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Abstract 

The purpose of this paper is to study the fundamental mechanism, humans use in 
argumentation, and to explore ways to implement this mechanism on computers. 

We do so by first developing a theory for argumentation whose central notion is the 
acceptability of arguments. Then we argue for the “correctness” or “appropriateness” of 
our theory with two strong arguments. The first one shows that most of the major 
approaches to nonmonotonic reasoning in AI and logic programming are special forms of 
our theory of argumentation. The second argument illustrates how our theory can be used 
to investigate the logical structure of many practical problems. This argument is based on a 
result showing that our theory captures naturally the solutions of the theory of n-person 
games and of the well-known stable marriage problem. 

By showing that argumentation can be viewed as a special form of logic programming 
with negation as failure, we introduce a general logic-programming-based method for 
generating meta-interpreters for argumentation systems, a method very much similar to the 
compiler-compiler idea in conventional programming. 
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games; The stable marriage problem 
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1. Introduction 

Argumentation constitutes a major component of human intelligence. The 
ability to engage in arguments is essential for humans to understand new 
problems, to perform scientific reasoning, to express, clarify and defend their 
opinions in their daily lives. The way humans argue is based on a very simple 
principle which is summarized succinctly by an old saying: “The one who has the 
last word laughs best”. To illustrate this principle, let us take a look at an 
example, a mock argument between two persons I and A, whose countries are at 
war, about who is responsible for blocking negotiation in their region. 

Example 1.’ 
I: My government cannot negotiate with your government because your 

government doesn’t even recognize my government. 
A: Your government doesn’t recognize my government either. 

The explicit content of I’s utterance is that the failure of A’s government to 
recognize I’s government blocks the negotiation. This establishes the responsibili- 
ty of A’s government for blocking the negotiation by an implicit appeal to the 
following commonsense interpretation rule: 

Responsibility attribution: If an actor performs an action which causes some 
state of affairs, then the actor is responsible for that state of affairs unless its 
action was justified. 

A uses the same kind of reasoning to counterargue that I’s government is also 
responsible for blocking the negotiation as I’s government doesn’t recognize A’s 
government either. 

At this point, neither arguer can claim “victory” without hurting his own 
position. Consider the following continuation of the above arguments: 

I: But your government is a terrorist government. 

This utterance justifies the failure of I’s government to recognize A’s government. 
Thus the responsibility attribution rule cannot be appplied to make I’s govern- 
ment responsible for blocking the negotiation. So this represents an attack on A’s 
argument. If the exchange stops here, then I clearly has the “last word”, which 
means that he has successfully argued that A’s government is responsible for 
blocking the negotiation. 

The goal of this paper is to give a scientific account of the basic principle “The 
one who has the last word laughs best” of argumentation, and to explore possible 
ways for implementing this principle on computers. 

The problems of understanding argumentation and its role in human reasoning 
have been addressed by many researchers in different fields including philosophy, 

I This example is inspired by a similar example in [6] 



P.M. Dung I Artificial Intelligence 77 (1995) 321-357 323 

logic and AI. Toulmin [59] has given an excellent philosophical account of the 
general structure of arguments. The relation between argumentation (in the form 
of a dialogue-game) and classical (monotonic) logic has been studied by Lorenz 
and Lorenzen [4] who have showed that classical first-order logic can be viewed as 
dialogue-game logic where propositions are entities which can be either won or 
lost. 

In AI, much work has been done to analyze the structure of arguments and to 
build computer systems which can engage in the exchange of arguments. 
Argument systems which can understand editorials or engage in political 
dialogues have been built by Alvarado [l] and Birnbaum et al. [5, 6, 401. An 
in-depth analysis of argument structure has been provided by Cohen [9]. These 
works can be considered as forming an heuristic approach to argument-based 
commonsense reasoning. 

Roughly, the idea of argumentational reasoning is that a statement is believable 
if it can be argued successfully against attacking arguments. In other words, 
whether or not a rational agent believes in a statement depends on whether or not 
the argument supporting this statement can be successfully defended against the 
counterarguments. Thus, the beliefs of a rational agent are characterized by the 
relations between the “internal” arguments supporting his beliefs and the 
“external” arguments supporting contradictory beliefs. So, in a certain sense, 
argumentational reasoning is based on the “external stability” of the accepted 
arguments. This is quite different and at the same time inherently related to the 
mainstream approaches to nonmonotonic reasoning in AI and logic programming 
[2, 22, 39, 41, 42, 51, 52, 601 which are based on a kind of “internal stability” of 
beliefs.2 These two kinds of “stability” are like two sides of the same coin. Their 
relationship is very much similar to the relationship between Hintikka’s game- 
theoretic semantics and Tarskian semantics of logic and natural language [4, 24, 
531. 

The understanding of the structure and acceptability of arguments are essential 
for a computer system to be able to engage in exchanges of arguments. Much 
work has been done to analyze the structure of arguments. Significant progress 
has been achieved here [l, 5, 6, 9, 36, 40,45, 46, 59, 611. In contrast, it is still not 
clear how to understand the acceptability of arguments. The lack of progress here 
leaves the question about the semantical relations between argumentation and 
nonmonotonic reasoning open until today. One of the goals of this paper is to 
provide an answer to these problems. 

Moore distinguished between default reasoning and autoepistemic reasoning 
[42]. According to him, default reasoning is drawing plausible inferences in the 
absence of information to the contrary while autoepistemic reasoning is like 
reasoning about one’s own knowledge or beliefs. Thus default reasoning is like 
arguing with Nature, where a conclusion, supported by some argument, can be 

* A set of beliefs is “internally stable” if it can “reproduce ” itself in a way which is solely determined 

by the set itself. In other words, its stability is totally determined by the “internal” relations between 

its elements. 
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drawn in the absence of any counterargument. On the other hand, reasoning 
about one’s own knowledge or beliefs is much like arguing with oneself. So both 

autoepistemic reasoning and default reasoning are two forms of argumentation. In 
fact, we will demonstrate in this paper that many of the major approaches to 

nonmonotonic reasoning in AI and logic programming are different forms of 
argumentation. This result is not as surprising as it seems since all forms of 
reasoning with incomplete information rest on the simple intuitive idea that a 
defeasible statement can be believed only in the absence of any evidence to the 
contrary which is very much like the principle of argumentation. In [ll], this idea 
has been applied to develop a simple and intuitive framework for semantics of 

logic programming unifying many other previously proposed approaches [2, 22, 
51, 601. Later, Kakas. Kowalski and Toni [27] have pointed out that the 
framework given in [ 111 is in fact an argumentational approach to logic program- 
ming. This important insight constitutes a major source of inspiration and 
motivation for this paper.’ 

Argumentation is a major method humans use to justify their solutions to their 
social and economic problems. We demonstrate this by pointing out that many 

solutions to the n-person games modelling meaningful economic systems [lo, 56, 
621 are based on our theory of argumentation. Further, using the stable marriage 
problem as the benchmark, we show that our theory captures naturally the way 
humans argue to justify their solutions to many social problems. The result we 
gain here provides also a strong argument to defeat an often held opinion in the 
AI and logic programming community that if a knowledge base has no stable 

semantics then there must be some “bug” in it. 
Though argumentation is a powerful method for problem solving, it turns out 

that it can be “implemented” easily in logic programming. We demonstrate this by 
showing that argumentation can be viewed as logic programming with negation as 
failure. This results shows that logic programming is the perfect tool for 
implementing argumentation systems. 

It seems necessary to point out again that our primary intention in this paper is 

not to study the relationship between logic programming and nonmonotonic 
reasoning though much light is shed on this relationship from our result that both 
of them are forms of argumentation. Our main goal is to give an analysis of the 
nature of human argumentation in its full generality. This is done in two steps. In 
the first step, a formal, abstract but simple theory of argumentation is developed 
to capture the notion of acceptability of arguments. In the next step, we 

demonstrate the “correctness” (or “appropriateness”) of our theory. It is clear 

that the “correctness” of our theory cannot be “proved” formally. The only way 
to accomplish this task is to provide relevant and convincing examples. Two 
“examples” are provided. The first one shows how our theory can be used to 
investigate the logical structure of many human economic and social problems. 

’ Recently inspired by this paper. Bondarenko. Toni and Kowalski [7] have developed an argumenta- 

tional assumption-based framework to nonmonotonic reasoning unifying many other approaches in a 

very interesting way. 
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The second one shows that many major approaches to nonmonotonic reasoning in 
AI and logic programming [ll, 22, 41, 42, 45, 46, 51, 52, 57, 601 are in fact 
different forms of our theory of argumentation. 

This paper provides four novel results. The first one is a theory of acceptability 
of arguments which, in fact, is a formal account of the principle of argumentation. 
The second result shows the fundamental role our theory of argumentation can 
play in investigating the logical structure of many social and economic problems. 
The third result shows that logic programming as well as many major formalisms 
to nonmonotonic and defeasible reasoning in AI are argumentation systems. That 
means that all these systems are based on the same principle. They differ only by 
the structure of their arguments. The fourth result introduces a general method 
for implementing argumentation systems by showing that argumentation can be 
viewed as logic programming with negation as failure. This method is very much 
similar to the compiler-compiler idea in conventional programming. 

List of Contents 
2. Acceptability of arguments 

2.1. Argumentation frameworks 
2.2. Fixpoint semantics and grounded (skeptical) semantics 
2.3. Sufficient condition for coincidence between different semantics 

3. Argumentation, n-person game and the stable marriage problem 
4. Relations to nonmonotonic reasoning and logic programming 

4.1. Reiter’s default logic as argumentation 
4.2. Pollock’s inductive defeasible logic as grounded argumentation 
4.3. Logic programming as argumentation 

4.3.1. Negation as possibly infinite failure 
4.3.2. Negation as finite failure 

5. Argumentation as logic programming: a generator of meta-interpreters for 
argumentation systems 

6. Conclusions 

The prerequisite relation between the sections is illustrated in the following 
tree: 

Section 2 

-------V 
Section 3 Section 4 Section 5 

2. Acceptability of arguments 

2.1. Argumentation frameworks 

Our theory of argumentation is based on a notion of argumentation framework 
defined as a pair of a set of arguments, and a binary relation representing the 
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attack relationship between arguments. Here, an argument is an abstract entity 
whose role is solely determined by its relations to other arguments. No special 
attention is paid to the internal structure of the arguments. 

Definition 2. An argumentation framework is a pair 

AF = (AR, attacks) 

where AR is a set of arguments, and attacks is a binary relation on AR, i.e. 
attacks C AR x AR. 

For two arguments A and B, the meaning of attacks(A, B) is that A represents 
an attack against B. 

Example 3 (Continuation of Example 1). The exchange between I and A can be 
represented by an argumentation framework (AR, attacks) as follows: AR = 
{il, i,, a} and attacks = {(i,, a), (a, i,), (i2, a)} with i, and i, denoting the first and 
the second argument of I, respectively, and a denoting the argument of A. 

Remark 4. From now on, if not explicitly mentioned otherwise, we always refer 
to an arbitrary but fixed argumentation framework AF = (AR, attacks). Further, 
we say that A attacks B (or B is attacked by A) if attacks(A, B) holds. Similarly, 
we say that a set S of arguments attacks B (or B is attacked by S) if B is attacked 
by an argument in S. 

Definition 5. A set S of arguments is said to be conflict-free if there are no 
arguments A and B in S such that A attacks B. 

For a rational agent G, an argument A is acceptable if G can defend A (from 
within his world) against all attacks on A. Further, it is reasonable to assume that 
a rational agent accepts an argument only if it is acceptable. That means that the 
set of all arguments accepted by a rational agent is a set of arguments which can 
defend itself against all attacks on it. This leads to the following definition of an 
admissible (for a rational agent) set of arguments. 

Definition 6. 
(1) An argument A E AR is acceptable with respect to a set S of arguments iff 

for each argument B E AR: if B attacks A then B is attacked by SP 
(2) A conflict-free set of arguments S is admissible iff each argument in S is 

acceptable with respect to S. 

‘See Remark 4. 
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The (credulous) semantics of an argumentation framework is defined by the 
notion of preferred extension. 

Definition 7. A preferred extension of an argumentation framework AF is a 
maximal (with respect to set inclusion) admissible set of AF. 

Example 8 (Continuation of Example 3). It is not difficult to see that AF has 
exactly one preferred extension E = {i, , i2}. 

Example 9 (Nixon diamond). The well-known Nixon diamond example can be 
represented as an argumentation framework AF = (AR, attacks) with AR = 
{A, B}, and attacks = {(A, B), (B, A)} w h ere A represents the argument “Nixon 
is anti-pacifist since he is a republican”, and B represents the argument “Nixon is 
a pacifist since he is a quaker”. This argumentation framework has two preferred 
extensions, one in which Nixon is a pacifist and one in which Nixon is a quaker. 

Lemma 10 (Fundamental Lemma). Let S be un admissible set of arguments, and A 
and A’ be arguments which are acceptable with respect to S. Then 

(1) S’ = S U {A} is admissible, and 
(2) A’ is acceptable with respect to S’. 

Proof. (1) We need only to show that S’ is conflict-free. Assume the contrary. 
Therefore, there exists an argument B ES such that either A attacks B or B 
attacks A. From the admissibility of S and the acceptability of A, there is an 
argument B’ in S such that B’ attacks B or B’ attacks A. Since S is conflict-free, 
it follows that B’ attacks A. But then there is an argument B” in S such that B” 
attacks B’. Contradiction! 

(2) Obvious. Cl 

The following theorem follows directly from the Fundamental Lemma. 

Theorem 11. Let AF be an argumentation framework. 
(1) The set of all admissible sets of AF form a complete partial order with 

respect to set inclusion. 
(2) For each admissible set S of AF, there exists a preferred extension E of AF 

such that S c E. 

Theorem 11 together with the fact that the empty set is always admissible 
implies the following corollary: 

Corollary 12. Every argumentation framework possesses at least one preferred 
extension. 

Hence, preferred extension semantics is always defined for any argumentation 
framework. 
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Stable semantics for argumentation 
To compare our approach with other approaches, we introduce in the following 

the notion of stable extension. 

Definition 13. A conflict-free set of arguments S is called a stable extension iff S 
attacks each argument which does not belong to S. 

In Section 3, we will show that in the context of game theory, our notion of 
stable extension coincides with the notion of stable solutions of n-person games 

introduced by Von Neuman and Morgenstern fifty years ago [62]. 
It is easy to see that: 

Lemma 14. S is a stable extension iff S = {A 1 A is not attacked by S}. 

It will turn out later (Section 4) that this proposition underlines exactly the way 
the notions of stable models in logic programming, extensions in Reiter’s default 
logic, and stable expansion in Moore’s autoepistemic logic are defined. 

The relations between stable extension and preferred extension are clarified in 
the following lemma. 

Lemma 15. Every stable extension is u preferred extension, but not vice versa. 

Proof. It is clear that each stable extension is a preferred extension. To show that 
the reverse does not hold, we construct the following argumentation framework: 

Let A F = (AR, attacks) with AR = {A} and attacks = {(A, A)}. It is clear that the 
empty set is a preferred extension of AF which is clearly not stable. 0 

It is not difficult to see that in the above examples, preferred extension and 
stable extension semantics coincide. 

Though stable semantics is not defined for every argumentation system, an 
often asked question is whether or not argumentation systems with no stable 
extensions represent meaningful systems ? In Section 3, we will provide meaningful 
argumentation systems without stable semantics, and thus provide a definite 

answer to this question. 

2.2. Fixpoint semantics and grounded (skeptical) semantics 

We show in this subsection that argumentation can be characterized by a 
fixpoint theory providing an elegant way to introduce grounded (skeptical) 
semantics. 

Definition 16. The characteristic function, denoted by FAF, of an argumentation 
framework AF = (AR. attacks) is defined as follows: 
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F : P_,PR ) 

F;;(S) = {A ) A IS acceptable with respect to S} . 

Remark 17. As we always refer to an arbitrary but fixed argumentation frame- 
work AF, we often write F instead of FAF for short. 

Lemma 18. A conflict-free set S of arguments is admissible iff S C F(S). 

Proof. The lemma follows immediately from the property “If S is conflict-free, 
then F(S) is also conflict-free”. So we need only to prove this property. Assume 
that there are A and A’ in F(S) such that A attacks A’. Thus, there exists B in S 
such that B attacks A. Hence there is B’ in S such that B’ attacks B. 
Contradiction! So F(S) is conflict-free. 0 

It is easy to see that, if an argument A is acceptable with respect to S, then A is 
also acceptable with respect to any superset of S. Thus, it follows immediately 
that: 

Lemma 19. FAF is monotonic (with respect to set inclusion). 

The skeptical semantics of argumentation frameworks is defined by the notion 
of grounded extension introduced in the following. 

Definition 20. The grounded extension of an argumentation framework AF, 
denoted by GE,,, is the least fixed point of FAF. 

Example 21 (Continuation of Example 8). It is easy to see that 

G(4) = G2J , F&(4) = {ilyi21 y F:,(4) = ?i&) . 

Thus GE,, = {iI, i2}. Note that GEAF is also the only preferred extension of AF. 

Example 22 (Continuation of the Nixon example). From AF = (AR, attacks) with 
AR = {A, B}, and attacks = {(A, B), (B, A)}, it follows immediately that the 
grounded extension is empty, i.e. a skeptical reasoner will not include anything. 

The following notion of complete extension provides the link between preferred 
extensions (credulous semantics), and grounded extension (skeptical semantics). 

Definition 23. An admissible set S of arguments is called a complete extension iff 
each argument, which is acceptable with respect to S, belongs to S. 

Intuitively, the notion of complete extensions captures the kind of confident 
rational agent who believe in every thing he can defend. 
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Lemma 24. A conflict-free set of arguments E is a complete extension iff E = 

F&E). 

The relations between preferred extensions, grounded extensions and complete 
extensions is given in the following theorem. 

Theorem 25. 
(1) Each preferred extension is a complete extension, but not vice versa. 
(2) The grounded extension is the least (with respect to set inclusion) complete 

extension. 
(3) The complete extensions form a complete semilattice’ with respect to set 

inclusion. 

Proof. (1) It is obvious from the fixpoint definition of complete extensions that 
every preferred extension is a complete extension. The Nixon diamond example 
provides a counter example that the reverse does not hold since the empty set is a 
complete extension but not a preferred one. 

(2) Obvious 
(3) Let SE be a nonempty set of complete extensions. Let 

LB = {E 1 E is admissible and EC E’ for each E’ in SE} 

It is clear that GE E LB. So LB is not empty. Let S = U {E 1 E E LB}. It is clear 
that S is admissible, i.e. S c F(S). Let E = lub(F’(S)) for ordinals i. Then it is 
clear that E is a complete extension and E E LB. Thus E = S. So E is the glb of 
SE. 0 

Remark 26. In general, the intersection of all preferred extensions does not 
coincide with the grounded extension. 

In general, FAF is not continuous, but if the argumentation framework is 
finitary then it is. 

Definition 27. An argumentation framework AF = (AR, attacks) is finitary iff for 
each argument A, there are only finitely many arguments in AR which attack A. 

Lemma 28. Zf AF is finitary, then FAF is o-continuous. 

Proof. Let S, & . . . c S, c . . be an increasing sequence of sets of arguments, and 
let S=S,U~~-US,U~~~. Let A E FAF(S). Since there are only finitely many 
arguments which attack A. there exists a number m such that A E F,r(S,). 
Therefore, 

FAF(S)=FAF(SO)U...UF~F(S,I)U.... 0 

’ A partial order (5’ . S) is a complete semilattice iff each nonempty subset of S has a glb and each 

increasing sequence of S has a lub. 
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An example of a non-finitary argumentation framework is given in Appendix 
A. 

2.3. Sufficient conditions for coincidence between different semantics 

Well-founded argumentation frameworks 
We want to give in this subsection a sufficient condition for the coincidence 

between the grounded semantics and preferred extension semantics as well as 
stable semantics. 

Definition 29. An argumentation framework is well-founded iff there exists no 
infinite sequence A,,, A 1, . . . , A,, . . . such that for each i, A,+1 attacks Ai. 

The following theorem shows that well-founded argumentation frameworks 
have exactly one extension. 

Theorem 30. Every well-founded argumentation framework has exactly one 
complete extension which is grounded, preferred and stable. 

Proof. Assume the contrary, i.e. there exist a well-founded argumentation 
framework whose grounded extension is not a stable extension. Let AF = 
(AR, attacks) be such an argumentation framework such that 

S = {A 1 A E AR\GE,, and A is not attacked by GEAF) 

is nonempty. Now we want to show that each argument A in S is attacked by S 
itself. Let A ES. Since A is not acceptable with respect to GE,,, there is an 
attack of B against A such that B is not attacked by GEAF. From the definition of 
S, it is clear that B does not belong to GEAF. Hence, B belongs to S. Thus there 
exists an infinite sequence A 1, A,, . . . such that, for each i, Ai+l attacks Ai. 
Contradiction! q 

Coherent argumentation frameworks 
Now, we want to give a condition for the coincidence between stable extensions 

and preferred extensions. In general, the existence of a preferred extension which 
is not stable indicates the existence of some “anomalies” in the corresponding 
argumentation frameworkP For example, the argumentation framework 

((4, (6% 41)’ h as an empty preferred extension which is not stable. So it is 
interesting to find sufficient conditions to avoid such anomalies. 

6 The existence of “anomalies” does not mean that something is wrong in the concerned argumenta- 
tion frameworks. 
‘The argumentation framework corresponding to the logic program p +-not p is of this kind. 
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Definition 31. 
(1) An argumentation framework AF is said to be coherent if each preferred 

extension of A F is stable. 
(2) We say that an argumentation framework AF is relatively grounded if its 

grounded extension coincides with the intersection of all preferred exten- 

sions. 

It follows directly from the definition that there exists at least one stable 

extension in a coherent argumentation framework. 
Imagine an exchange of arguments between you and me about some proposi- 

tion C. You start by putting forward an argument A,, supporting C. I don’t agree 
with C, and so I present an argument A, attacking your argument A,,. To defend 
A,, and so C, you put forward another argument A 7 attacking my argument A,. 
Now I present A 3 attacking A ?. If we stop at this point, A,, is defeated. It is clear 

that A 3 plays a decisive role -in the defeat of A,, though A, does not directly 
attack A,,. A i is said to represent an indirect attack against A,,. In general, we 
say that an argument B indirectly attacks A if there exists a finite sequence 

A,,, 3 &r+, such that (1) A=A,, and B=A?,,,,. and (2) for each i, Otis 

2n. A,+, attacks A,. We say that an argument B indirectly defends A if there exists 
a finite sequence A,,, . . A,,, such that (1) A =A,, and B= Azn, and (2) for 
each i, OSi<2n. A,, , attacks A,. An argument B is said to be controversial with 
respect to A if B indirectly attacks A and indirectly defends A. An argument is 
controversial if it is controversial with respect to some argument A. 

Definition 32. 
(I) An argumentation framework is uncontroversial if none of its arguments is 

controversial. 
(2) An argumentation framework is limited controversial if there exists no 

infinite sequence of arguments A,,. . A,,. such that A,_, is contro- 
versial with respect to A,. 

It is clear that every uncontroversial argumentation framework is limited 
controversial but not vice versa. 

Theorem 33. 
(1) Every limited controversial urgumentution framework is coherent. 
(2) Every uncontroversial argumentation framework is coherent and relatively 

grounded. 

Proof. (1) Assume that there exists a limited controversial argumentation 
framework AF which is not coherent. Let E be a preferred extension of AF 
which is not stable. Let us define: 

AR’ = {A’ 1 A’ E AR\E and A’ is not attacked by E} 

It is clear that AR’ is nonempty. Let attucks be the restriction of attacks on AR’. 
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Let AF’ = (AR’, attacks’). From Lemma 34, there exists a nonempty complete 
extension E’ of AF’. It is easy to see that E U E’ is again an extension of AF. 
Contradiction! 

(2) follows immediately from the following Lemmas 34 and 35. 0 

For the proof of Lemmas 34 and 35, we need a couple of new notations. An 
argument A is said to be a threat to a set of argument S if A attacks S and A is 
not attacked by S. A set of arguments D is called a defense of a set of arguments 
S if D attacks each threat to S. 

Lemma 34. Let AF be a limited controversial argumentation framework. Then 
there exists at least a nonempty complete extension E of AF. 

Proof. If the grounded extension of AF is not empty, then the lemma is proved. 
Suppose now that the grounded extension of AF is empty. Therefore, it follows 
immediately that each argument A in AF is attacked by some other argument 
(otherwise, the grounded extension would not be empty). Let A be an argument 
such that there exists no B that is controversial with respect to A, The existence 
of such an argument is clearly guaranteed by the limited controversity of AI;. 
Define E, = {A}. For each natural number i > 0, define the set Ei as follows: 
E, = Ei_, U Di_l where Di_l is a minimal (with respect to inclusion) defense of 
E 1-l’ Now we prove by induction that for each i: 

Ei is conflict-free, and each argument B E Ei indirectly defends A . (*I 

It is clear that this holds for i = 0. Let i > 0, and assume that (*) holds for each 
i - 1. From the fact that each argument in AF is attacked by some other 
argument, it is clear that there exists a minimal defense D,_l of Ei_,. From the 
induction hypothesis that each argument in E,_, indirectly defends A, it is not 
difficult to see that all arguments in D,_* indirectly defend A, too. Thus from the 
induction hypothesis, each argument in Ei indirectly defends A. Assume now that 
Ei is not conflict-free. Thus there exist two arguments B and 23’ in E, such that B 
attacks B’. Since each argument in E, indirectly defends A, B is clearly 
controversial with respect to A. Contradiction! So Ei is conflict-free. 

Let F = Ui Ei. It is clear that F is admissible. Let us define E to be the least 
complete extension containing F. Hence E is the desired extension. 0 

Lemma 35. Let AF be an uncontroversial argumentation framework, and A be an 
argument such that A is not attacked by the grounded extension GE of AF and 
A@GE. Then 

(1) there exists a complete extension E, such that A E E,, and 
(2) there exists a complete extension E2 such that E, attacks A. 

Proof. Let 

AR’ = {A’ 1 A’ E AR\GE and A’ is not attacked by GE} . 
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Hence A E AR’. Thus AR’ is not empty. Let attacks’ be the restriction of attacks 
on AR’. Let AF’ = (AR’, attacks’). 

(1) Similar to the proof of Lemma 34, we can show that there exists a complete 
extension E,, of AF’ such that A E E,,. Let E, = GE U E,,. It is clear that E, is the 
desired extension. 

(2) Since A is attacked by some argument in AR’, there exists B EAR’ such 
that B attacks A. So there exists a complete extension E, of AF’ such that 
B E E,. Hence E2 = GE U E, is the desired extension. q 

Corollary 36. Every limited controversial argumentation framework possesses at 
least one stable extension. 

This corollary in fact gives the answer to an often asked question about the 
existence of stable semantics of knowledge representation formalisms like Reiter’s 
default logic, logic programming or autoepistemic logic. Much works have been 
done to study this kind of questions [ 12, 17, 18, 23, 35, 541. The uncontroversity 
of argumentation frameworks is a generalization of the results given in these 
works. 

3. Argumentation, n-person games and stable marriage problem 

In the next two subsections. we will demonstrate the “correctness” of our 
theory of argumentation through two examples in which we show how our theory 
can be used to investigate the logical structure of the solutions to many practical 
problems. 

3.1. Argumentation in n-person games 

In the theory of n-person games developed by Von Neuman and Morgenstern 
[62], a social economy is viewed as a game whose players are the major forces of 
the economy. Like a program. a game has two aspects: the operational aspects 
concerning the question: How to play?, and the specification aspects concerning 
the question: What is the payoff? 

Classical game theory as presented in [lo, 56, 621 is mostly concerned with the 
specification aspects of the games. In other words, the theory of n-person games 
is a theory about the possible payoffs to the players of the game. The central 
notion of the theory of n-person games is the notion of solution of a game which 
is a set of payoff vectors called imputations, to its participants. Formally, an 
imputation of an n-person game is defined as a vector ( pI , . . , p,) of numbers 
giving the utilities each player gets after the game. Hence in considering a social 
economy as an n-person game, imputations model the ways the wealth is 
distributed in an economy. The distribution of wealth in a stable economy does 
not consist of a rigid system of apportionment, i.e. of imputation, but a variety of 
alternatives that, though following certain commonsense principles, nevertheless 
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differ among themselves in many particular aspects. Such a system of imputation 
describes the “established order of the society” or the “accepted standard of 
behavior” [62]. 

Formally, a cooperative n-person game (in normal form) is defined by a 
characteristic function V which associates with each coalition a number determin- 
ing the minimum amount that coalition can obtain if all its members join together 
and play as a team. The only condition imposed on the characteristic function is 
the superaddivity which says that for each two disjoint coalitions A and B, if A 
and B join together, they will get more than staying independent, i.e. V(A U B) 2 
V(A) + V(B). The stability of a coalition is determined fully by the amount each 
of its members can get. So if any of the members of a coalition can get more in 
another coalition then he will defect thus causing a new imputation of the game. 
This is modelled by the notion of domination between imputations. An imputa- 
tion (pr, . . . , p,) is said to dominate another imputation ( ql, . . . , q,) if there is 
a (nonempty) coalition K c { 1, . . . , n} such that for each i E K, pi > qi and 

Pi1 + . * ’ + Pik <V(K) where K = {il, . . . , ik}. Von Neuman and Morgenstern 
[62] define a solution of a cooperative n-person game, referred to as NM-solution, 
as a set of imputations satisfying the following two postulates (NMl) and (NM2). 

(NMl) No s in S is dominated by an s’ in S. 
(NM2) Every s not contained in S is dominated by some s’ contained in S. 

The first postulate expresses the condition that the “established order of the 
society” represented by S is free from inner contradiction. The second postulate 
expresses the fact that any attempt to build a coalition to impose a new 
imputation s$ZS will be blocked by some imputation s’ E S which dominates s. In 
other words, it is not possible to deviate from the “established order of the 
society”. That means that every thing has to conform to this “established order”. 
It turns out that this “extremist standpoint” of an NM-solution is the cause for the 
nonexistence of an NM-solution to many meaningful economic systems. 

To illustrate the intuition behind NM-solutions, let us consider the following 
example taken from [lo]. Suppose that Pi, P2 and P3 are players in a three-person 
game in which any coalition with either two or three players can get 2 units of 
wealth, while a player alone gets nothing. This game has infinitely many solutions. 
We will look at two of them. The first solution S, consists of three imputations 

s1 = {P,:l, P*:l, P3:O} ) 

s* = {P,:l, P,:O, P,:l} ) 

s3 = {P,:O, P,:l, P,:l} . 

Let us check that this solution really satisfies the postulates NM1 and NM2. It is 
clear that S, satisfies the first postulate. Let s now be an arbitrary imputation 
{Pm,, P2:u2, P3:u3}j$S,. Then it is easy to see that there exists {P,, P,} with i # j 
such that ui + ui < 2 and max(ui, u,) < 1 (otherwise s would belong to S,). Without 
loss of generality, we can assume that i = 1 and i = 2. It is easy to see that s is 
dominated by si. The “established order” characterized by this solution dictates 
that a bigger coalition is not tolerated if the same result can be achieved with a 
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smaller one, and the participants in a coalition are treated equally. In the second 
solution-a discriminatory solution-two players join, give the third player 
something less than his “fair share” of 213 and take the rest for themselves. This 

is similar to what happens in an apartheid society. 
It is not difficult to see that the argument for the building of a coalition K is the 

payoff for each of its participants. Thus each imputation represents an argument 
for building some coalition. So the set of imputations together with the domina- 
tion relation between them forms an argumentation framework. It is obvious that 
the following theorem holds: 

Theorem 37. Let IMP be the set of imputations of a cooperative n-person game G 
and 

attacks = {(s, s’) ) s dominates s’) 

Then each NM-solution of the game G is a stable extension of (IMP, attacks) 
interpreted as an argumentation framework, and vice versa. 

Von Neuman and Morgenstern believed that each cooperative n-person game 
possesses at least one NM-solution. 

There can be, of course, no concession as regards existence. If it should turn 
out that our requirements concerning a solution S are, in any special case, 
unfulfillable-this would necessitate a fundamental change in the theory. 
Thus a general proof of the existence of solutions for all particular cases is 
most desirable. It will appear from our subsequent investigations that this 
proof has not yet been carried out in full generality but that in all cases 
considered so far solutions were found. [62] 

Twenty years later, F.W. Lucas constructed a ten-person game which has no 
NM-solution [56]. Later, Shubik [56] pointed out that despite having no NM- 
solution, Lucas’ games model meaningful economic systems. The conclusion here 
is this: 

Stable extensions do not capture the intuitive semantics of every meaningful 
argumentation system. 

We will come back to this point again in the next subsection. 
As preferred extensions exist for every argumentation framework, we can 

introduce the preferred solutions to n-person games by defining them as the 
preferred extensions of the corresponding argumentation system (IMP, attacks). 
The new solutions satisfy both conditions of a rational standard behavior: freeness 
from inner contradiction and the ability to withstand any attack from outside. 
This is clearly a contribution to the theory of n-person games. 

Another notion of solution of an n-person game is the core defined as the set of 
imputations whose members are not dominated by any other imputation [56]. It is 
not difficult to see that: 
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Theorem 38. Let IMP be the set of imputations of an n-person game G and let 
attacks be the corresponding domination relation between them. Then the core of G 
coincides with F(4) where F is the characteristic function of (IMP, attacks) 
interpreted as an argumentation framework. 

3.2. Argumentation and the stable marriage problem’ 

Given two sets M and W of 12 men and n women respectively. The stable 
marriage problem (SMP) is the problem of finding a way to arrange the marriage 
for the men and women in M and W, where it is assumed that all the men and 
women in M and W have expressed mutual preference (each man must say how 
he feels about each woman and vice versa).9 The marriages have to be stable in 
the sense that, if for example A is married to B, then all those whom A prefers to 
B must be married to someone whom they prefer to A. Formally, a solution to 
the SMP is a one-one correspondence S : M-+ W such that there exists no pair 
(m, w) EM x W such that m prefers w to S(m) and w prefers m to S-‘(w). 

The SMP can be formalized as the task of finding a stable extension of an 
argumentation framework AF = (AR, attacks) as follows: It is clear that D 
represents a threat to a marriage (A, B) if A prefers D to B. In other words, a 
hypothetical marriage of A to D poses an attack to (A, B). But this attack is 
eliminated if D is married to someone whom D prefers to A. Let 

AR=MxW, 

attacks c AR x AR: 

(C, D) attacks (A, B) iff (1) A = C and A prefers D to B, or 

(2) D = B and B prefers C to A. 

Theorem 39. A set S c AR constitutes a solution to the SMP iff S is a stable 
extension of the corresponding argumentation framework. 

Proof. (+) Let S be a solution of the SMP. Since S is a one-one correspondence 
between M and W, it is clear that S is conflict-free. Let (m, w)eS. Then from the 
definition of S, either m prefers S(m) to w or w prefers S-‘(w) to m. Hence, 
(m, w) is attacked by at least one element from {(m, S(m)), (S-‘(w), w)} c S. 

(+) Let S be a stable extension of AF. From the definition that S is 
conflict-free, it is clear that S and S-’ are partial functions from M into W and 
from W into M respectively. Assume now that S is not a total function from M 

8 Mathematically, the stable marriage problem is a special case of the graph matching problem which 
has been studied extensively in the literature due to its wide applicability. For example, in the USA, a 
quite complicated system has been set up to place graduating medical students into hospital residency 
positions. Each student lists several hospitals in order of preference and each hospital lists several 
students in order of preference. The problem is to assign the students to positions in a fair way 
respecting all the stated preferences [S]. 
9 That means that associated with each person is a strictly ordered preference list containing all 
members of the opposite sex. 
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into W. Then it is clear that there exists (m, W) E AR* such that both s(m) and 
S-‘(w) are undefined. Therefore, (m, W) is not attacked by S which is a 

contradiction. Hence both S and S-’ are total functions, i.e. S is a one-one 
correspondence between M and W. Further it is also easy to see that it follows 
directly from the stability of S that there exists no pair (m, w) EM X W such that 
m prefers w to S(m) and w prefers m to S -l(w). 0 

To demonstrate once more that there are practically relevant argumentation 
systems which have no stable semantics, in the following we introduce the Stable 
Marriage Problem with Gays (SMPG) which is a modification of the SMP in 
which individuals of the same sex can be married to each other. The condition for 
the stability of a marriage is defined as in the SMP. The problem now is finding a 

way to arrange the marriage for a maximal number of persons. In contrast to the 
SMP, the SMPG corresponds to the problem of finding a preferred extension in 
an argumentation framework AF = (AR, attacks) with AR = P X P where P is the 
set of persons involved and attacks is defined as in the SMP. The following 
example shows that in general, the argumentation framework corresponding to an 

SMPG has no stable semantics. 
Let P= {m. w, p,, y,, pi} where m is a man, w is a woman. For short we say 

that x loves y if x prefers y to all others. Suppose that m and w are in love with 
each other. Further suppose that there is a love triangle between p,. p2 and p3 as 
follows: p, loves p2, p, loves p3 and p1 loves p, So it is not difficult to see that 
there is no way to arrange a stable marriage for any among p, , p2 and p3. The 
only stable marriage is between m and w. Indeed, the corresponding argumenta- 
tion framework has exactly one preferred extension containing only the pair 

(m, w). It is clear that there is nothing wrong in the above argumentation 
framework. If something is “wrong”, then it is the problem. i.e. the world we are 
trying to model is somehow “wrong”. But it is “normal” that there are lots of 
things which are “wrong” in some ways in the world around us. So it is natural to 
expect that any knowledge system representing this world may not have a stable 
semantics. Further, due to the result that nonmonotonic reasoning and logic 
programming are different forms of argumentation, and an argumentation system 
itself can be transformed into an equivalent logic program (see coming parts), the 
conclusion we draw here can be formulated as follows: 

Let P be a knowledge base represented either as a logic program, or as a 
nonmonotonic theory or as an argumentation framework. Then there is not 
necessarily a “bug” in P if P has no stable semantics. 

This theorem defeats an often held opinion in the logic programming and 
nonmonotonic reasoning community that if a logic program or a nonmonotonic 
theory has no stable semantics then there is something “wrong” in it. 

Though it has been recognized earlier in [38] that the stable marriage problem 
can be viewed as a nonmonotonic reasoning problem, argumentation presents a 
direct and more natural representation and analysis of this problem. 
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4. Nonmonotonic reasoning and logic programming as argumentation 

A number of different approaches to nonmonotonic reasoning has been 
proposed in AI [41, 42, 45, 46, 48, 49, 52, 571 which are very different at first 
sight. But it turns out that all of them are different forms of argumentation. Due 
to the lack of space, we only show in this section that two of them, Reiter’s 
default logic, as representative of the extension-based approach [41, 42, 48, 49, 
521, and Pollock’s inductive defeasible logic, as representative of the argument- 
based approach [45, 46, 571, are different forms of argumentation. This clarifies 
the relationship between these two approaches to nonmonotonic reasoning, a 
problem which has been open until today. Further we also show that logic 
programming is a form of argumentation, too. Readers who are interested in 
more details about the relations between argumentation and nonmonotonic 
reasoning are referred to a recent paper of Bondarenko, Toni and Kowalski [7] 
who, generalizing the results given in this section, have developed an interesting 
assumption-based framework to nonmonotonic reasoning unifying other previous- 
ly proposed formalism. 

4.1. Reiter’s default logic as argumentation 

A default is an expression of the form (p:jl , . . . , jklw) where p, jl , . . . , jk and 
w are closed first-order sentences with p being called the prerequisite, jl, . . . , jk 
the justifications and w the conclusion of the default. 

A default theory is a pair (D, W) where D is a set of defaults and W is a set of 
closed first-order sentences. A default theory is said to be consistent if W is 
consistent [52]. Reiter’s extension (or R-extension for short) [52] of a default 
theory (D, W) is a closed first-order theory E satisfying the following conditions: 

E = IJ {W, 1 i is a natural number} , 

where 

w,=w, 
W+l = Th(Wi) U {w 1 3(p:jl,. . . , jkl+v) in D such that 

{ j,} U E is consistent for k 3 n 2 1, 

and p Eq}, 

with Th(Wj) denoting the first-order closure of the theory W. 
Let S be a set of defaults. The set of all justifications of defaults in S is denoted 

by &s(S). 
Let T=(D,W)andK={j,,..., j,} c Jus(D). A closed wff k is said to be a 

defeasible consequence of T and K if there is a sequence (e,, e,, . . . , e,) with 
e, = k such that, for each ei, either ei E W or ei is a logical consequence of the 
preceding members in the sequence or ei is the conclusion w of a default 
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(p:j: , , j: iw) whose prerequisite p is a preceding member in the sequence 
and whose justifications j;. . , j: belong to K. K is said to be a support for k 
with respect to T. 

A default theory T = (D, W) can be interpreted as an argumentation frame- 
work AF(T) = (AR,, attacks,) as follows: 

AR, = {(K, k) / K C_ ./us(D): K is a support for k with respect to T} , 

(K, k) attacksr (K’. k’) iff lk E K’ 

The following lemma shows that the argumentation framework AF(T) is a 
“meaningful” one. 

Lemma 40. Let S be an admissible set of arguments in AF(T). Let 

H=U{KI(K,k)ES} 

Then T,H k false iff T is consistent. 

Proof. (+) Obvious. 
(+) Assume the contrary. Thus there is a finite nonempty subset K of H such 

that T,K k false. Thus for each closed wff k, (K, k) E AR,. Let (K’, k’) E S such 
that K’ is not empty. So K represents an attack against (K’, k’). From the 
admissibility of S, there is A = (H’, h’) in S such that lh’ E K. That means that A 
attacks some argument B in S. Hence S is not conflict-free. Contradiction! 0 

The correspondence between the R-extensions of a default theory T and the 
stable extensions of the corresponding argumentation framework AF(T) is 
captured by the following mapping: 

Definition 41. Let S be a first-order theory and S’ be a set of arguments of 
AF(T). Define 

urg(S)={(K,k)EAR,(Vj(GK: {j}US isconsistent}. 

fZat(S’)={k/3(K,k)ES’}. 

From the definition of R-extension. it is not difficult to see that the following 
lemma holds: 

Lemma 42. Let T be a default theory, and E be a first-order theory. Then E is an 
R-extension of T iff E =f[at(arg(E)). 

It follows directly that: 

Theorem 43. Let T = (D, W) be a default theory. Let E be an R-extension of T 
and E’ be a stable extension of A F(T). Then 
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(1) arg(E) is a stable extension of AF(T), 
(2) $at(E’) is an R-extension of T. 

Proof. (1) Let A = (H, h) be an argument in AF(T). Then it is easy to see that A 
is not attacked by arg(E) iff for each (K, k) E a&E): -&$E’H iff Vk E E: lk$H 
(from Lemma 42) iff Vj E H: E U { j} is consistent iff A E arg(E). So from 
Lemma 14, it follows immediately that arg(E) is a stable extension of AF(T). 

(2) It is easy to see that for each argument (K, k): (K, k) E arg(flat(E’)) iff 
Vj E K: {j} Ujlat(E’) . 1s consistent iff (K, k) is not attacked by E’ iff (K, k) E E’ 
(from the fact that E’ is a stable extension of AF(T) and Lemma 14). Hence 
E’ = arg(flat(E’)). So flat (E) =flat(arg(fZat(E’))). From Lemma 42, it follows 
that $at(E’) is an R-extension of T. 0 

It is obvious that the preferred extension semantics of AF(T) generalizes the 
R-extension semantics of T. Moreover, we argue that preferred extension 
semantics of AF(T) captures in a more natural way the intuition of a default 

(p:j,, . . . , jklW) which says that in the absence of any evidence to the contrary of 
the justifications j,, . . . , jk, concludes w if p holds. It is clear that this intuitive 
understanding of defaults does not say that the existence of such a “paradox” 
default like (:lp/p) can prevent us from concluding q in the default theory 
T = ({(:lp/p)}, (4)). But R-extension semantics does exactly that, while pre- 
ferred extension semantics does not. Supporters of R-extensions may argue that T 
in this case has a bug and we have to fix it before we conclude something from T. 
How can we fix it? How can we know that the bug is in D and not in W? We 
know it thanks to the preferred extension of AF(T)! Further, interpreting a 
default theory T as a shorthand of its corresponding argumentation framework 
AF(T) makes it also possible to introduce a skeptical semantics of Reiter’s default 
logic, thus building a bridge to other skeptical approaches to nonmonotonic 
reasoning. 

4.2. Pollock’s inductive defeasible logic as grounded argumentation 

Starting from the ideas of prima facie reasons and defeaters in philosophy, 
Pollock [45, 461 has constructed a theory for defeasible reasoning that is based on 
the relations between arguments supporting contradictory conclusions. Pollock’s 
work is one of the most general and influential approaches to defeasible reasoning 
which deviate from the mainstream approaches to nonmonotonic reasoning in AI. 
In this subsection, we will show that Pollock’s inductive theory of defeasible 
reasoning is based on our notion of grounded extension. A byproduct of this 
result is the illumination of the inherent relations between argument-based [45, 
46, 571 and extension-based [22, 41, 42, 52, 601 nonmonotonic reasoning in AI. 

Given an argumentation framework (AR, attacks), Pollock’s theory of defeas- 
ible reasoning is based on a hierarchy of arguments defined as follows: 
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l All arguments are level-0 arguments. 
l An argument is a level-(n + 1) argument iff it is not attacked by any level-n 

argument. 

Definition 44. An argument is indefeasible iff there is an m such that for each 
n > m, the argument is a level-n argument. 

Let AR, denote the set of level-i arguments. It is clear that for each i, 
AR, = Pl,,(AR,- ,) where 

PI,, : 2AR* 2AK , 

PI,,(S) = {A 1 no argument in S attacks A} . 

The operator Pl,4, is very closely related to FAF as the following lemma shows. 

Lemma 45. FAp = Pl,,o PI,,-. 

Proof. Let S be a set of arguments in AF and A be an arbitrary argument in AF. 

Then A E F&S) 

iff each attack against A is attacked by an argument in S 

iff each attack against A belongs to ARVl,,(S) 

iff no attack against A belongs to PIAF(S) 

iff no argument in P/,,(S) attacks A 

iff A belongs to Pf,.(PI,.(S)). 0 

The relations between Pollock’s indefeasible arguments and our grounded 
extension semantics is illuminated in the following lemma and theorem. 

Lemma 46. Let GE,, be the grounded extension of AF. Then 

+CAR,c...cAR2, ,CAR2,+,C...cGE/,, 

c-. .cAR,,+,c_AR,,c...cAR,,=AR. 

Proof. It is easy to see that AR, = F,.(4). Further, from the fact that for each 
n 3 0, AR,+, = FAF(AR,), it follows immediately that, for each i 3 0, AR,, = 
F&(AR,) = F;.(AR), and, for each i 2 1, AR,i_1 = F&!(AR,) = FL,(+). The 
lemma follows then directly from the monotonicity of FAF, and the fact that GE,, 
is a fixpoint of FAF. 0 

Let ARinr = U {AR,,-, / i 3 1). It follows immediately that: 

Theorem 47. 
(1) An argument A is indefeasible iff A E ARinf. 
(2) ARinf C GEAF. 
(3) If AF is finitary, then AR,,, = GE,.. 



P.M. Dung I Artijcial Intelligence 77 (1995) 321-357 343 

4.3. Logic programming as argumentation 

It is widely accepted today that logic programming provides an ideal environ- 
ment for the implementation of knowledge bases. So, it is not surprising that 
much work has been done to study the semantics of logic programming. The 
semantics of logic programming depends on whether we view negation as finite 
failure or as possibly infinite failure. The first view can provide computable 
semantics [8, 34, 371 but fails to capture the intended semantics in many cases. 
The second view captures better the intended semantics of a logic program [ll, 
16, 22, 26, 51, 601 but is incomputable in general. In [ll, 271, an argument-based 
framework for logic programming with negation as possibly infinite failure has 
been given unifying many previously proposed approaches. Continuing this line of 
research, we will show in this section that a logic program can be considered as a 
schema for generating arguments. Different semantics will result from the 
difference in the structure of the arguments. The computability of a semantics is 
determined by the computability of the arguments involved. 

A logic program is a finite set of clauses of the form b, +bi, . . . , b,, 
lb m+l, * . . , lb m+n where the hi’s are atoms. For a logic problem P, 
G, denotes the set of all ground instances of clauses in P. For each literal h, 
the complement of h is denoted by h*. Further, for each set of ground atoms M, 
let 1.M = {lb 1 b E M}. 

4.3.1. Negation as possibly infinite failure 
Let K = {lb,, . . . , lb,} be a set of ground negative literals. A ground atom k 

is said to be a defeasible consequence of P,K, denoted by P,K k k, if there is a 
sequence of ground atoms (e,, e,, . . . , e,) with e, = k such that for each ei, either 
ei +- E G, or ei is the head of a clause ei +ai, . . . , a,, la,,,, . . . , la,,, in G, 
such that the positive literal a,, . . . , a, belong to the preceding members in the 
sequence and the negative literal la,,, , . . . , la,,, belong to K. K is said to be a 
support for k with respect to P. 

A logic program P is transformed into an argumentation framework 
A&,,,(P) = (AR, attacks) as follows: 

AR = {(K, k) 1 K is a support for k with respect to P} 

U {({lk}, lk)) k is a ground atom} , 

(K, h) attacks (K’, h’) iff h* E K’ . 

Remark 48. An argument of the form ({lk}, lk) captures the idea that k would 
be concluded false if there is no acceptable argument supporting k. 

The semantics of P defined by the preferred extensions of AF,,,,,,(P) is called 
preferred extension semantics. It is not difficult to see that this semantics 
coincides with the preferential semantics defined in [ll]. 
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Correspondence between stuble models of’ P and stable extensions of AF,,,,,,(P) 
Let M be a Herbrand interpretation (a set of ground positive literals) of P. M is 

said to be a stable model of P iff M is the least Herbrand model of the program 
obtained from G,, by (1) deleting every clause in G, whose body contains a 
negative literal lb with b E M, and (2) deleting all negative literals from the 
remaining clauses [22]. 

For each interpretation M, define 

CM = {u [u is a ground atom and a$M} 

Let AR,,,,,(P) = (AR, attacks), and for each stable model M, let E,,, = {(K, k) E 
ARIK~l.CM}.ItiseasytoseethatkEMUl.CMiff3(K,k)EE,.Hence, 
for each argument A = (K, k) EAR, A E E, iff Vlb E K: bgM iff A is not 
attacked by E,,,,. From Lemma 14. it follows that: 

Theorem 49. Let P be a logic program. Then a Herbrand interpretation M is a 
stable model of P iff there is u stable extension E of AF,,,,,(P) such that 

Mul.CM={k13(K,k)~E}. 

Correspondence between well-founded model of P and grounded extension of 

AFq,,(P) 
A consistent set of ground literal is called a partial interpretation of P. The 

definition of well-founded model [60] is based on the following notion of 

unfounded sets: A set S of positive ground atoms is an unfounded set of a logic 
program P with respect to a partial interpretation I iff for each clause C in G,, 
whose head belongs to S, either the body of C is false with respect to I or it 
contains a positive literal 1 such that I E S. The well-founded model of a logic 
program P is defined as the least fixed point of the following monotonic operator 

V,,(I) = l.GUS(I) U ‘Z’,(1) 

where 

T,(I) = {b I3C E G,, such that head(C) = b 

and body(C) is true with respect to I} , 

and GUS(I) is the greatest unfounded set of P with respect to I. 
The following theorem shows the equivalence between well-founded model of 

P and grounded extension of AF(P). 

Theorem 50. Let P be u logic program, and WFM be the well-founded model of P. 
Let GE be the grounded extension of AF,,,,,,(P). Then 

WFM = {h \3(K, h) E GE} 

Proof. See Appendix B. Cl 
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Though considering a logic program P as an argumentation framework 
AF,,,,,,(P) provides an appropriate platform for capturing the intended semantics 
of P, any semantics based on AF,,,,,(P) is incomputable due to the result that, in 
general, the set of arguments of AF,,,,,(P) is incomputable. 

Lemma 51. Let P be an arbitrary logic program and AF,,,,,,(P) = (AR, attacks). 
Then, in general, AR is not recursively decidable, i.e. there is no algorithm which 
always terminates and decides for each pair (K, k) whether or not (K, k) EAR. 

Proof. Let f be an n-ary partial recursive function which is not totally recursive. 
Then according to Theorem 9.6 in [37], there is a definite program P and an 
(n + l)-ary predicate symbol pf such that all computed answers for P U 

{+Pf(sk’(0), . . . ,d‘“(O),x)} have the form {xIs~(O)} and for all nonnegative 
integers kl, . . . , kn, we have f(k1,. . . , kn) = k iff {xIsk(0)} is the computed 
answer for P U {+pf(skl(0), . . . , sk”(0), x)}. 

For any sequence of nonnegative integers kl, . . . , kn, B = (0, 
p(skl(0), . . . , sk”(0), k)) is an argument in AF,,,,,(P) iff f(k1, . . . , kn) is defined 
and f(k1, . . . , kn) = k. Since f is partially recursive but not totally recursive, 
there exists no algorithm which always terminates and can decide whether B is an 
argument. 0 

It follows immediately that: 

Theorem 52. Let P be an arbitrary logic program. Then the stable, well-founded 
and preferred extension semantics of P are in general incomputable. 

4.3.2. Negations as finite failure 
To capture the semantics of negation as finite failure, a logic program P is 

transformed into an argumentation framework AF,,,,(P) = (AR, attacks) as 
follows: 

AR = {(K, k) j3C E G,: head(C) = k and body(C) = K} 

U {({lk}, lk) 1 k is a ground atom} , 

(K, h) attacks (K’, h’) iff h* E K’ . 

Remark 53. The definition of AF,,,,,(P) means that each ground instance of a 
clause of P constitutes an argument for its head. 

It follows immediately that: 

Lemma 54. The set of arguments in AF,,,,,(P) for each logic program P is 
computable. 

The relationship between Clark’s completion semantics and the AF,,,,(P)- 
based semantics is clarified by the following theorems. 
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Theorem 55. Let P be an arbitrary logic program. Then a Herbrand interpretation 
M is a model of Clark’s completion of P, camp(P),” if there is a stable extension E 
of AF,,,,(P) such that M U l.CM = {k j3(K. k) E E}. 

Proof. (*) Let 

E, = {(K, k) E AR ( k EM and K is true with respect to M} 

U {({lk}, +) / k$M) 

Let (H, h) be an arbitrary argument in AR. Then (H, h) E E, iff Vl E H: 1 is true 
in M iff Vl E H: I* is not true in M iff (H. h) is not attacked by E,. Hence from 

Lemma 14, it follows that E, is a stable extension. 
(G) Let M = {k I3(K, k) E E and k is an atom}. Since E is stable, it is clear 

that, for each b E M, there is a C E G, such that head(C) = b and body(C) is true 
in M and, for each bjZ M, for each C E G, if head(C) = b then body(C) is false in 
M. So it is clear that A4 is a model of camp(P). 0 

For each logic program P. each partial interpretation I, the operator FP(l) is 
defined as follows: 

F,(I) = {k / 3C E G,,: head(C) = k and 

body(C) is true with respect to I} 

U (lk 1 VC E G,: head(C) = k implies: 

body(C) is false with respect to I} . 

Fitting’s model of a logic program P is defined as the least fixpoint of Fr [19] 

Theorem 56. Let P be u logic program, und FM be Fitting’s model of P. Let GE 
be the grounded extension of AF,,,,(P). Then 

FM = {h \3(K. h) E GE} 

Proof. Let F be the characteristic function of AF,,,,(P). We prove by induction 
that for each ordinal i, F’,(O) = {h I3(K, h) E F’(0)). 

It is clear that F’,,(O) = {h I3(K, h) E F’(0)} f or i = 0 and for any limit ordinal i 
if F,(0) = {h I3(K, h) E F’(0)} holds for any j <i. Further, it is also not difficult 
to see that the equation F’,,(0) = {h ) 3(K, h) E F’(0)} holds for n + 1 if it holds 
for n. 0 

“‘The formal definition of come is given m Appendix C 



P.M. Dung I Artificial Intelligence 77 (1995) 321-357 347 

4.3.3. Coincidence between different semantics 
Due to the fact that a logic program can have different semantics, it is often 

important for practical purposes to find sufficient syntactical conditions guarantee- 
ing the existence and the equivalence of these semantics. In this section, we want 
to show that all the conditions which have been given in the logic programming 
literature to guarantee the equivalence of different semantics can be captured by 
our newly introduced notions of well-foundedness and uncontroversity of ar- 
gumentation frameworks. 

Let Pred be the set of all predicate symbols occurring in a logic program P. The 
predicate dependency graph [2] of P is a directed graph with signed edges. The 
nodes are the elements of Pred. An edge from p to q is positive (respectively 
negative) iff p occurs in the head of a clause C of P and q occurs in a positive 
(respectively negative) literal in the body of C. Define a+ 1 and 2 _ 1 by p S+ 1 q 
(respectively p a_, q) iff there is a (nonempty) path from p to q containing an 
even (respectively odd) number of negative edges in the predicate dependency 
graph.Further,letusdefinep~qiffp~+,qorp~_,q,andp~qiffp~qand 

4 >P. 
A program is said to be hierarchical [37] if there is no p ap. A program is said 

to be stratified [2] if we never have both p = q and p a_, q. A program is strict 
[35, 541 if there are no p and q such that p a+ 1 q and p ==_1 q. A program is 
call-consistent [12, 18, 35, 541 if there is no predicate symbol p such that p z=_1 p. 

It is not difficult to see that the following theorems hold: 

Theorem 57. 
(1) Zf P is stratified, then AF,,,,,(P) is well-founded. 
(2) Zf P is hierarchical, then AF,,,,(P) is well-founded. 

Theorem 58. 
(1) Zf P is strict, then both AF,,,,,(P) and AF,,,,(P) are uncontroversial. 
(2) Zf P is call-consistent, then both AF,,,,,,(P) and AF,,,,,(P) are limited 

controversial. 

Therefore, we immediately obtain the following results. 

Corollary 59. 
(1) The stable and well-founded semantics of stratified logic programs coincide. 
(2) Clark’s completion of a hierarchical program P has exactly one Herbrand 

model which coincides with Fitting’s model of P. 

Corollary 60. 
(1) The well-founded semantics, stable semantics and preferred extension 

semantics of any strict logic program P coincide in the sense that for each 
ground literal k, k E WFM, iff k is true in each stable model of P. 
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(2) The stable semantics und preferred extension semantics of call-consistent 
logic programs coincide. 

(3) Each maximal three-valued Herbrand model of camp(P) is two-valued if P 
is call-consistent. 

Corollary 61. 
(1) There exists at least one stable model for each call-consistent logic 

program. 
(2) Clark’s completion of call-consistent P, camp(P), is consistent. 

Though Corollaries 59 and 61 are not new, Theorems 57 and 58 give a much 
deeper insight into the nature of strictness, stratification and call-consistency. 
Further, they give also a much simpler proof for these results. 

5. Argumentation as logic programming: a generator of meta-interpreters for 
argumentation systems 

There are extremely interesting relations between argumentation and logic 

programming. In the previous section, we have seen that logic programming can 
be shown to be a form of argumentation. In this section, we will show that 

argumentation itself can be “viewed” as logic programming. This result is of great 
importance. It introduces in fact a general method for generating meta-interpre- 
ters for argumentation systems. This method is very similar to the compiler- 
compiler idea in conventional programming. 

Any argumentation system is composed from two essential components: One 
for generating the arguments together with the attack-relationship between them. 
The other is for determining the acceptability of arguments. So we can think of an 
argumentation system as consisting of two units, an argument generation unit, 
AGU. and an argument processing unit, APU. The argument processing unit 

API/ is in fact a very simple logic program consisting of the following two 
clauses: 

(Cl) act(X) +ldefeat(X). 
(C2) defeat(X) +--uttack(Y, X), act(Y). 

where act(X) stands for “argument X is acceptable” and defeat(X) for “argument 
X is defeated”.” 

The above described architecture of an argumentation system is illustrated by 
the following picture: 

” Clause C2 means that an argument is defeated if it is attacked by an acceptable argument. Cl means 

that X is acceptable if it is not defeated (or equivalently. each clause which attacks X is not acceptable 

(i.e. defeated)). 
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q 
J 

attucks(A 1, A *) 

utcucks(B, , B2) 

1 
acceptable arguments 

Let AF = (AR, attacks) be an argumentation framework. Let PAF denote the logic 
program defined by 

PAF = APU + AGU 

with 

APU = {Cl, C2}, AGU={uttacks(A,B)~~(A,B)Euttucks}.’* 

Further, for each extension E of AF, denote 

m(E) = AGU U {ucc(A) (A E E} 

U {defeat(B) ) B is attacked by some A E E} . 

The following theorem shows the correctness of the above architecture. 

Theorem 62. Let AF be an argumentation framework and E be an extension of 
AF. Then 

(1) E is a stable extension of AF iff m(E) is u stable model of PAF. 
(2) E is a grounded extension of AF iff m(E) U {-tdefeut(A) ) A E E} is the 

well-founded model of PAF. 
(3) The well-founded model and Fitting’s model of PAF coincide. 

Proof. (1) Obvious from the definition of stable model [22], and from Lemma 14. 
(2) Let AF, = AFnapif(PAF). Let X and Y be two arguments in AF,,. Hence X 

attacks Y iff there is an argument A in AF such that X = (K, defeat(A)), and 
Y = (K’, k’) such that ldefeut(A) E K’. Let F and F, be the characteristic 
functions of AF and AF,,, respectively. It is not difficult to prove by induction on i 
that for each ordinal i, 

m(F’(4)) U {idefeat 1 A E F’(4)) = {h ( (K, h) E F;(4)} . 

(3) Obvious. Cl 

I2 Each argument is considered as a distinct element in the Herbrand Universe of PAF. 
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Kowalski [32] has pointed out that logic-based knowledge bases can be 
described by the equation 

Knowledge Base = Knowledge + Logic 

Further logic-based knowledge bases can be viewed as argumentation systems 
where the knowledge is coded in the structure of arguments and the logic is used 
to determine the acceptability of arguments. In that sense, the above architecture 
of argumentation systems can be considered as a schema for generating meta- 
interpreters for knowledge bases. To increase the efficiency of this meta-interpre- 
ter, techniques of partial evaluation and program transformation [3, 581 can be 
applied. 

6. Conclusions and discussions 

In this paper. we have developed a highly abstract but simple theory of 
argumentation where the central notion of acceptability of arguments is captured 
in a general way. Then we proceed to argue for the appropriateness of our theory 
first by demonstrating how our theory can be used to investigate the logical 
structure of many problems in human’s social and economic affairs, and second by 
showing that nonmonotonic reasoning in AI and logic programming is just a form 
of argumentation. 

Our work can have many practical consequences. First, the theory of ar- 
gumentation frameworks proposed in this paper provides a unified foundation for 
the different approaches to knowledge representation and reasoning in AI, 
philosophy and logic programming. Therefore, our results can serve as the 
foundation for the development of knowledge representation formalism capable 
of communicating knowledge among different knowledge representation systems. 
This is especially important in constructing large knowledge bases as such systems 
will require a sustained effort over a large geography by many teams which will be 
forced to use different knowledge representation languages in developing their 
subsystems since no single formalism to knowledge representation can satisfy all 
the “basic properties” of a knowledge base systemI [25, 32, 44, 501. 

By uncovering the relationship between argumentation and n-person games we 
point out the relationship between argumentation and negotiation. While negotia- 
tion can be viewed as the (operational) process to find a solution, argumentation 
is needed to justify a proposed solution. Hence, it is clear that there is no 
negotiation without argumentation. In other words, argumentation is an integral 
part of negotiation. So we expect that our theory will have some impact to the 
study of DAI. 

” Poole [50] shows that no default reasoning system can have all of the following basic properties: 

conditioning, finite conjunctive closure, Horn representativity. consistency, arbitrary defaults. 
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This paper is the first in a series of works devoted to study the theory, 
architecture and development of argumentation systems. In [13], we study the 
relations between argumentation, game-theoretical semantics and logic program- 
ming. In general, we expect that the attacks against some arguments may have 
different strengths, one may be more “deadly” than the others. So a study of how 
to differentiate the strength of arguments is necessary. A first step has been taken 
in [14] where we have identified two kinds of attacks, the reductio ad absurdum 
attacks and the specificity attacks. Bondarenko, Toni and Kowalski [7] have also 
studied this problem in a more general context to provide an unified argumenta- 
tional assumption-based approach to nonmonotonic reasoning. Still, more work 
needs to be done here. An interesting topic of research is the problem of 
self-defeating arguments as illustrated in the following example. Consider the 
argumentation framework ( {A, B} , {(A, A), (A, B)} ) . The only preferred exten- 
sion here is empty though one can can argue that since A defeats itself, B should 
be acceptable. Pollock [47] gives a convincing analysis of the importance and the 
nature of this problem. This problem has also been studied by Kakas, Mancarella 
and Dung in [26, 281 in the context of logic programming. We plan to look at this 
problem in our framework of argumentation in the future. 

Many other argument systems have also been proposed in the literature [36, 45, 
46, 57, 611. The focus of most of these works is on the structure of arguments. 
Vreeswijk classifies arguments into deductive arguments, statistically based 
inductive arguments and generic inductive arguments. According to Vreeswijk’s 
classification, the systems in [37, 571 are deductive and generic inductive argument 
systems. The attack-relation between arguments in Simari and Loui’s system [57] 
is based on Poole’s formalization [48] of the principle of specific information 
overriding more general information. Simari and Loui [57] adopt Pollock’s 
criterion (see Section 3.2) for determining the acceptability of arguments. In [36], 
the attack-relationship between arguments and their acceptability are not dis- 
cussed at all. But by pointing out that different approaches to nonmonotonic 
reasoning in AI can be viewed as argument systems satisfying certain complete- 
ness conditions, Lin and Shoham [36] implicitly recognize the need for a 
mechanism for determining the acceptability of arguments in any argument 
system. 
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Appendix A. Example 

The argumentation framework AF(P) of the following logic program P is not 
finitary . 

P: t-+1/l 

P + -Y(x) 
q(x) +- even(x, 
q(x) +--ieven 
even(s(x)) - 1even(x) 
even( 0) +-- 

Appendix B 

Let Z be a partial interpretation. Let Z,, = I and Z;,, = T&Z,) U I,. Define 

T, * (I) = U {I, 1 i is a natural number} . 

It is easy to see that WFM is the least fixed point of the following operator 

W,(I) = l.GUS(I) U T,, * (1 U T.GUS(Z)) 

Let F be the characteristic function of AF,,,,,,(P). To prove the theorem, it is 
enough to show that for each ordinal i 

W’,(O) = (A Ig(K, h) E F’(ld)} 

We show this by induction, It is obvious that the above equation holds for i = 0 
and also for limit ordinal i if it holds for ail ordinals less than i. Suppose now that 
the above equation holds for i. We want to show now that it holds also for i -t- 1. 

Let I = W’,(0) and S = F’(0). F ram the definitions of W, and F. it is clear that to 

show the above equation, it is enough to show: 

GUS(Z) = {k 1 ({lk}, lk) E F’“(0)) . 

which itself follows directly from the following lemma: 

Lemma B.l. Let P be a logic program and let E be an admissible set of arguments 
from AF,,,,,(P). Further let I be a partial interpretation defined by I = 
{h 13(K, h)f E}. Then for each ground atom k, ({lk}, lk)fF(E) iff kE 
GUS(I). 
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Proof. First, we need the following notion of proof trees. 
If a + is a clause in G,, then the tree 

a 

is a proof tree of a. 
If a +~a,, . . , la, is a clause in G,, then the tree 

A 
ia, . . . laPI 

is a proof tree of a. 
If a-al,. . . , a,, la,,,, . . . , Tan+,,, is a clause in G,, and T,, . . . , T, are 

proof trees of a,, . . . , a,, respectively, then the tree 

a 

T4L 1 ... n n+l ... ia ??+??I 

is a proof tree of a. 
(+) Let kE GUS(Z). Assume that ({lk}, lk)$F(E), i.e. there is an 

argument A = (K, k) such that A is not attacked by E. There exists a proof tree 
Tr of k with respect to P such that all of its terminals nodes are either q or an 
element from K. We first prove the following proposition. 

Proposition B.2. There is a path from the root k of Tr to a terminal node Th in Tr 
such that all the positive literals on this path belong to GUS(Z) and h E I. 

Proof. By induction on the height (the length of the longest path from the root to 
a terminal node) of Tr. 

Base case: The height of Tr is 1. The proposition follows directly from the fact 
that GUS(Z) is an unfounded set. 

Induction hypothesis: Let the height of Tr be IZ. Let C be the clause such that 
body(C) is the set of all children of k in Tr. Since GUS(Z) is an unfounded set and 
k E GUS(Z), it follows that either Z U body(C) is inconsistent or there is b E 
body(C) n GUS(Z). 

Case 1: Z U body(C) is inconsistent. 
(a) There is an atom b E body(C) such that lb E 1. Hence, ({lb}, lb) E E. 

As (K, b) E AR and E is admissible and (K, b) attacks ({lb}, lb), there is 
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lu E K such that u E 1. Contradiction to the fact that A is not attacked by 
E. So Case I(a) does not occur. 

(b) There is lb in body(C) such that b E 1. This leads to a contradiction since 

lb E K. So case l(b) cannot occur either. 
Case 2: There is h E body(C) n GUS(I). The subtree Tr’ with root b of Tr is 

again a proof tree of h with respect to KB. As height of Tr’ is n - 1 and 
6 E GUS(I), it follows that there is a path from the root 6 to a terminal node lu 
in Tr’ such that all the positive literals on this path belong to GUS(Z) and a E I. 
The proposition follows then immediately. 0 

From Proposition B.2. it follows immediately that A is attacked by E. 

Contradiction. So ({lk}, lk) E F(E). 
(3) Let X= {h I({+). lb) EF(E)}. We want to prove that X is an un- 

founded set of P with respect to I. Assume that X is not an unfounded set with 
respect to I. Then there is an atom a E X and a ground instance a + Bd of a 
clause in P such that I U Bd is consistent and no positive subgoal in Bd belongs to 
X. Thus for each positive subgoal h in Bd there exists an argument (Kh, b) such 
that b’jZ1 for each lh’ E K,, (otherwise ({lb}, lb) would be acceptable with 

respect to E, a contradiction). Let 

K = U {K,, / b is a positive subgoal in Bd} U {lb 1 lb E Bd} . 

Then it is clear that (K, u) E AR. Since ((lu}, la) E E, there is lb’ E K such 
that h’ E I. Thus lb’ E Bd. Contradiction to the fact that I U Bd is consistent! SO 

X is unfounded with respect to I. E 

Appendix C 

The following definition of camp(P) is taken from [37]. 
The definition of a predicate p in a logic program P is the set of all clauses in P 

which have p in their head. 
To define camp(P), each clause p(r, . . t,,) t b, , . . , b,, is transformed into 

p(x,, ,x,,)+3y,. , 3_v, (x,=t,) ,.... (x,,=t,,),b ,‘.“. h,, 

where the x,‘s are variables not appearing in the original clause, and the y,‘s are 

the variables of the original clause. 
Let 

p(x,, . .x,,)+E, . 

p(x,. . ,x,~)+E~ . 

be the transformed clauses of the definition of p. 
Then the completed definition of p is defined as 

Vx,, . . .,Vx, p(x ,,..., x,,)-E, v...vE,. 
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The completed definition of a predicate p whose definition in P is empty is 

vx,, . . . ,vx, lP(X*, . . . ,xJ. 

camp(P) is defined as the collection of all predicates in P together with Clark’s 
equality theory. 
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