitions

make true O(p1/p3), which means you ought to drink. Truth definitions with ‘deontic detach-

ment’ additionally make true O(p1 ∧ ¬p2/p3), so you ought to drink and not drive. But

being obliged to drink runs counter to our intuitions for the ‘drinking and driving’ example.

So we have to look for a different solution.

Before we do that, I will, however, question again our intuition in this matter. Horty [21]

has recently used a structurally identical example to argue for just the opposite, that the solu-

tion by the fixpoint approach is correct. His example is that of three commands, uttered by

a colonel, a major and a captain to a soldier, Corporal O’Reilly. The Colonel, who does not

like it too warm in the cabin, orders O’Reilly to open the window whenever the heat is turned

on. The Major, who is a conservationist, wants O’Reilly to keep the window closed during

the winter. And the Captain, who does not like it to be cold, orders O’Reilly to turn the heat

on during the winter. O’Reilly is trying to figure out what to do. The intended representation

is again the prioritized conditional imperative structure employed above for the ‘drinking

and driving’ example, where p1 now means that the heat is turned on, p2 means that the

window is closed, and p3 means that it is winter. We saw that the fixpoint approach yields

the preferred subset {p1⇒!¬p2, p3⇒!p1}, making true O(p1/p3) for all truth definitions,

and O(p1 ∧¬p2/p3) for truth definitions that accept ‘deontic detachment,’ so O’Reilly must

turn on the heat and then open the window, and thus violate the Major’s order. Horty argues

as follows in support of this choice:

“O’Reilly’s job is to obey the orders he has been given exactly as they have been

issued. If he fails to obey an order issued by an officer without an acceptable excuse,

he will be court-martialed. And, let us suppose, there is only one acceptable excuse for

failing to obey such an order: that obeying the order would, in the situation, involve

disobeying an order issued by an officer of equal or higher rank. (...) So given the set

of commands that O’Reilly has been issued, can he, in fact, avoid court-martial? Yes

he can, by (...) obeying the orders issued by the Captain and the Colonel (...). O’Reilly

fails to obey the Major’s order, but he has an excuse: obeying the Major’s order would

involve disobeying an order issued by the Colonel.”

Horty’s principle seems quite acceptable: for each order issued to the agent, the agent may

ask herself if obeying the order would involve disobeying an order of a higher ranking officer

(then she is excused), and otherwise follow it. The result is a set of imperatives where each

imperative is either obeyed, or disobeyed but the disobedience excused. When I nevertheless

think the argument is not correct, it is because I think it confuses the status quo and the status
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quo posterior. Obeying the Major’s order does not, in the initial situation, involve disobeying

the Colonel’s order. Only once O’Reilly follows the Captain’s order and turns on the heat, it

is true that he must obey the Colonel, open the window and thus violate the Major’s order. But

this does not mean that he should follow the Captain’s order in the first place—as by doing

so he brings about a situation in which he is forced, by a higher ranking order, to violate a

command from another higher ranking officer. Quite to the contrary, I think that being forced

to violate a higher ranking order when obeying a lower ranking one is a case where following

the lower one ‘involves’ such a violation, and so the only order the agent is excused from

obeying is the lowest ranking command.

Consider finally this variant: suppose that if I am attacked by a man, I must fight him (to

defend my life, my family etc.). Furthermore, suppose I have pacifist ideals which include

that I must not fight the man. Now you tell me to provoke him, which in the given situation

means that he will attack me. Let self-defense rank higher than my ideals, which in turn rank

higher than your request. Should I do as you request? By the reasoning advocated by Horty,

there is nothing wrong with it: I satisfy your request, defend myself as I must, and though I

violate my ideals, I can point out to myself that the requirement to fight back took priority.

But I think if I really do follow your advice, I would feel bad. I think this would not just be

some irrational regret for having to violate, as I must, my ideals, but true guilt for having

been tempted into doing something I should not have done, namely provoking the man: it

caused the situation that made me violate my ideals. So I think our intuitions in the ‘drinking

and driving’ example and the other cases have been correct.

5 New strategies and a new proposal

In the face of the difficulties encountered so far, it seems necessary to address the issue of

finding an appropriate mechanism for a resolution of conflicts between prioritized conditional

imperatives in a more systematic manner. So far intuition has guided us mainly as to what

imperatives should be included in a subset of ‘preferred imperatives.’ I think the following

postulate sums up the intuitions that have so far influenced the proposal and rejection of

solutions:

Postulate Any imperative should be considered relevant (included) as long as it is not

violated or, in the given situation, conflicts with other imperatives that are also considered

relevant (included) and do not rank lower.

The postulate makes clear that the need to satisfy a lower ranking imperative cannot serve

as an excuse to violate an imperative of higher priority. However, this postulate delegates

the answer of how the set of ‘preferred imperatives’ should be constructed to the answer of

another question: when do conditional imperatives conflict in a given situation? There appear

to be several possible answers to this question, which lead to different solutions.

5.1 Subsets with consistent extensions

For the definition of conflicts between conditional imperatives one might recur to a definition

of conflicts between desires as proposed by Broersen et al. [6]. Their idea, translated to our

setting, is that for any set of facts W and set of conditional imperatives � there is a smallest set

E(W,�) ⊆ LP L such that (i) W ⊆ E(W,�) and (ii) for any i ∈ �, if E(W,�) ⊢P L g(i)

then f (i) ∈ E(W,�). The set of imperatives � is then defined as conflicting given the facts

W if the thus constructed extension E(W,�) of the facts is inconsistent, i.e. E(W,�) ⊢P L ⊥
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(cf. [6] def. 5.5). This ‘test’ for conflicts may then be employed within a variant of Brewka’s

original method.

Definition 6 (Preferred Subsets with Consistent Extensions) Let I = 〈I, f, g,<〉 be a pri-

oritized conditional imperative structure, � be a subset of I , and W ⊆ LP L be a set of

PL-sentences, and let E(W,�) be defined as described above. Then Ŵ ∈ P
e
I
(W,�) iff (i)

W 0P L ⊥, and (ii) Ŵ is obtained from a full prioritization ≺ by defining

Ŵi =

{⋃

j ≺ i Ŵ j ∪ {i} if E(W,
⋃

j ≺ i Ŵ j ∪ {i}) 0P L ⊥, and
⋃

j ≺ i Ŵ j otherwise,

for any i ∈ �, and letting Ŵ =
⋃

i∈� Ŵi .

To see how this definition works, consider the ‘drinking and driving’ example, where the set

of prioritized imperatives is p1 ⇒!¬p2 < p3 ⇒!p2 < p3 ⇒!p1 and the situation W = {p3}.

There is only one full prioritization which is identical with <. In the first step, p1 ⇒!¬p2 is

added, since E({p3}, {p1 ⇒!¬p2}) = {p3} which is consistent. In the second step, p3 ⇒!p2

is added, as E({p3}, {p1 ⇒!¬p2, p3 ⇒!p2}) = {p3, p2}, which is again consistent. In

the third step, p3 ⇒!p1 is rejected, since E({p3}, {p1 ⇒!¬p2, p3 ⇒!p2, p3 ⇒!p1}) =

{p3, p2, p1,¬p2}, which is inconsistent. So we have P
e
I
({p3}, I ) = {{p1 ⇒!¬p2, p3 ⇒

!p2}}, making true O(p2/p3) for all truth definitions of Sect. 3.4, so given that I go to the

party I must do the driving, which is as it should be.

However, there is a problem for the test using consistent extensions, as for some truth def-

initions it delivers sets of imperatives that are clearly conflicting, in the sense that they make

O(⊥/C) true for a consistent fact C : Consider the set of facts W = {p1 ∨ p2} and the set of

imperatives I = {p1 ⇒!p3, p2 ⇒!p3, !¬p3}. We have E(W, I ) = {p1 ∨ p2,¬p3}, which

is consistent, and so all imperatives in I are added to the preferred subset, regardless of their

ordering. But for any truth definition that allows for ‘reasoning by cases’ (td-pcd2(+),4(+))

we then have both O(p3/p1 ∨ p2) and O(¬p3/p1 ∨ p2), and so also O(⊥/p1 ∨ p2).

This is simply because the construction of extensions does not take care of reasoning by

cases, i.e. it does not add p3 to the extension in case we both have p1 ∨ p2 in W and

{p1 ⇒!p3, p2 ⇒!p3} ⊆ I . Perhaps the definition of consistent extensions can be amended,

but to avoid delivering preferred sets of imperatives that make true O(⊥/C) for some truth

definition and some consistent fact C suggests a different solution that is explored in the next

section.

5.2 Deontically tailored preferred subsets

In the unconditional case, the reason to move from definition (td-m1) to (td-m2) was that

when there are conflicts between imperatives, the former makes true the monadic deontic

formula O⊥, i.e. the agent ought to do the logically impossible. This result was avoided by

considering only maximal sets of imperatives with demands that are collectively consistent,

i.e. sets that do not make O⊥ true. When faced with the question what dyadic deontic for-

mula should not be true when conflicts are resolved for arbitrary situations C , the formula

O(¬C/C) appears to be the dyadic equivalent: a mechanism for conflict resolution should

not result in telling the agent to change the supposed, unalterable facts.19 So to define the set

PI({C}, I ) required by the truth definitions (td-pcd1(+) − 4+), we can modify Brewka’s

19 This test is identical to the one used by Makinson and van der Torre [26] p. 158/159 to determine ‘consis-

tency of output’ (cf. also for arguments why O(¬C/C) should be used, i.e. for their setting, the ‘output’ should

be consistent with the ‘input,’ rather than the formula O(⊥/C) and thus consistency of output simpliciter).
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original method in such a way that it tests, at each step, for each of the constructed subsets, if

the corresponding truth-definition (td-cd1(+) − 4+) does not make O(¬C/C) true for this

set.20 Formally:

Definition 7 (Deontically Tailored Preferred Subsets) Let I = 〈I, f, g,<〉 be a prioritized

conditional imperative structure, and C ∈ LPL describe the given situation. Let (td-pcd∗) be

any of the truth definitions (td-pcd1(+) − 4(+)). Then Ŵ is in the set P
∗
I
({C}, I ) employed

by this truth definition iff (i) {C} 0P L ⊥, and (ii) Ŵ is obtained from a full prioritization ≺

by defining

Ŵi =

{⋃

j ≺ i Ŵ j ∪ {i} if 〈
⋃

j ≺ i Ŵ j ∪ {i}, f, g〉 2 O(¬C/C)by(td-cd∗),
⋃

j ≺ i Ŵ j otherwise,

for any i ∈ I , and letting Ŵ =
⋃

i∈I Ŵi .

By this construction, each of the preferred subsets contains a maximal number of the imper-

atives such that they do not make true O(¬C/C) for the situation C and the truth definition

that is employed, and so the resulting truth definition likewise avoids this truth. Such a con-

struction of the preferred subsets might be considered ‘tailored’ to the truth definition in

question, and any remaining deficiencies might be seen as stemming from the employed

truth definition. But this being so, the method reveals a strong bias towards truth definitions

that accept ‘deontic detachment’, and in particular truth definitions (td-pcd2+, 3(+), 4(+)):

Consider the set of imperatives I = {!p1, p1 ⇒!p2, !¬p2} with the ranking !p1 <

p1⇒!p2 < !¬p2, that was used to refute the ‘naïve approach.’ As can be easily checked,

P
∗
I
({⊤}, I ) = {I } for all truth definitions (td-pcd1, 1+, 2). So by all these truth definitions,

O(p1 ∧ ¬p2/⊤) is true. So they commit us to violating the second-ranking imperative,

whereas intuitively, the third-ranking imperative should be violated instead. By contrast,

all truth definitions (td-pcd3(+), 4(+)), that employ reusable output, and of course likewise

(td-pcd2+) that is equivalent to (td-pcd4+), handle all given examples exactly as it was sug-

gested they should. In particular, consider the ordered imperatives p1⇒!p2 < !¬p2 < !p1,

that were used to refute both the ‘reconsidering’ and the ‘fixpoint’ approaches: for ∗ =

2+, 3(+), 4(+), P
∗
I
({⊤}, I ) is {{p1⇒!p2, !¬p2}}, making O(¬p2/⊤) true by all these truth

definitions, which thus commit us to satisfying the second ranking imperative, and not to

violating it in favor of satisfying the third ranking imperative as these approaches did. The

‘drinking and driving’ example is also handled correctly: the set of prioritized imperatives

p1 ⇒!¬p2< p3 ⇒!p2< p3 ⇒!p1 produces, for the situation p3, the set P
∗
I
({p3}, I ) =

{{p1⇒!¬p2, p3⇒!p2}}. So the third ranking imperative, that commits the agent to drinking

and thus, by observation of the highest ranking imperative, prevents the agent from driving,

is disregarded. Instead, the truth definitions make true O(p2/p3), so the agent must do the

driving if she goes to the party, as her best friend asked her to.

Is this the solution, then? Some uneasiness remains as to the quick way with which def-

initions (td-pcd1, 1+, 2) are discharged as insufficient. Why should it not be possible to

maintain, as these definitions do, that conditional imperatives only produce an obligation

if they are factually triggered, while at the same time maintaining that the above examples

should not be resolved the way they are? The purpose of a truth definition for the deontic

O-operator is to find a formal notion of ‘ought’ that reflects ordinary reasoning, and our

intuitions on that matter may differ from our ideas as to what may constitute a good choice

from a possibly conflicting set of prioritized conditional imperatives. I will now make a new

proposal how to construct the ‘preferable subsets’, that keeps the positive results without

20 The preferred subsets are thus a choice from the ‘maxfamilies’ defined in [26].
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committing us to prefer any of the truth definitions of Sect. 3.4 by virtue of their handling of

prioritized imperatives alone.

5.3 Preferred maximally obeyable subsets

What made Brewka’s approach so successful is that it maximizes the number of higher rank-

ing imperatives in the preferred subsets of a given set of unconditional imperatives: for each

‘rank,’ a maximal number of imperatives are added that can be without making the set’s

demands inconsistent in the given situation. As was shown, Brewka’s approach cannot be

directly applied to conditional imperatives, since it makes no sense to test the demands of

imperatives for inconsistencies if these imperatives may not be triggered in the same circum-

stances. Just considering triggered imperatives is also not enough, as was demonstrated for

the ‘naïve approach.’ But if the maximization method is to include imperatives that are not

(yet) triggered, then we must look for something else than inconsistency of demands to take

the role of a threshold criterion for the maximization process.

To do so we should ask ourselves why, for the unconditional case, the aim was to find a

maximal set of imperatives with demands that are collectively consistent with the situation.

I think that by doing so we intend to give the agent directives that can be safely followed.

While in the unconditional case this means that the agent can satisfy all the chosen imper-

atives, the situation is different for conditional imperatives: here an agent can also obey

imperatives without necessarily satisfying their demands. If you tell me to visit you in case I

go to Luxembourg next month, I can safely arrange to spend all of next month at home and

still do nothing wrong. If we think not so much of imperatives, but of legal regulations, then

I can obviously be a law-abiding citizen by simply failing to trigger any legal norm (even

though this might imply living alone on an island): whether I do that or boldly trigger some

of the regulations’ antecedents and then satisfy those I have triggered seems not a question of

logic, but of individual choice. So I think the threshold criterion to be used should be that of

obeyability: we should maximize the set of imperatives the agent can obey, and only disregard

an imperative if its addition to the set means that at least one of the added imperatives must

(now) be violated, given the facts.21

For a given set of conditional imperatives � and a set of factual truths W , the subsets of

imperatives that can be obeyed are described by ObeyableI(W,�), i.e. they are those subsets

Ŵ ⊆ � such that W ∪Ŵm
0P L ⊥. To maximize not by collective consistency of demands, but

by collective obeyability, Brewka’s original approach can therefore be changed as follows:

Definition 8 (Preferred Maximally Obeyable Subsets) Let I = 〈I, f, g,<〉 be a prioritized

conditional imperative structure, � be a subset of I , and W ⊆ LP L be a set of PL-sentences.

Then Ŵ ∈ P
o
I
(W,�) iff (i) W 0P L ⊥, and (ii) Ŵ is obtained from a full prioritization ≺ by

defining

Ŵi =

{⋃

j ≺ i Ŵ j ∪ {i} if
⋃

j ≺ i Ŵ j ∪ {i} ∈ ObeyableI(W,�), and
⋃

j ≺ i Ŵ j otherwise,

for any i ∈ �, and letting Ŵ =
⋃

i∈� Ŵi .

The change from Brewka’s original definition is only minute: we test not the demands of the

imperatives for consistency, but their materializations. Note that this is a conservative exten-

sion of Brewka’s method, since for any unconditional imperative i we have ⊢P L f (i) ↔

21 While Hansson, in [16] p. 200, also advocates a move from ‘consistency’ to ‘obeyability,’ what is meant

there is rather the step from (td-m2) to (td-d1).
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m(i). As can easily be seen, the new construction solves all of the previously considered

difficulties, regardless of the chosen truth definition for the deontic O-operator:

• To refute a direct application of Brewka’s original method, we used the set I = {p1⇒p2,

¬p1⇒¬p2} with no ranking imposed. m(I ) is consistent and so P
o
I
({p1}, I ) = {I },

making O(p2/p1) true for all definitions of Sect. 3.4 So you ought to wear your boots in

case you go out, as it should be.

• To refute the ‘naïve approach,’ we used the set of prioritized imperatives p1 < p1⇒p2 <

¬p2. Since < is already fully prioritized, the construction produces just one maximally

obeyable subset, which is {!p1, p1⇒!p2}, as its two imperatives get added in the first two

steps, and nothing is added in the third since m(I ) is inconsistent. All truth definitions

make true O(p1/⊤), none makes true the non-intuitive formula O(p1 ∧ ¬p2/⊤), and

definitions that accept ‘deontic detachment’ make true O(p1 ∧ p2/⊤). So you must go

out and wear a scarf, which is as it should be.

• To refute the stepwise approach the ordering of the imperatives was changed into p1⇒p2 <

p1 < ¬p2. Still P
o
I
(⊤}, I ) = {{!p1, p1⇒!p2}}, so the sentences made true by the truth

definitions of Sect. 3.4 likewise do not change, and in particular the non-intuitive formula

O(p1 ∧ ¬p2/⊤) is still false, and definitions that accept ‘deontic detachment’ make true

O(p1 ∧ p2/⊤), so again you must go out and wear a scarf, which is as it should be.

• To refute the reconsidering and the fixpoint approaches the ordering of the imperatives

was again changed into p1⇒!p2 < !¬p2 < !p1. Now P
o
I
(⊤}, I ) = {{p1⇒!p2, !¬p2}}.

All truth definitions make true O(¬p2/⊤) but not O(p1/⊤) so the agent must satisfy the

second ranking imperative, but not the third ranking imperative, which otherwise would

include violating the highest ranking imperative, which is as it should be.

• Troublesome for the fixpoint approach was also the set of prioritized imperatives p1⇒

!p2 < !(p1 ∧¬p2) < !p3: no fixpoint could be made out and so the approach produced no

preferred subset, making everything obligatory. The preferred maximally obeyable subset

is {p1⇒!p2, !p3}, eliminating the second ranking imperative that demands a violation of

the first, and making O(p3/⊤) true for all truth definitions, which again is as it should be.

• Finally, consider the ‘drinking and driving’ example: the set of prioritized imperatives

p1⇒!¬p2 < p3⇒!p2 < p3⇒!p1 produces, for the situation p3, the set of preferred max-

imally obeyable subsets P
o
I
({p3}, I ) = {{p1⇒!¬p2, p3⇒!p2}}, making true O(p2/p3)

for all truth definitions of Sect. 3.4, so given that I go to the party I must do the driving,

which is as it should be.

As could be seen, all truth definitions now produce the ‘right’ results in the examples

used. Moreover, since all truth definitions refer to the same preferred subsets P
o
I
({C}, I ), it

is possible to index the O-operators according to the truth definition employed, and e.g. state

truths like O1(A/C)∧ O3(B/C) → O4(A ∧ B/C), meaning that if, for any maximal set of

imperatives that I can obey in the situation C , imperatives are triggered that demand A, and

that if I satisfy all such triggered imperatives, I will have to do B, then obeying a maximal

number of imperatives includes having to do A ∧ B. It may well be that natural language

‘ought-statements’ are ambiguous in the face of conditional demands, the discussion in Sect.

3 suggested this. If maximal obeyability is accepted as the threshold criterion that limits what

norms an agent can be expected to conform to in a given situation, then definition 8 leaves

the philosophical logician with maximal freedom as to what deontic operator is chosen.
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6 Theorems

Truth definitions (td-pcd1(+) − 4(+)) define when a sentence of the form O(A/C) is true

or false with respect to a prioritized conditional structure I and a situation C . So I briefly

consider what sentences are theorems, i.e. hold for all such structures, given the usual truth

definitions for Boolean operators. It is immediate that for all truth definitions, (DExt), (DM),

(DC), (DN) and (DD-R) are theorems (cf. Sect. 3.1). (DD-R) states that there cannot be both

an obligation to bring about A and one to bring about ¬A unless the situation C is logically

impossible, so our truth definitions succeed in eliminating conflicts. All these theorems are

‘monadic’ in the sense that C is kept fixed; in fact, they are the C-relative equivalents of

standard deontic logic SDL. More interesting are theorems (known from the study of non-

monotonic reasoning) that describe relations between obligations in different circumstances.

Obviously we have

(ExtC) If ⊢P L C ↔ D then O(A/C) ↔ O(A/D) is a theorem

for all truth definitions, i.e. for equivalent situations C , the obligations do not change. As

long as truth definitions are not sensitive to conflicts, e.g. for (td − cd(+) − 4(+)), we have

‘strengthening of the antecedent,’ i.e. for these definitions

(SA) O(A/C) → O(A/C ∧ D)

holds. When only maximally obeyable subsets are considered, i.e. for truth definitions (td-

pcd1(+) − 4(+)), both (SA) and the weaker ‘rational monotonicity’ theorem

(RM) ¬O(¬D/C) ∧ O(A/C) → O(A/C ∧ D)

are refuted e.g. by a set I = {!(p1 ∧ p2), !(p1 ∧ ¬p2), p2 ⇒¬p1} of equally ranking imper-

atives: though O(p1/⊤) is true and O(¬p2/⊤) false, O(p1/p2) is false. However, for all

definitions of Sect. 3.4, ‘(conjunctive) cautious monotonicity’

(CCMon) O(A ∧ D/C) → O(A/C ∧ D)

holds, which states that if you should to two things and you do one of them, you still have

the other one left.22 Moreover, truth definitions (td-pcd1+, 2+, 3+, 4+) validate the ‘circum-

stantial extensionality’ rule

(CExt) If ⊢P L C → (A ↔ B) then O(A/C) ↔ O(B/C) is a theorem

that corresponds to ‘circumstantial reasoning.’ All definitions that accept ‘reasoning by

cases,’ i.e. (td-pcd2, 2+, 4, 4+), make

(Or) O(A/C) ∧ O(A/D) → O(A/C ∨ D)

a theorem. Note that (CExt) and (Or) derive

(Cond) O(A/C ∧ D) → O(D → A/C),

which in turn derives (Or) in the presence of (DC), and that by adding (CExt) and (Or) we

obtain again the system PD (cf. Sect. 3). Finally, all definitions with ‘deontic detachment,’

i.e. (td-pcd3, 3+, 4, 4+), make

(Cut) O(A/C ∧ D) ∧ O(D/C) → O(A/C)

22 This is Hansson’s [15] theorem (19).
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a theorem. (Cut) is derivable given (Cond) (use Cond on the first conjunct O(A/C ∧ D) to

obtain O(D → A/C), agglomerate with O(D/C), and from O(D ∧ (D → A)/C) derive

O(A/C)), which syntactically mirrors the semantic equivalence of definitions (td-pcd2+)

and (td-pcd4+). Theoremhood of all of the above for semantics that employ the respective

truth definitions is easily proved and left to the reader (cf. Hensen [13] and [14] as well as

Makinson and van der Torre [25] for the general outline). Makinson and van der Torre’s results

also suggest that these theorems axiomatically define complete systems of deontic logic with

respect to semantics that employ the respective truth definitions (td-pcd1(+) − 4(+)), but this

remains a conjecture that further study must corroborate.23

7 Back to the beginning: questions of representation

One might wonder if it is always adequate to represent a natural language conditional imper-

ative ‘if … then bring about that ww’ by use of a set I containing an imperative i with a

g(i) that formalizes ‘…’ and a f (i) that formalizes ‘ww.’ This is because there is a second

possibility: represent the natural language conditional imperative by an unconditional imper-

ative !(g(i) → f (i)). We saw in Sect. 3 that this is not generally adequate. But that does

not mean that such a representation is not sometimes what is required. Consider the crucial

imperatives in the previous examples: perhaps what your mother meant was simply ‘don’t

drink and drive;’ perhaps what the doctor meant was ‘don’t go out without a scarf;’ perhaps

the Colonel meant to tell O’Reilly not to do both, turn the heat on and keep the window

closed; perhaps self-defense required me to see to it that I am not attacked without fighting

back. These interpretations seem not wholly unreasonable, and if they are adequate, then the

best representation would be by an imperative !(g(i) → f (i)) instead of g(i) ⇒! f (i).

What then are the conditions that make a representation by an unconditional imperative

adequate? One test may be to ask: ‘Would bringing about the absence of the antecedent

condition count as satisfaction of the imperative?’ Would not drinking, not going out, not

turning on the heat, making the man not attack, count as properly reacting to the imperatives

in question? It should be if what the imperatives demand is a material conditional, since then

the conditional imperatives in question are equivalent to telling the agent ‘either don’t drink

or don’t drive, its your decision,’ ‘either don’t go out, or wear a scarf,’ ‘either don’t turn on

the heat, or open the window,’ etc. Another test would be to examine if contraposition is

acceptable. Can we say that your mother wanted you not to drink if you are going to drive,

that the doctor wanted you to stay inside if you are not going to wear a scarf, that the Colonel

wanted O’Reilly to turn off the heat if the window is closed, that self-defense requires you

to make the man not attack if you are not going to fight back? If the proper representation is

by imperatives that demand a material conditional, then the answers should be affirmative. I

do not think these are easy questions, however, and leave them to the reader to discuss and

answer at his or her own discretion. But it is easy to see that, had we chosen to represent the

crucial imperatives in the above examples (including the ‘drinking and driving’ problem) by

unconditional imperatives that demand a material implication to be realized, then all of the

discussed methods would have resolved these examples.

23 For (td-pcd2+, 4+), completeness of PD is immediate from the results in [13], [14].
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8 Conclusion

Reasoning about obligations when faced with different and possibly conflicting imperatives

is a part of everyday life. To avoid conflicts, these imperatives may be ordered by priority

and then observed according to their respective ranks. The ‘drinking and driving’ case in the

introduction presented an example of such natural reasoning. Providing a formal account is,

however, additionally complicated by the fact that there are various and mutually exclusive

intuitions about what belongs to the right definition of an ‘obligation in the face of conditional

imperatives,’ i.e. the definition of a deontic O-operator. Based on similar definitions of oper-

ators by Makinson and van der Torre [25], [26] for their ‘input/output logic’, but leaving

the choice of the ‘right’ operator to the reader, I presented several proposals in Sect. 3 for

definitions of a dyadic O-operator, namely (td-pcd1(+) − 4(+)). These were dependent on

a choice of ‘preferred subsets’ among a given set of prioritized conditional imperatives. A

particularly successful method to identify such subsets, but applying to unconditional imper-

atives only, was Brewka’s [3] definition of ‘preferred subtheories’ within a theory. In Sect. 4

I discussed various approaches that extend this method to conditional imperatives, but these

failed to produce satisfactory results for a number of given examples. In Sect. 5 I proposed

that the maximality criterion used to construct the preferred subsets should be the avoidance

of conflict. A recent approach to this task by ‘consistent extensions’ was found to be biased

towards definitions of obligation that do not accept reasoning by cases; another, that aims

to avoid the truth of O(¬C/C) for possible circumstances C , produced satisfactory results

only for truth definitions that accept deontic detachment. I then argued that the solution is

to adapt Brewka’s method in such a way that it constructs, instead of maximal subsets of

imperatives that are collectively satisfiable by an agent, maximally obeyable subsets of the

imperatives, in the sense that the facts do not derive that some imperative of the set must be

violated. I showed that this new proposal provides adequate solutions to all of the examples,

and in particular the ‘drinking and driving’ example is resolved in a satisfactory fashion for

all of the discussed deontic operators.
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