Class Notes, PHIL 478: Logics for Defeasible Reasoning

John Horty www.umiacs.umd.edu/users/horty

Version of: February 4, 2016

Contents

1	Default logic		1
	1.1	Default rules	1
	1.2	Fixed priority default theories	1
	1.3	Stability	1
	1.4	Proper scenarios and extensions	2
	1.5	Some consequence relations	3
	1.6	Defeasible arguments	3
	1.7	Reiter default theories	4
	1.8	Normal default theories	5

1 Default logic

1.1 Default rules

- Background language, logical closure
- Rules of form $X \to Y$
- Where $\delta = X \to Y$, have $Premise(\delta) = X$, $Conclusion(\delta) = Y$. Also, if S set of defaults, have $Conclusion(S) = \{Conclusion(\delta) : \delta \in S\}$
- Priorities

1.2 Fixed priority default theories

- Definition 1 (Fixed priority default theories) A fixed priority default theory Δ is a structure of the form (W, D, <), in which W is a set of ordinary formulas, D is a set of default rules, and < is a strict partial ordering on D.
- Definition 2 (Extensions) Let Δ = ⟨W, D, <⟩ be a fixed priority default theory. Then E is an extension of Δ just in case, for some proper scenario S based on this theory,

$$\mathcal{E} = Th(\mathcal{W} \cup Conclusion(\mathcal{S})).$$

1.3 Stability

Definition 3 (Triggered defaults) Let Δ = ⟨W, D, <⟩ be a fixed priority default theory, and S a scenario based on this theory. Then the defaults from D that are triggered in the context of the scenario S are those belonging to the set

$$Triggered_{\mathcal{W},\mathcal{D}}(\mathcal{S}) = \{ \delta \in \mathcal{D} : \mathcal{W} \cup Conclusion(\mathcal{S}) \vdash Premise(\delta) \}.$$

Definition 4 (Conflicted defaults) Let Δ = ⟨W, D, <⟩ be a fixed priority default theory, and S a scenario based on this theory. Then the defaults from D that are conflicted in the context of the scenario S are those belonging to the set

$$Conflicted_{\mathcal{W},\mathcal{D}}(\mathcal{S}) = \{\delta \in \mathcal{D} : \mathcal{W} \cup Conclusion(\mathcal{S}) \vdash \neg Conclusion(\delta)\}$$

Definition 5 (Defeated defaults: preliminary definition) Let Δ = ⟨W, D, <⟩
 be a fixed priority default theory, and S a scenario based on this theory. Then the defaults from D that are defeated in the context of the scenario S are those belonging to the set

$$Defeated_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) = \{\delta \in \mathcal{D} : \text{ there is a default } \delta' \in Triggered_{\mathcal{W},\mathcal{D}}(\mathcal{S}) \text{ such that}$$

$$(1) \ \delta < \delta',$$

$$(2) \ \mathcal{W} \cup \{Conclusion(\delta')\} \vdash \neg Conclusion(\delta)\}.$$

Definition 6 (Binding defaults) Let Δ = ⟨W, D, <⟩ be a fixed priority default theory, and S a scenario based on this theory. Then the defaults from D that are binding in the context of the scenario S are those belonging to the set

$$\begin{aligned} Binding_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) &= \{\delta \in \mathcal{D} : \quad \delta \in Triggered_{\mathcal{W},\mathcal{D}}(\mathcal{S}), \\ \delta \not\in Conflicted_{\mathcal{W},\mathcal{D}}(\mathcal{S}), \\ \delta \notin Defeated_{\mathcal{W},\mathcal{D},<}(\mathcal{S}) \end{aligned}$$

 Definition 7 (Stable scenarios) Let Δ = ⟨W, D, <⟩ be a fixed priority default theory, and S a scenario based on this theory. Then S is a stable scenario based on the theory Δ just in case

$$\mathcal{S} = Binding_{\mathcal{W},\mathcal{D},<}(\mathcal{S}).$$

1.4 Proper scenarios and extensions

• Definition 8 (Approximating sequences) Let $\Delta = \langle \mathcal{W}, \mathcal{D}, \langle \rangle$ be a fixed priority default theory and \mathcal{S} a scenario based on this theory. Then $\mathcal{S}_0, \mathcal{S}_1, \mathcal{S}_2, \ldots$ is an approximating sequence that is based on the theory Δ and constrained by the scenario \mathcal{S} just in case

$$S_{0} = \emptyset,$$

$$S_{i+1} = \{\delta : \delta \in Triggered_{\mathcal{W},\mathcal{D}}(\mathcal{S}_{i}), \\ \delta \notin Conflicted_{\mathcal{W},\mathcal{D}}(\mathcal{S}), \\ \delta \notin Defeated_{\mathcal{W},\mathcal{D},<}(\mathcal{S})\}.$$

• Definition 9 (Proper scenarios) Let Δ be a default theory and S a scenario based on this theory, and let S_0, S_1, S_2, \ldots be an approximating sequence that is based on Δ and constrained by S. Then S is a proper scenario based on Δ just in case $S = \bigcup_{i>0} S_i$.

- Theorem 1 Let Δ = ⟨W, D, <⟩ be a fixed priority default theory and S a proper scenario based on this theory. Then S is also a stable scenario based on the theory Δ.
- Theorem 2 A fixed priority default theory Δ = ⟨W, D, <⟩ has an inconsistent extension just in case W is inconsistent.
- **Theorem 3** If a fixed priority default theory has an inconsistent extension, this is its only extension.
- Theorem 4 Let S and \mathcal{R} be proper scenarios based on a fixed priority default theory, with $\mathcal{R} \subseteq S$. Then $\mathcal{R} = S$.
- Theorem 5 Let \mathcal{E} be an extension of the fixed point default theory $\Delta = \langle \mathcal{W}, \mathcal{D}, < \rangle$, and suppose $\mathcal{A} \subseteq \mathcal{W}$. Then \mathcal{E} is is also an extension of the theory $\Delta' = \langle \mathcal{W} \cup \mathcal{A}, \mathcal{D}, < \rangle$.

1.5 Some consequence relations

- Definition 10 (Credulous consequence) Let Δ be a default theory. Then Y is a credulous consequence of Δ —written, $\Delta \triangleright_C Y$ —just in case $Y \in \mathcal{E}$ for some extension \mathcal{E} of Δ .
- Definition 11 (Skeptical consequence) Let Δ be a default theory. Then Y is a skeptical consequence of Δ —written, $\Delta \models_S Y$ —just in case $Y \in \mathcal{E}$ for each extension \mathcal{E} of Δ .
- Note that credulous consequence is crazy, in the epistemic case.
- Observation 1
 - If $\langle \mathcal{W}, \mathcal{D}, < \rangle \models_S A$ and $\langle \mathcal{W} \cup \{A\}, \mathcal{D}, < \rangle \models_S B$, then $\langle \mathcal{W}, \mathcal{D}, < \rangle \models_S B$.

1.6 Defeasible arguments

• Definition 12 (Defeasible arguments) Where S is a set of default rules and W is a set of propositions, a defeasible argument, originating from W and constructed from S, is a sequence of propositions X_1, X_2, \ldots, X_n such that each member X_i of the

sequence satisfies one of the following conditions: (1) X_i is an axiom of propositional logic; (2) X_i belongs to \mathcal{W} ; (3) X_i follows from previous members of the sequence by modus ponens; or (4) there is some default δ from \mathcal{S} such that $Conclusion(\delta)$ is X_i and $Premise(\delta)$ is a previous member of the sequence.

Definition 13 (Argument extensions) Let Δ = ⟨W, D, <⟩ be a fixed priority default theory. Then Φ is an argument extension of Δ just in case, for some proper scenario S based on this theory,

$$\Phi = Argument_{\mathcal{W}}(\mathcal{S}).$$

- Definition 14 (Grounded scenarios) Let $\Delta = \langle \mathcal{W}, \mathcal{D}, \langle \rangle$ be a fixed priority default theory and \mathcal{S} a scenario based on this theory. Then \mathcal{S} is grounded in the theory Δ just in case $Th(\mathcal{W} \cup Conclusion(\mathcal{S})) \subseteq Conclusion(Argument_{\mathcal{W}}(\mathcal{S})).$
- Theorem 6 Let $\Delta = \langle \mathcal{W}, \mathcal{D}, \langle \rangle$ be a fixed priority default theory and \mathcal{S} a proper scenario based on this theory. Then \mathcal{S} is also grounded in the theory Δ .
- Theorem 7 Let Δ = ⟨W, D, <⟩ be a fixed priority default theory. Then S is a proper scenario based on the theory Δ just in case S is both stable and also grounded in this theory.

1.7 Reiter default theories

- A *Reiter default* is a rule of the form (A : C / B).
- If δ is the Reiter default above, then Premise(δ) = A, Conclusion(δ) = B, Justification(δ) = C.
- Definition 15 (Reiter default theories) A Reiter default theory Δ is a structure of the form (W, D), in which W is a set of ordinary formulas and D is a set of Reiter default rules.
- Definition 16 (R-conflicted defaults) Let Δ = ⟨W, D⟩ be a Reiter default theory, and S a scenario based on this theory. Then the defaults from D that are R-conflicted

in the context of the scenario \mathcal{S} are those belonging to the set

 $R\text{-conflicted}_{\mathcal{W},\mathcal{D}}(\mathcal{S}) = \{\delta \in \mathcal{D} : \mathcal{W} \cup Conclusion(\mathcal{S}) \vdash \neg Justification(\delta)\}.$

• Definition 17 (Approximating sequences) Let $\Delta = \langle \mathcal{W}, \mathcal{D}, \langle \rangle$ be a Reiter default theory and \mathcal{S} a scenario based on this theory. Then $\mathcal{S}_0, \mathcal{S}_1, \mathcal{S}_2, \ldots$ is an approximating sequence that is based on the theory Δ and constrained by the scenario \mathcal{S} just in case

$$S_{0} = \emptyset,$$

$$S_{i+1} = \{\delta : \delta \in Triggered_{\mathcal{W},\mathcal{D}}(\mathcal{S}_{i}), \delta \notin R\text{-conflicted}_{\mathcal{W},\mathcal{D}}(\mathcal{S})\}$$

• Not all Reiter default theories have proper scenarios, and so not all have extensions.

1.8 Normal default theories

- A normal default is a default of the form $A \to B$.
- A normal default can also be identified with a Reiter default of the form (A : B / B).
 If the default δ is normal, then Justification(δ) = Conclusion(δ).
- Definition 18 (Normal default theories) A normal default theory can be defined as either (A) a prioritized default theory whose priority ordering is empty, or as (B) a Reiter default theory containing only normal defaults.
- Theorem 8 Every normal default theory has an extension.