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ABSTRACT
We present a hybrid approach to knowledge acquisition and rep-

resentation for machine ethics—or more generally, computational
normative reasoning. Building on recent research in artificial intelli-

gence and law, our approach is modeled on the familiar practice of

decision-making under precedential constraint in the common law.

We first provide a formal characterization of this practice, showing

how a body of normative information can be constructed in a way

that is piecemeal, distributed, and responsive to particular circum-

stances. We then discuss two possible applications: first, a robot

childminder, and second, moral judgment in a bioethical domain.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Applied computing→ Law.
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1 INTRODUCTION
A central problem in the field of machine ethics—or more generally,

computational normative reasoning—is the acquisition and represen-

tation of normative information in a form that allows for machine
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implementation.
1
This problem spans the fields of knowledge rep-

resentation (KR) and machine learning (ML) in computer science,

but also involves central issues in moral and legal philosophy.

There are two general approaches to the problem, with advan-

tages and disadvantages that are by now well-known, but worth

reviewing. The first is the top-down approach, according to which

normative information is explicitly encoded in some symbolic for-

malism, often a logical language. An example of this approach can

be found in the early efforts to represent legislative and regulatory

information in a logic programming language [10, 40], an idea that

has continued to be explored and refined, andmore recently adapted

to the representation of moral as well as legal norms [19, 27]. Other

examples involve, for instance, the representation of the knowledge

necessary for autonomous weapon systems to obey the rules of

war [6], or for autonomous vehicles to engage in verifiably correct

ethical reasoning [17].

This top-down approach has two central advantages. First, the

meaning of the representations involved is clear, often defined by

a precise semantic theory; as a result, the normative principles

encoded in these representations can sensibly be challenged or

justified. And second, these symbolic representations tend to sup-

port a style of computation that leads to transparent, explainable

decisions—it is easy enough, for example, to understand exactly

how a logic program supports the conclusions it does. The cen-

tral disadvantage of the top-down approach is that it is simply

not realistic to imagine that any significant body of normative in-

formation could be encoded by hand, due to the exception-laden

nature of normative rules and the fact that these rules are often

stated using open-textured predicates, which would require further

interpretation.

Standing in contrast to the top-down approach is the bottom-

up approach, according to which, in its more usual formulations,

normative information is acquired through ML techniques, such as

reinforcement learning or inverse reinforcement learning [1, 37]

and encoded, for example, in a reward function or in a distribution

of weights in a neural network. There are also a number of less

usual formulations that would naturally be classified as bottom-up,

such as the idea that artificial agents can learn values by reading

stories [32].

1
Weuse the phrase “computational normative reasoning” rather than themore common

“machine ethics” in order to emphasize that the reasoning under consideration might

include, not just ethical reasoning, but various other kinds of normative reasoning,

such as legal or regulatory reasoning; for an example of normative reasoning that is

neither ethical nor legal, see Section 5.1 below.
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The central advantage of this bottom-up approach is that it

avoids the knowledge acquisition bottleneck—complex normative

information need not be explicitly encoded, but can be acquired

implicitly, through interaction with training data. Further, the ML

techniques at work in typical bottom-up systems have proved to

be strikingly successful in other domains, such as pattern recog-

nition, facial recognition, and text understanding. It is therefore

not unreasonable to hope that these techniques might allow a ma-

chine to learn complex moral information as well, and at least one

prominent ethicist has advocated this possibility, not on the basis of

computational considerations, but instead, starting with a particular

position concerning the nature of ethical theory [16].

The central disadvantage of the bottom-up approach is that, al-

though learning may indeed take place, it is often unclear exactly

what normative information has been learned: how are decisions

based on this information supposed to be explained, or more im-

portant in the normative setting, justified. Consider a concrete case.

Suppose a prisoner has been denied parole. This decision requires

justification. But would it count as a justification to be told that an

algorithm, trained on a particular data set, predicts that the prisoner

will be a recidivist?

Because of the difficulties facing pure top-down or pure bottom-

up approaches to the acquisition and representation of normative

information, a number of researchers have begun to explore hy-

brid approaches, combining explicit symbolic representation with

machine learning. These hybrid approaches have been developed

in different domains and adapted for different reasoning tasks. For

example, one early, well-known system, initially explored in the

bioethical domain but then extended to several others [4, 5], repre-

sents particular decisions as vectors, with the vector components

standing for the extent to which various prima facie moral prin-

ciples are satisfied or violated, as a result of that decision; these

decisions are classified as right or wrong by domain experts, and

then the general rules thought to guide this classification arrived at

through inductive logic programming. More recently, it has been

suggested [41] that a particular hybrid architecture might help med-

ical professionals make allocation decisions for organ donations.

On this approach—which we will return to later for comparison—

morally relevant features of potential donor recipients are first

identified by domain experts; preferences over competing clusters

of these features are elicited from members of a population, and on

the basis of these preferences, ML techniques allow the system to

offer recommendations.

The primary goal of the present paper is to present a different

hybrid approach, with a distinct pattern of advantages. As with

bottom-up approaches, the current approach acquires normative in-

formation from judgments in particular circumstances. But as with

top-down approaches, this information is represented in symbolic

form. The representation is also simple—there is no need for careful

articulation of complex normative rules—and supports a natural no-

tion of normative constraint. Finally, the approach described here is

realistic, in the sense that it is based on a familiar human practice—

the practice of decision making under precedential constraint in the

common law. Although legal reasoning in general, and especially

common law reasoning, is often viewed as obscure and contentious,

the topic has recently been considerably clarified by the develop-

ment of formal models within the field of artificial intelligence and

law (AI and Law). The approach suggested here is based on one

of these formal models [22, 24], according to which the common

law constructs a body of normative information in a way that is

piecemeal, distributed, and responsive to particular circumstances.

A secondary goal of this paper, then, is simply to highlight the

importance of research in AI and Law for computational normative

reasoning more generally.

We begin in the next section with an informal description of

common law reasoning and constraint. A formal characterization is

set out in Sections 3 and 4, and then adapted to normative reasoning

more generally and compared to a different hybrid approach in

Section 5. A few open issues as well as future work are discussed

in the conclusion.

2 THE COMMON LAW
The common law emerges, not from explicit legislation, but from

decisions in particular cases, which then govern later cases through

a complex doctrine of precedent. According to this doctrine, de-

cisions by earlier courts constrain the decisions available to later

courts while still allowing these later courts the freedom to respond

to new situations in creative ways.

It is generally thought that precedential constraint is carried

by rules. A precedent case normally contains, not only a factual

description of some situation together with a decision on the basis

of those facts, but a rule through which that decision is justified.

Some writers argue that a case rule of this kind, once introduced,

must then govern any later situation to which it is applicable [3].

The more standard view, however, is that later situations can be

distinguished—where distinguishing a new situation involves identi-

fying important, or material, differences between that situation and

some earlier case in which a rule was formulated, with the result

that the earlier rule is modified to avoid inappropriate application

in the new situation [25, 30, 39].

This process of rule modification could be illustrated with a

legal example, but it will be simpler to concentrate on a domestic

scenario. Suppose, then, that Jack and Jo are the parents of two

children—Emma, who has just turned nine, and Max, age twelve—

and that they agree to respect each other’s decisions concerning

the children, treating these decisions, in effect, as precedents. And

imagine that, one night, Emma, who has completed both her chores

and her homework, but did not finish dinner, asks Jo if she can stay

up and watch TV. This is like a legal case: a situation is presented to

an authority, Jo, who must make a decision and provide a rationale

for her decision. Suppose that Jo resolves the case by granting the

request, stating that Emma can stay up to watch TV since she is

now nine years old. This decision can be seen as introducing a

household version of a common law rule—perhaps, “Children age

nine or greater can stay up andwatch TV”—fashioned in response to

a particular set of circumstances, but applicable to future situations

as well.

Now imagine that, the next day, Max, who has likewise com-

pleted chores and failed to finish dinner, but who has, in addition,

failed to complete homework, asks Jack whether he can stay up

and watch TV. And suppose that, in this case, Jack refuses, on the
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grounds that Max has not completed his homework. Max might

reasonably object, pointing out that, in the previous case of Emma,

a rule was established according to which children age nine or older

can stay up and watch TV. The common law, however, allows Jack

to defend his decision by distinguishing the two cases, arguing

that the previous rule should not apply to the new case of Max,

since this new case, unlike the previous case of Emma, presents the

additional feature that the child in question has not completed his

homework. An effect of Jack’s decision would be that the rule set

out by Jo in the case of Emma is modified to avoid application in

the case of Max—perhaps now understood to mean “Children age

nine or greater can stay up and watch TV, unless they have failed

to complete their homework.”

Although this kind of normative development seems very nat-

ural, even outside the law, it leads to a dilemma concerning rule

modification. On one hand, if rule modification is not allowed, it

is hard to see how we could understand the process of normative

development outlined in the example. But if rule modification is

allowed, on the other hand, it is hard to understand the concept

of precedential constraint—how can later decision makers be con-

strained by rules formulated in earlier decisions if they are then

free to modify those rules at will?

To avoid this rule-modification dilemma, we present here an

entirely different approach to precedential constraint. This new

approach—which we describe as the reason model of constraint—
takes reasons, rather than rules, as fundamental.

2
According to the

reason model, what matters about an earlier decision is the court’s

assessment of importance among the competing reasons presented

by that case, represented here as a priority ordering among these

reasons. Later courts are then constrained, not to follow the rules

set out in precedent cases, but simply to reach decisions that are

consistent with the priority ordering that has been established

earlier. Normative development of the common law is therefore

pictured, not as the elaboration of an increasingly complex system

of rules, but instead as the gradual construction of an increasingly

rich priority ordering among reasons.

3 BASIC CONCEPTS
3.1 Factors and fact situations
For simplicity, we refer to any individual or entity with the capacity

to render authoritative decisions in some domain as a court—for in-
stance, Jack and Jo function as courts in their household normative

system.

We suppose that a situation presented to a court for decision

can be represented as a set of factors, where a factor is a legally
significant fact or pattern of facts bearing on that decision. In our

domestic scenario, the legal, or quasi-legal, issue at hand is whether

a child can stay up and watch TV, and the factors involved might

reasonably include those already considered—whether the child has

reached the age of nine, completed chores, eaten dinner, finished

homework—as well as countless others.

The factor-based representation of legal situations is not re-

stricted to everyday examples of this kind. In fact, this style of

2
This shift in emphasis from rules to reasons reflects a general theme in recent work

in ethics and normative theory [43].

representation has been used to analyze case-based reasoning in a

number of complex legal domains within AI and Law, beginning

with a careful analysis of trade-secrets law [7, 33]. In this domain,

a case typically concerns the issue of whether a defendant has

gained an unfair competitive advantage over a plaintiff through the

misappropriation of a trade secret; and here the factors involved

might turn on, say, questions concerning whether the plaintiff took

measures to protect the trade secret, whether a confidential relation-

ship existed between the plaintiff and the defendant, whether the

information acquired was reverse-engineerable or in some other

way publicly available, and the extent to which this information

did, in fact, lead to a real competitive advantage for the defendant.

We assume that factors have polarities, favoring one of two sides

of a given issue, which we refer to as 𝜋 and 𝛿 , representing the

plaintiff and the defendant. We take 𝐹𝜋 = {𝑓 𝜋
1
, . . . , 𝑓 𝜋𝑛 } as the set of

factors favoring the plaintiff, 𝐹𝛿 = {𝑓 𝛿
1
, . . . , 𝑓 𝛿𝑚} as the set of factors

favoring the defendant, and 𝐹 = 𝐹𝜋 ∪ 𝐹𝛿 as the entire set of factors.

Where 𝑠 is one of these sides, we let 𝑠 represent the other: 𝜋 = 𝛿

and 𝛿 = 𝜋 .

A fact situation𝑋 , of the sort presented to the court for judgment,

is defined simply as some subset of factors: 𝑋 ⊆ 𝐹 . And where 𝑋 is

a fact situation of this kind, we let 𝑋𝑠
represent the factors from 𝑋

that support the side 𝑠 , so that: 𝑋𝜋 = 𝑋 ∩ 𝐹𝜋 and 𝑋𝛿 = 𝑋 ∩ 𝐹𝛿 . To

illustrate: the situation 𝑋1 = {𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝛿
1
, 𝑓 𝛿
2
} contains two factors

each favoring the plaintiff and the defendant, with 𝑋𝜋
1
= {𝑓 𝜋

1
, 𝑓 𝜋
2
}

and 𝑋𝛿
1
= {𝑓 𝛿

1
, 𝑓 𝛿
2
}.

3.2 Reasons and rules
When presented with a fact situation, a court’s primary task is to

reach a decision, or determine an outcome, where the two possible

outcomes are 𝜋 or 𝛿 , representing a decision for the plaintiff or

defendant.

In addition to deciding for one side or the other, the court is

expected to supply a rule, or principle, to justify its decision. Rules

of this kind will be characterized in terms of reasons, where a reason
for a side is some set of factors uniformly favoring that side; a reason
can then be defined as a set of factors uniformly favoring one side

or another. To illustrate: {𝑓 𝜋
1
, 𝑓 𝜋
2
} is a reason favoring the plaintiff,

and so a reason, while {𝑓 𝛿
1
, 𝑓 𝛿
2
} is a reason favoring the defendant.

We stipulate that a reason𝑈 holds in a situation 𝑋 just in case

𝑈 ⊆ 𝑋 . And we define a relation of strength among reasons for a

side according to which, where𝑈 and 𝑉 are reasons for the same

side, then 𝑉 is at least as strong a reason as 𝑈 for that side just in
case 𝑈 ⊆ 𝑉 . To illustrate: the reason {𝑓 𝜋

1
} holds in the previous

fact situation 𝑋1 = {𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝛿
1
, 𝑓 𝛿
2
}, since {𝑓 𝜋

1
} ⊆ 𝑋1 and of the

two reasons {𝑓 𝜋
1
} and {𝑓 𝜋

1
, 𝑓 𝜋
2
}, the second favors the plaintiff at

least as strongly as the first, since {𝑓 𝜋
1
} ⊆ {𝑓 𝜋

1
, 𝑓 𝜋
2
}.

Given this notion of a reason, a rule can now be defined as a

statement of the form𝑈 → 𝑠 , where 𝑈 is a reason supporting the

side 𝑠 . For convenience, we introduce two functions—𝑃𝑟𝑒𝑚𝑖𝑠𝑒 and

𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛—picking out the premise and conclusion of a rule. To

illustrate: the statement {𝑓 𝜋
1
} → 𝜋 is a rule, since {𝑓 𝜋

1
} is a reason

supporting the plaintiff. If we take 𝑟1 to stand for this rule, we have

𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1) = {𝑓 𝜋
1
} and 𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛(𝑟1) = 𝜋 .
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The rules defined here are to be interpreted as defeasible, telling

us that their premises entail their conclusions, not as a matter of

necessity, but only by default. What the rule 𝑟1 = {𝑓 𝜋
1
} → 𝜋 means,

very roughly, is that, whenever the premise {𝑓 𝜋
1
} of the rule holds

in some situation, then, as a default, the court ought to decide that

situation for the conclusion 𝜋 of the rule—or perhaps more simply,

that the premise of the rule provides the court with a reason for

deciding in favor of its conclusion.

3.3 Cases and case bases
A case can now be defined as a situation together with an outcome

and a rule through which that outcome is justified: such a case

can be specified as a triple of the form 𝑐 = ⟨𝑋, 𝑟, 𝑠⟩, where 𝑋 is a

situation containing the factors presented to the court, 𝑟 is a rule,

and 𝑠 is an outcome. We refer to 𝑟 as the rule of the case, and to

𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟 ), the reason that forms the premise of this rule, as the

reason for the decision in that case—and since reasons and rules are

so closely related, we will say, indifferently, that the case is decided

on the basis of either the rule or the reason that forms its premise.

We introduce three more auxiliary functions—Facts, Rule, and
Outcome—mapping cases into their component parts, so that, in

the case 𝑐 above, we would have Facts(𝑐) = 𝑋 , Rule(𝑐) = 𝑟 ,

and Outcome(𝑐) = 𝑠 . And in order for the concept of a case to

make sense, we stipulate that the premise of a case rule must hold

in the fact situation of the case, and that the rule’s conclusion

must match the case outcome—or that 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟 ) ⊆ Facts(𝑐) and
𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛(𝑟 ) = Outcome(𝑐).

This concept can be illustrated with the case 𝑐1 = ⟨𝑋1, 𝑟1, 𝑠1⟩,
where the fact situation of this case is the familiar 𝑋1 =

{𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝛿
1
, 𝑓 𝛿
2
}, where the case rule is the familiar 𝑟1 = {𝑓 𝜋

1
} → 𝜋 ,

and where the outcome of the case is 𝑠1 = 𝜋 , a decision for the

plaintiff. This case represents a situation in which the court is con-

fronted with the fact situation 𝑋1, decided for the plaintiff on the

basis of the rule 𝑟1, according to which the presence of the factor

𝑓 𝜋
1
—that is, the reason {𝑓 𝜋

1
}—leads, by default, to a decision for the

plaintiff.

Finally, a case base is defined as a set Γ of cases. It is a case base

of this sort—a set of precedent cases—that will be taken to represent

the common law in some area, and to constrain the decisions of

future courts.

4 CONSTRAINT BY REASONS
According to the reason model, later courts are constrained to reach

decisions that are consistent with the priority ordering among

reasons derived from decisions of earlier courts. In order to develop

this suggestion, we need to explain how a priority ordering on

reasons can be derived from the decisions of earlier courts, and

then what it means for the decision of a later court to be consistent

with that ordering.

4.1 A priority ordering on reasons
To begin with, let us return to the case 𝑐1 = ⟨𝑋1, 𝑟1, 𝑠1⟩—where
𝑋1 = {𝑓 𝜋

1
, 𝑓 𝜋
2
, 𝑓 𝛿
1
, 𝑓 𝛿
2
}, where 𝑟1 = {𝑓 𝜋

1
} → 𝜋 , and where 𝑠1 = 𝜋—

and ask what information is carried by this case; what is the court

telling us with its decision? Well, two things.

First, by deciding for the plaintiff on the basis of the rule 𝑟1, the

court is registering its judgment that 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1), the reason for

its decision, is more important—or has higher priority—than any

reason for the defendant that holds in 𝑋1, the fact situation of the

case. How do we know this? Because if the court thought some

reason for the defendant that held in the situation 𝑋1 was more

important than 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1), the court would have found for the

defendant on the basis of that reason, rather than for the plaintiff

on the basis of 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1).
And second, if the court is telling us explicitly that the reason

𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1) itself is more important than any reason for the defen-

dant that holds in 𝑋1, then the court must also be telling us, at least

implicitly, that any other reason for the plaintiff that is at least as

strong as 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1) must likewise be more important than any

reason for the defendant that holds in this situation.

A reason 𝑈 for the defendant holds in the situation 𝑋1 just

in case 𝑈 ⊆ 𝑋1, and a reason 𝑉 for the plaintiff is at least as

strong for the plaintiff as the reason 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1) just in case

𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1) ⊆ 𝑉 . If we let the relation <𝑐1 represent the pri-

ority ordering on reasons derived from the particular case 𝑐1,

then, the force of the court’s decision in this case is simply that:

where 𝑈 is a reason favoring the defendant and 𝑉 is a reason

favoring the plaintiff, then 𝑈 <𝑐1 𝑉 just in case 𝑈 ⊆ 𝑋1 and

𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1) ⊆ 𝑉 . Consider, for example, the reason {𝑓 𝛿
1
} for the

defendant and the reason {𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝜋
3
} for the plaintiff. Here, we

have {𝑓 𝛿
1
} ⊆ 𝑋1 as well as 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1) ⊆ {𝑓 𝜋

1
, 𝑓 𝜋
2
, 𝑓 𝜋
3
}. We there-

fore have {𝑓 𝛿
1
} <𝑐1 {𝑓 𝜋1 , 𝑓 𝜋

2
, 𝑓 𝜋
3
}—the court’s decision in 𝑐1 entails

that the reason {𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝜋
3
} favoring the plaintiff is to be assigned

a higher priority than the reason {𝑓 𝛿
1
} favoring the defendant.

Generalizing from this example, we reach the following defini-

tion of the priority ordering among reasons derived from a single

case:

Definition 1 (Priority ordering derived from a case). Let

𝑐 = ⟨𝑋, 𝑟, 𝑠⟩ be a case, and let 𝑈 and 𝑉 be reasons favoring the

sides 𝑠 and 𝑠 respectively. Then the relation <𝑐 representing the

priority ordering on reasons derived from the case 𝑐 is defined by

stipulating that𝑈 <𝑐 𝑉 if and only if𝑈 ⊆ 𝑋 and 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟 ) ⊆ 𝑉 .

Once we have defined the priority ordering on reasons derived

from a single case, we can introduce a priority ordering <Γ derived

from an entire case base Γ by stipulating that one reason has a

higher priority than another according to the case base whenever

that priority is supported by some particular case from the case

base:

Definition 2 (Priority ordering derived from a case base).

Let Γ be a case base, and let𝑈 and 𝑉 be reasons. Then the relation

<Γ representing the priority ordering on reasons derived from the

case base Γ is defined by stipulating that 𝑈 <Γ 𝑉 if and only if

𝑈 <𝑐 𝑉 for some case 𝑐 from Γ.

And using this concept of the priority ordering derived from a

case base, we can now define a case base itself as inconsistent if its

derived ordering yields conflicting information about the priority

among reasons—telling us, for some pair of reasons, that each has

a higher priority than the other—and consistent otherwise:
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Definition 3 (Inconsistent and consistent case bases). Let

Γ be a case base with <Γ its derived priority ordering. Then Γ is

inconsistent if and only if there are reasons 𝑈 and 𝑉 such that

𝑈 <Γ 𝑉 and 𝑉 <Γ 𝑈 , and consistent otherwise.

4.2 Constraint
We now define a notion of constraint according to which a court

confronted with a new situation 𝑋 against the background of a

consistent case base Γ is required simply to reach a decision in 𝑋

that preserves the consistency of Γ—that is, a decision that does

not introduce inconsistency into the case base. Our account applies,

in the first instance, to the rules on the basis of which a court is

permitted to justify its decisions:

Definition 4 (Constraint on rule selection). Let Γ be a

consistent case base and 𝑋 a fact situation confronting the court.

Then the court is permitted to base its decision in 𝑋 on some rule

𝑟 supporting an outcome 𝑠 such that the augmented case base

Γ ∪ {⟨𝑋, 𝑟, 𝑠⟩} remains consistent.

This idea can be illustrated by assuming as background the

case base Γ1 = {𝑐1}, containing as its single member the famil-

iar case 𝑐1 = ⟨𝑋1, 𝑟1, 𝑠1⟩—where, again, 𝑋1 = {𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝛿
1
, 𝑓 𝛿
2
},

where 𝑟1 = {𝑓 𝜋
1
} → 𝜋 , and where 𝑠1 = 𝜋 . Suppose that, against

this background, the court confronts the fresh situation 𝑋2 =

{𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝛿
1
, 𝑓 𝛿
2
, 𝑓 𝛿
3
} and considers finding for the defendant in this

situation on the basis of the reason {𝑓 𝛿
1
, 𝑓 𝛿
2
}, leading to the decision

𝑐2 = ⟨𝑋2, 𝑟2, 𝑠2⟩, where 𝑋2 is as above, where 𝑟2 = {𝑓 𝛿
1
, 𝑓 𝛿
2
} → 𝛿 ,

and where 𝑠2 = 𝛿 . Is the court permitted to carry through with this

plan of action?

Well, as we can see, 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟1) = {𝑓 𝜋
1
}, the reason for the

decision in the initial case, holds in the new situation 𝑋2 as well,

since {𝑓 𝜋
1
} ⊆ 𝑋2. And of course, the new reason 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟2) =

{𝑓 𝛿
1
, 𝑓 𝛿
2
} favors the defendant at least as strongly as itself—that is,

𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟2) ⊆ 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟2), or 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 (𝑟2) ⊆ {𝑓 𝛿
1
, 𝑓 𝛿
2
}. It there-

fore follows fromDefinition 1 that 𝑐2, the court’s envisaged decision,

would assign the reason {𝑓 𝛿
1
, 𝑓 𝛿
2
} for the defendant a higher priority

than the reason {𝑓 𝜋
1
} for the plaintiff—that is, {𝑓 𝜋

1
} <𝑐2 {𝑓 𝛿1 , 𝑓

𝛿
2
}.

But Γ1 already contains the case 𝑐1, from which, in a similar fashion,

we can derive the priority relation {𝑓 𝛿
1
, 𝑓 𝛿
2
} <𝑐1 {𝑓 𝜋

1
}, telling us

exactly the opposite. Since the augmented case base

Γ2 = Γ1 ∪ {𝑐2}
= {𝑐1, 𝑐2}

resulting from the court’s envisaged decision contains both these

cases, we would then have both {𝑓 𝛿
1
, 𝑓 𝛿
2
} <Γ2 {𝑓 𝜋

1
} and {𝑓 𝜋

1
} <Γ2

{𝑓 𝛿
1
, 𝑓 𝛿
2
} by Definition 2, so that, by Definition 3, this augmented

case base would be inconsistent. By Definition 4, then, we can

conclude that the court is not permitted to carry through with its

plan of deciding for the defendant in the situation 𝑋2 on the basis

of the rule 𝑟2, since 𝑐2, the resulting decision, would introduce an

inconsistency into the background case base, but the reason model

requires decisions to preserve case base consistency.

Of course, it does not follow from the fact that the court is

not permitted to decide for the defendant in the situation 𝑋2 =

{𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝛿
1
, 𝑓 𝛿
2
, 𝑓 𝛿
3
} on the basis of the particular rule 𝑟2 that it

cannot decide for the defendant in this situation at all. Suppose, for

example, that the court appeals to the reason {𝑓 𝛿
1
, 𝑓 𝛿
3
} to justify

its decision for the defendant, leading to the case 𝑐3 = ⟨𝑋3, 𝑟3, 𝑠3⟩,
where 𝑋3 = 𝑋2, where 𝑟3 = {𝑓 𝛿

1
, 𝑓 𝛿
3
} → 𝛿 , and where 𝑠3 = 𝛿 . The

augmented case base

Γ3 = Γ1 ∪ {𝑐3}
= {𝑐1, 𝑐3}

resulting from this decision would then be consistent. As before,

the previous case 𝑐1 supports the priority {𝑓 𝛿
1
, 𝑓 𝛿
2
} <𝑐1 {𝑓 𝜋1 }, and

the new decision 𝑐3 would now support the priority {𝑓 𝜋
1
} <𝑐3

{𝑓 𝛿
1
, 𝑓 𝛿
3
}, so that we would then have both the case base priorities

{𝑓 𝛿
1
, 𝑓 𝛿
2
} <Γ3 {𝑓 𝜋

1
} and {𝑓 𝜋

1
} <Γ3 {𝑓 𝛿

1
, 𝑓 𝛿
3
}. But there is nothing

inconsistent about this pair of priorities, as we can see, informally

at least, with another domestic example: one can easily imagine

a teenager thinking, and thinking consistently, that going to the

movies is more fun than going to the beach with her parents, but

that going to the beach with her friends is more fun than going to

the movies.

Our suggestion is that this is how the common law devel-

ops in the normal, incremental case—by building up a stronger

and stronger priority ordering on reasons in a piecemeal fashion,

through a series of decisions that are, at each stage, consistent with

the existing case base.

4.3 The domestic scenario
All of this has been very abstract. For a more concrete illustration

of the reason model we return to the domestic scenario example

set earlier, in Section 2, concerning the questions presented by

Max and Emma to their parents, Jack and Jo. As we recall, Emma

is nine, failed to finish dinner, but completed homework; Max is

twelve and neither finished dinner nor completed homework. Both

children wanted to stay up and watch TV. In our scenario, Emma

first asked for permission from Jo, who granted the request on the

grounds that Emma was at least nine years old. Max then asked

for permission from Jack, who denied the request—even though

Max too was at least nine—on the grounds that Max had failed to

complete homework.

With the children as plaintiffs and the parents as both defen-

dants and adjudicators, or courts, this example can be cast in our

framework by letting the factor 𝑓 𝜋
1

represent the fact that the child

in question is at least nine years old, 𝑓 𝜋
2

the fact that the child in

question completed chores, and then 𝑓 𝛿
1
and 𝑓 𝛿

2
, respectively, the

facts that the child failed to finish dinner and failed to complete

homework. The initial situation presented by Emma to Jo can be

represented as 𝑋4 = {𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝛿
1
}, which Jo then decided for Emma

on the basis of the rule 𝑟4 = {𝑓 𝜋
1
} → 𝜋 , leading to the decision

𝑐4 = ⟨𝑋4, 𝑟4, 𝑠4⟩, where 𝑋4 and 𝑟4 are as above, and where 𝑠4 = 𝜋 .

As a result of this initial decision, the case base representing the

common law of the household, at least as it pertains to staying up

and watching TV, is Γ4 = {𝑐4}, with <Γ4 as its associated ordering

on reasons.

Next, the situation presented by Max to Jack can be represented

as 𝑋5 = {𝑓 𝜋
1
, 𝑓 𝜋
2
, 𝑓 𝛿
1
, 𝑓 𝛿
2
}. In keeping with our story, we suppose

that Jack would like to decide against Max on the basis of the rule



AIES’22, August 1–3, 2022, Oxford, United Kingdom Ilaria Canavotto and John Horty

𝑟5 = {𝑓 𝛿
2
} → 𝛿 , leading to the decision 𝑐5 = ⟨𝑋5, 𝑟5, 𝑠5⟩, where 𝑋5

and 𝑟5 are as above, and where 𝑠5 = 𝛿 . Is he permitted to do so,

against the background of the case base Γ4?
The answer is Yes. From Jo’s earlier decision, we can conclude

that the reason {𝑓 𝜋
1
} is assigned a higher priority than the reason

{𝑓 𝛿
1
}—that {𝑓 𝛿

1
} <𝑐4 {𝑓 𝜋

1
}, so that {𝑓 𝛿

1
} <Γ4 {𝑓 𝜋

1
} as well. And

Jack’s decision would force us to conclude also that the reason

{𝑓 𝛿
2
} must be assigned a higher priority than the reason {𝑓 𝜋

1
}—

that {𝑓 𝜋
1
} <𝑐5 {𝑓 𝛿2 }. But there is no conflict between this priority

statement and the previous priority statement, derived from Jo’s

decision—a reasonable individual might, for example, prefer choco-

late ice cream to vanilla and vanilla to strawberry. And because the

background case base Γ4 currently contains only Jo’s decision, it

follows that Jack’s decision in the case of Max is consistent with

this case base as well. As a result of this decision, the augmented

case base

Γ5 = Γ4 ∪ {𝑐5}
= {𝑐4, 𝑐5}

now represents the household normative system, with <Γ5 as its

strengthened ordering on reasons.

4.4 Requirements and permissions
The notion of constraint set out in Definition 4 characterizes the

rules on the basis of which a court is permitted to base its decisions.

But of course, once this notion is in place, it can be used to define the

decisions that a court is permitted, or required, to make—through

the stipulation that a court is permitted to decide for a particular

side if some permitted rule supports that side, and required to decide

for a side if every permitted rule supports that side.

To make this clear, we let the statement 𝑠 (𝑋 ) mean that the

situation 𝑋 is decided for the side 𝑠 , so that—taking ⃝ and P as the

usual requirement and permission operators from deontic logic—

the statements ⃝𝑠 (𝑋 ) and P𝑠 (𝑋 ) stand for the statements that the

court is, respectively, required or permitted to decide 𝑋 for the side

𝑠 . These ideas are defined as follows:

Definition 5 (Constraint on decision). Let Γ be a consistent

case base and 𝑋 a fact situation confronting the court. Then it

follows from Γ that the court is required to reach a decision in 𝑋

for the side 𝑠—that is, ⃝𝑠 (𝑋 )—if and only if every rule on the basis

of which the court is permitted to decide 𝑋 supports 𝑠 ; the court is

permitted to reach a decision in 𝑋 for 𝑠—that is, P𝑠 (𝑋 )—if and only

if some rule on the basis of which the court is permitted to decide

𝑋 supports 𝑠 .

For illustration, we return to our domestic scenario. Here, as

we have seen, it follows from Γ4 that P𝛿 (𝑋5)—Jack is permitted to

decide the situation presented byMax in favor of the defendant. The

scenario developed this far presents no interesting requirements,

but suppose Jack and Jo have another child, Lynn, who would also

like to stay up and watch TV, and of whom it is known only that she

is older than nine but failed to finish dinner, so that the situation

she presents is 𝑋6 = {𝑓 𝜋
1
, 𝑓 𝛿
1
}. We can then verify that ⃝𝜋 (𝑋6)

follows from the case base Γ4, so that, if Jack confronts this new

situation against the background of Jo’s decision in the previous

case of Emma, he is required to decide for Lynn, the plaintiff.

The operators introduced here can be shown to define a simple,

and sensible, deontic logic. For example, the statement ⃝𝑠 (𝑋 ) fol-
lows from some case base just in case P𝑠 (𝑋 ) does not—the court
is required to decided 𝑋 for 𝑠 just in case it is not permitted to

decide 𝑋 for 𝑠 , the opposite side. Further, as long as a case base is

consistent, it will never support both ⃝𝑠 (𝑋 ) and ⃝𝑠 (𝑋 )—the court
will never be required to decide the same situation for one side and

also for the other side. Finally, exactly one of the formulas ⃝(𝑋 )
or ⃝𝑠 (𝑋 ) or P𝑠 (𝑋 ) ∧ P𝑠 (𝑋 ) will always be supported—so that, in

any situation, a decision is either required for one side, or required

for the other side, or it is permissible to decide for either side.

Deontic logics validating properties like these are frequently

appealed to in the top-down approach to computational normative

reasoning, either for system specification [6] or in the design of rea-

soning engines [12]. As noted earlier, the problem presented by this

top-down approach centers around acquisition of the knowledge

encoded in these logics. The current framework suggests one solu-

tion to this problem, according to which this knowledge is derived

from particular decisions in concrete cases. In a very real sense, a

system designed in accord with the current approach can be said

to learn the appropriate deontic principles from these particular

decisions, just as a legal system can be said to learn the common

law from the particular decisions of individual courts.

5 APPLICATIONS
We discuss two possible applications of the approach presented

here—one is hypothetical at this point, but still worth thinking

about; the other is less hypothetical.

5.1 A robot childminder
Our hypothetical example builds on the domestic scenario already

considered. Suppose that, one night a week, Jack and Jo leave their

children—Emma, Max, and now Lynn—with Charlie, a robot child-

minder. Besides entertaining the children, Charlie’s main task is to

tell Emma and Max when to go to bed, and perhaps to call Jack and

Jo in case the children do not follow instructions. From a design

perspective, this task raises an interesting question: How are the

parents able to communicate the appropriate bedtime to Charlie—

how does Charlie learn when the children are supposed to go to

bed?

One answer might be that Charlie has a bedtime parameter that

Jack and Jo can simply set. So, imagine that, after purchasing Charlie,

Jack and Jo ask each other how they should set this parameter. A

discussion ensues:

Normally, the children should go to bed at 9:00pm. But,
if they are sufficiently good during the evening—that

is, they complete their chores, they complete their

homework, they finish dinner, and so on—and they

ask to stay up and watch TV, then they can stay up

until 9:30pm, unless they have a school trip planned

for the next day . . .

Perhaps anticipating a discussion like this, the designers of Char-

lie might decide that it is better to supply the robot with a rule-based

reasoning module, so that parents can specify bedtime, not by set-

ting a parameter, but by formulating the appropriate rules. So now
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imagine that Jack and Jo begin with a rule like: “Children should go

to bed at 9:00pm unless they ask to stay up to watch TV and have

completed homework, completed chores, finished dinner, and there

is no school trip planned for the next day.” At this point, however,

the parents might realize that other factors—perhaps more distant,

but certainly not out of the question—could intervene. For example,

Jack and Jo might agree that, if the children fail to call their great

aunt Olive to wish her a happy birthday, as they had promised to

do, then they should both go to bed at 8:30pm.

Like the parameter-based approach, the simple rule-based ap-

proach to defining appropriate bedtime fails as well, and for the

same reason that top-down approaches to computational normative

reasoning are generally problematic: the list of exceptions to any

given normative rule is open-ended, and cannot be anticipated in

advance.

The reason model presented here suggests an alternative, more

promising architecture for Charlie. The idea is that, instead of re-

lying on a single bedtime parameter to be fixed in advance, or a

set of rules defining the appropriate bedtime, Charlie learns the

household concept of bedtime from Jack’s and Jo’s particular de-

cisions in concrete cases. A central component of this alternative

architecture is a memory of past decisions. Assuming that Charlie

represents a case as a fact situation together with an outcome and a

rule through which that outcome is justified, Charlie’s memory of

these past decisions works as a case base. In particular, as explained

in Section 4, it can be used to define an ordering on reasons that

determines which decisions Charlie will be required or permitted

to make in future situations. We now briefly consider this general

architecture and a few of the issues raised by it.

Initial training period: Suppose that Jack and Jo turn on Charlie

for the first time. Before being left alone with the children, the

robot needs to be provided with examples of concrete bedtime

decisions—a set of training examples, constituting its initial memory.

Charlie could acquire this set of training examples in at least two

ways. It might ask the parents to complete a questionnaire stating

their decisions in a number of paradigmatic bedtime-scenarios, and

identifying reasons for those decisions. Or, in a more sophisticated

version, Charlie might follow the parents around the house during a

specified training period, observing bedtime decisions and querying

them for reasons, in case the reasons behind their decisions are not

obvious.

This suggested procedure for initial training raises a number of

issues, of which we mention two. First, what happens if, during the

training period, Charlie observes the parents making inconsistent

decisions. According to the reason model, Charlie cannot simply in-

corporate these inconsistent decisions into its memory, or case base,

since the reason model notion of constraint, set out in Section 4,

requires decisions to preserve consistency of the underlying case

base; this, of course, presupposes that the case base is consistent to

start with.

One way around this problem might be to imagine that, when

the parents are observed making inconsistent decisions during the

training phase, Charlie informs them of the inconsistency, explains

the decisions that generated it, asks them to revise one of these

decisions, and adds the revised decision to its memory. Charlie could

then be seen as performing, in addition to its primary function as

a childminder, an additional function as a consistency checker for

parental decisions—this additional function may be useful in itself

since, as everyone knows, children are finely-tuned to detect and

exploit any hint of inconsistency in parental decisions!

But even if it might be feasible for a short training period, asking

parents to maintain strict consistency in their decisions over the

longer term is not realistic. Fortunately—although we cannot dis-

cuss this in any detail here—it is possible to generalize the reason

model notion of constraint to apply to inconsistent case bases as

well; the key idea is that decisions should be required, not necessar-

ily to preserve consistency of a consistent case base, but simply to

introduce no new inconsistencies into a case base that may already

be inconsistent.
3

A different issue arises when we ask how many of the parents

Charlie is monitoring during the training period. Suppose Charlie is

monitoring only one parent—say, Jo. Then as it develops its memory,

or case base, Charlie can be seen as learning Jo’s preferred house-

hold normative system, at least as it bears on bedtime decisions. But

suppose Charlie is monitoring both parents—Jack and Jo—during

the training period and that the two parents, while respecting each

other’s decisions, work with slightly different bedtime standards.

In that case, Charlie is learning neither Jo’s nor Jack’s normative

system, exactly, but instead, a system that combines the two par-

ents’ normative views in a particular way—just as the common law

proper, evolving over time in responses to different fact situations

presented to different courts, does not necessarily reflect the views

of any one court, or any one segment of society.

Charlie at work: Once the training period is complete and Char-

lie’s initial memory contains enough bedtime decisions, the robot

will then be able to reach reasonable decisions in future situations

concerning what the children are required or permitted to do. For

example, suppose that, during training, Charlie observed Jo allow-

ing Emma—age nine, who failed to finish dinner, but completed

homework—to stay up and watch TV on the grounds that she is

now at least nine years old. Charlie’s memory, or case base, will

then contain the case 𝑐4, defined in Section 4.3, representing this

decision. Imagine that Charlie next confronts the situation 𝑋6 pre-

sented by Lynn—also nine, who has likewise failed to finish dinner.

Then as we saw in Section 4.4, Charlie will conclude ⃝𝜋 (𝑋6)—the
robot will be required to reach a decision in favor of Lynn, the

plaintiff.

If Charlie’s memory is rich enough, most new situations will be

settled in this way—Charlie will be required to reach a decision for

one side, or the other. But there may still be situations in which

Charlie is permitted to decide either way. Suppose, for example, that

Charlie’s memory, or case base, contains only 𝑐4, representing Jo’s

decision concerning Emma, and that the robot then confronts the

situation 𝑋5 presented by Max—age twelve, who neither finished

dinner nor completed chores. We saw in Section 4.4 that a case

base like this supports P𝛿 (𝑋5), and it is easy enough to see that the

same case base supports P𝜋 (𝑋5) as well—the result is that Charlie is
permitted to decide this situation for the defendant or the plaintiff,

against Max or in favor of Max.

3
See Section 2.2.2 of [23] for a discussion of this generalization. A different approach

to the problems presented by inconsistent case bases can be found in [44].
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In such a situation, where either decision is permitted, it seems

sensible that Charlie should be required to call Jack and Jo, ex-

plain the situation, let them decide, inform Max of their choice,

and update its memory, or case base, with this new decision. It

may be, however, that Jack and Jo—who are, after all, trying to

enjoy a night away from their children—become tired of Charlie’s

queries. In that case, since both decisions are in fact permitted, they

may authorize Charlie simply to choose the one it thinks is best,

perhaps drawing on other computational resources to make that

decision. The parents could then later review Charlie’s decision and

its rationale before adding that new decision to the robot’s memory,

so that, until review, Charlie’s independent decision plays no role

in determining what is required or permitted in the future.

5.2 Kidney allocation decisions
The second application we consider—less hypothetical—starts with

the idea of deploying ML techniques to aid human moral judgment

in the bioethical domain. This idea is developed, in particular, in a

number of papers [15, 18, 42] centered around moral aspects of kid-

ney allocation decisions; the work is presented from a philosophical

standpoint in [41].

Setting aside multi-party kidney exchanges [36], we follow [41]

in considering only a simple kidney allocation decision: a single kid-

ney is available for transplant but there are two potential recipients—

Patient A and Patient B—both of whom need a kidney. Which one

of the two should get the single available kidney? A decision like

this is often constrained by medical factors, such as blood type

compatibility or organ quality. But when medical factors do not

settle the issue, many individuals believe that moral features of the

potential recipients should play a role in organ allocation decisions;

these features might include, for example, number of dependents

of the potential recipients, history of violent crime, or whether the

disease was caused by alcoholism or drug use.

Whether or not moral features like these should, in fact, be taken

into account in kidney allocation decisions is a contentious issue in

bioethics, which we do not consider here. But even supposing it is

appropriate to consider these features, we are still faced with two

questions. First, which moral features, exactly, should we consider?

And second, how do we evaluate the relative importance of these

features—or more generally, once two potential kidney recipients

are described in terms of their morally relevant features, how do we

use this information to decide which one gets the single available

kidney?

The approach outlined in [41] sketches an answer to both ques-

tions. The relevant features are identified through a complex pro-

cess that involves: first, crowdsourcing; second, surveys of domain

experts, such as doctors and hospital administrators; third, consider-

ation of those features already identified as important in the ethical

literature; fourth, editing the preliminary feature list for clarity,

redundancy, and completeness; and fifth, validation of the feature

list through further testing. The authors imagine this process of

refinement and validation might have to be repeated several times,

but that it will eventually result in a partition of features into those

that are morally relevant, those that are morally irrelevant, and

those whose moral relevance is controversial.

Turning to the second question, the authors of [41] pursue a ML

approach. They begin by introducing the notion of a conflict, defined
as a pair of potential kidney recipients characterized in terms of

the features already identified as morally relevant. To illustrate, the

pair consisting of Patient A and Patient B, characterized in terms

of the indicated features, would constitute a conflict:

Patient A

36 years old

0 child dependents

3 drinks per day prediagnosis

Patient B

53 years old

1 child dependents

2 drinks per day prediagnosis

Conflicts like these are generated and presented to subjects through

a web site.
4
Subjects are asked to resolve the conflicts by choosing,

based on the characterizations of the two potential recipients, which

one should get a single available kidney.

Let us define a resolved conflict as a conflict together with a

subject’s choice determining which potential recipient is to receive

the kidney. By presenting conflicts to subjects and tracking their

resolutions, the site assembles a set of resolved conflicts. Once

it has gathered enough information, this set of resolved conflicts

can function as a rich body of labeled training data—where the

data are the conflicts presented to subjects and their labels are the

resolutions to these conflicts provided by those subjects. The hope

is that ML techniques can then be applied to this training data to

learn enough about how features support decisions—the relative

importance of the different features, how they interact—that this

knowledge can then be projected forward to resolve future conflicts

in a reasonable way, determining the morally preferred kidney

recipient in conflicts that have not yet been considered.

The authors of [41] describe their proposal as a hybrid approach,

since the set of morally relevant features is first constructed by

hand, in a careful, top-down fashion, but the way in which these fea-

tures interact to yield overall judgments is then arrived at through

bottom-up ML techniques.

This approach is sensible and promising. We want to suggest,

however, that an alternative approach, also sensible, can be devel-

oped based on the reason model of constraint described in this

paper. This suggestion is motivated by a strong analogy between

the problem representation and methodology outlined in [41] and

the formal framework set out in this paper. To spell it out: First,

the two possible kidney recipients, Patient A and Patient B, are

analogous to the plaintiff and the defendant. Second, the features

in the kidney domain are analogous to our factors, normatively

relevant facts or patterns of facts. Third, the conflicts in the kidney

domain are analogous to our fact situations, sets of features, or

factors. Fourth, the subjects in the kidney domain are analogous to

our courts, individuals or authoritative bodies rendering judgments

for one side or the other in the face of these conflicting features,

or factors. Fifth, the resolved conflicts from the kidney domain are

analogous to our cases, sets of features, or factors, supplemented

4
The site is whogetsthekidney.com; in fact, the particular conflict displayed in the text

was generated by this site.
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with the decision for one side or the other arrived at by a subject,

or a court. Sixth and finally, the set of resolved conflicts from the

kidney domain is analogous to the case base defined here.

The most striking disanalogy between the approach outlined in

the kidney domain work and that suggested by the reason model

lies in the way normative information is projected forward from a

body of settled decisions. According to [41], as we have seen, ML

techniques are supposed to learn a rudimentary moral theory from

the set of resolved conflicts, which can then be applied to future

conflicts. According to the reason model, by contrast, future courts

are required only to reach decisions in future fact situations in a

way that preserves consistency of the underlying case base.

This central difference should not be taken as a disagreement,

suggesting that we must choose one approach over the other, but

instead, as opening up a range of interesting questions—both tech-

nical and philosophical—concerning the relations between the ap-

proaches. As an example of a technical question, suppose that,

working in the framework of [41], the subjects presented with con-

flicts resolve these conflicts in a way that is consistent, in the sense

defined by the reason model, so that the resulting set of resolved

conflicts is consistent as well. Then the question arises: Will the

moral theory learned by an ML system that is trained on the ba-

sis of this consistent set of resolved conflicts yield decisions in

future cases that are likewise consistent? Either answer would be

interesting.

As an example of a philosophical question raised by these con-

trasting approaches, we can note that the techniques employed

in [41] are similar to the techniques often used for preference

aggregation—indeed, much of the literature on moral reasoning in

AI draws directly on the preference aggregation literature [21, 35].

But it is also sensible to ask: How closely can the process of resolv-

ing moral differences be assimilated to the process of aggregating

conflicting preferences—are there situations in which this assim-

ilation is not plausible? Certainly the techniques explored in AI

for preference aggregation do not correspond to the way in which

conflicting legal decisions are resolved, for example. And even in

contractualist moral systems, which view morality as arising out

of a kind of negotiation between individuals with conflicting pref-

erences [20, 38], the account of negotiation involved is much more

complex than the forms of preference aggregation familiar in AI.

6 CONCLUSION
The goal of this paper has been to present a new hybrid approach

to knowledge acquisition and representation for computational

normative reasoning. Like the usual bottom-up approaches, the

approach presented here is grounded in the judgments of individ-

uals in concrete circumstances, rather than in complex, abstract

rules formulated in advance, thus, to some extent, avoiding the

knowledge-acquisition bottleneck. Like the usual top-down ap-

proaches, the current proposal represents normative information

in a logical language, rather than in a reward function or a pattern

of weights in a neural network, thus allowing for explainability

and explicit justification of decisions. Finally, the current approach

is modeled on the familiar human practice of the common law,

which constructs a body of normative information in a way that is

piecemeal, distributed, and responsive to particular circumstances.

The approach sketched here is implementable in a direct fashion

that does not require interpretation of the formalism into any logic;

the crucial fact that makes this implementation feasible is that

checking consistency of a new decision against a background case

base is linear in the size of the case base. On the other hand, the

resulting information can be encoded into a standard defeasible

logic—such as prioritized variants of default logic [31] or logics

of structured argumentation [26]—to support the generation of

more helpful explanations. Interpreting the normative information

acquired through the approach sketched here also allows for richer,

more sophisticated analyses of the normative reasoning underlying

a particular decision, such as the ability to reason, not just with

defeasible normative principles, but also about these principles—

perhaps some principles require that others should be taken out of

consideration, or excluded, for example [29].

We close by simply mentioning two open issues:

First, our approach, based on the reason model of constraint,

depends on factors—normatively significant facts or patterns of

facts—but where do these factors come from? As we have seen, the

identification of morally relevant features in the kidney allocation

domain involves a complex procedure of crowdsourcing, research,

testing, and refinement. In the traditional AI and Law domain, the

identification of legally relevant factors follows an equally com-

plex knowledge engineering methodology [2]. But there are other

domains in which the identification of appropriate factors seems

to be relatively straightforward, such as the domestic situations

considered here or some of the more ordinary cases of everyday risk

[15]; in addition, ML techniques have more recently been employed

[9, 13] for factor identification in the legal domain. This variety of

approaches leads to the practical question: Is there anything we

can say about the appropriate means of factor identification? And

behind this practical question lurks a deeper philosophical question:

What does it mean to identify some fact as a factor—that is, not

just as an aspect of the world, but as an aspect with normative

bearing on some particular issue? We are currently exploring the

idea, previously hinted at in [11, 28], that what gives a mere fact

normative significance is that reaching a decision on the basis of

that fact promotes a value.

A different issue concerns the granularity of factors. The fac-

tors at work in the approach set out here are relatively narrow, or

fine-grained—factors such as, in the domestic domain, whether a

child finished homework or is now nine years old; or in the organ

allocation domain, whether a patient in kidney failure habitually

consumed two, or three, drinks per day prediagnosis; or in the

trade-secrets domain, whether a particular design was reverse-

engineerable with a given level of expertise. The granularity of

these factors allows normative judgments to be responsive to subtle

differences between situations; further, their application in a given

situation is not controversial. On the other hand, although the cur-

rent symbolic approach does allow for justification of decisions, it

may turn out that the resulting justifications, formulated in terms

of such low-level factors, are not particularly helpful, or satisfying—

why exactly should the fact that a child is now nine years old, for

example, count as a justification for a decision to allow her to stay

up and watch TV?
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The more traditional ethical literature, by contrast, is organized

around much higher-level concepts, or factors—such as, to draw

on one traditional theory, fidelity, reparation, gratitude, justice,

and beneficence [34]; or to draw on another, autonomy and non-

maleficence [8]. Justifications cast in terms of predicates like these

would be more satisfying from a normative perspective. But it

would be harder to register fine-grained moral distinctions between

situations described at such a high level of generality; further, it

may not be obvious whether or not these high-level concepts are

applicable in a given situation—whether, for example, a particular

decision exhibits sufficient respect for autonomy. What is needed

is a hierarchy of normative predicates linking the kind of very

low-level factors considered here with the higher-level normative

concepts that give these factors their force—telling us, for example,

that respect for autonomy should increase with a child’s age, so

that having reached the age of nine favors allowing a child to stay

up and watch TV. Working out the logic of this hierarchy is likewise

a topic of current research [14].

REFERENCES
[1] David Abel, James MacGlashan, and Michael Littman. 2016. Reinforcement

learning as a framework for ethical decision making. In AI, Ethics, and Society:
Papers from the 2016 AAAI Workshop, Blai Bonet, Sven Koenig, Benjamin Kuipers,

Illah Nourbakhsh, Stuart Russell, Moshe Vardi, and Toby Walsh (Eds.). AAAI

Press.

[2] Vincent Aleven. 1997. Teaching Case-Based Argumentation Through a Model
and Examples. Ph. D. Dissertation. Intelligent Systems Program, University of

Pittsburgh.

[3] Larry Alexander and Emily Sherwin. 2008. Demystifying Legal Reasoning. Cam-

bridge University Press.

[4] Michael Anderson and Susan Leigh Anderson. 2007. Machine ethics: creating an

ethical intelligent agent. AI Magazine 28 (2007), 15–26.
[5] Michael Anderson and Susan Leigh Anderson. 2018. GenEth: A general ethical

dilemma analyzer. Paladyn, Journal of Behavioral Robotics 9 (2018), 337–357.
[6] Ronald Arkin. 2009. Governing Lethal Behavior in Autonomous Robots. Chapman

and Hall/CRC.

[7] Kevin Ashley. 1990. Modeling Legal Argument: Reasoning with Cases and Hypo-
theticals. The MIT Press.

[8] Tom Beauchamp and James Childress. 1985. Principles of Biomedical Ethics.
Oxford University Press.

[9] Trevor Bench-Capon and Katie Atkinson. 2021. Precedential constraint: the role

of issues. In Proceedings of the Eighteenth International Conference on Artificial
Intelligence and Law (ICAIL 2021). The Association for Computing Machinery

Press, 12–21.

[10] Trevor Bench-Capon, Gwen Robinson, Tom Routen, and Marek Sergot. 1987.

Logic programming for large scale applications in law: a formalisation of supple-

mentary Benefit Legislation. In Proceedings of the First International Conference
on Artificial Intelligence and Law (ICAIL-87). The Association for Computing

Machinery Press, 190–198.

[11] Trevor Bench-Capon and Giovanni Sartor. 2001. Theory based explanation of case

law domains. In Proceedings of the Eighth International Conference on Artificial
Intelligence and Law (ICAIL-2001). The Association for Computing Machinery

Press, 12–21.

[12] Christof Benzmüller, Xavier Parent, and Leon van der Torre. 2020. Designing

normative theories for ethical and legal reasoning: LogiKEy framework, method-

ology, and tool support. Artificial Intelligence 287 (2020), 103348.
[13] L. Karl Branting, Craig Pfeifer, Bradford Brown, Lisa Ferro, JohnAberdeen, Brandy

Weiss, Mark Pfaff, and Bill Liao. 2021. Scalable and explanable legal prediction.

Artificial Intelligence and Law 29 (2021), 213–238.

[14] Ilaria Canavotto and John Horty. 20xx. Reasoning with a hierarchy of open-

textured predicates. (20xx). Unpublished manuscript.

[15] Vincent Conitzer, Walter Sinnott-Armstrong, Jana Schaich Borg, Yuan Deng, and

Max Kramer. 2017. Moral decision making frameworks for artificial intelligence.

In Proceedings of the Thirty-First National Conference on Artificial Intelligence
(AAAI-17). 4831–4835.

[16] Jonathan Dancy. 1999. Can particularists learn the difference between right and

wrong?. In Proceedings of the Twentieth World Congress of Philosophy. Philosophy
Documentation Center, 59–72.

[17] Louise Dennis, Michael Fisher, Marija Slavkovik, and Matt Webster. 2016. Formal

verification of ethical choices in autonomous systems. Robotics and Autonomous
Systems 77 (2016), 1–14.

[18] Rachel Freedman, Jana Schaich Borg, Walter Sinnott-Armstrong, John Dickerson,

and Vincent Conitzer. 2020. Adapting a kidney exchange algorithm to align with

human values. Artificial Intelligence 283 (2020), 1–14.
[19] Jean-Gabriel Ganascia. 2007. Modelling ethical rules of lying with answer set

programming. Ethics and Information Technology 9 (2007), 39–47.

[20] David Gauthier. 1986. Morals by Agreement. Oxford University Press.

[21] Joshua Greene, Francesca Rossi, John Tasioulas, Kristen Brent Venable, and Brian

Williams. 2016. Embedding ethical principles in collective decision support sys-

tems. In Proceedings of the Thirtieth National Conference on Artificial Intelligence
(AAAI-16). 4147–4151.

[22] John Horty. 2011. Rules and reasons in the theory of precedent. Legal Theory 17

(2011), 1–33.

[23] John Horty. 20xx. The Logic of Precedent: Constraint and Freedom in Common

Law Reasoning. Forthcoming with Cambridge University Press.

[24] John Horty and Trevor Bench-Capon. 2012. A factor-based definition of prece-

dential constraint. Artificial Intelligence and Law 20 (2012), 181–214.

[25] Edward Levi. 1949. An Introduction to Legal Reasoning. The University of Chicago
Press.

[26] Sanjay Modgil and Henry Prakken. 2014. The ASPIC+ framework for structured

argumentation: a tutorial. Argument and Computation 5 (2014).

[27] Luis Moniz Pereira and Ari Saptawijaya. 2016. Programming Machine Ethics.
Springer.

[28] Henry Prakken. 2002. An exercise in formalising teleological case-based reason-

ing. Artificial Intelligence and Law 10 (2002), 113–133.

[29] Joseph Raz. 1975. Practical Reason and Norms. Hutchinson and Company. Second

edition with new Postscript printed in 1990 by Princeton University Press, and

reprinted by Oxford University Press in 2002; pagination refers to the Oxford

edition.

[30] Joseph Raz. 1979. The Authority of Law. Oxford University Press.

[31] Raymond Reiter. 1980. A Logic for Default Reasoning. Artificial Intelligence 13
(1980), 81–132.

[32] Mark Riedl and Brent Harrison. 2016. Using Stories to Teach Human Values to

Artificial Agents. In Proceedings of the 2nd International Workshop on AI, Ethics
and Society.

[33] Edwina Rissland and Kevin Ashley. 1987. A case-based system for trade secrets

law. In Proceedings of the First International Conference on Artificial Intelligence
and Law (ICAIL-87). The Association for Computing Machinery Press, 60–66.

[34] W. D. Ross. 1930. The Right and the Good. Oxford University Press.

[35] Francesca Rossi. 2016. Moral preferences. (2016). Available at http://www.mpref-

2016.preflib.org/wp-content/uploads/2016/06/paper-15.pdf.

[36] Alvin Roth, Tayfun Sonmez, andM. UtkuÜnver. 2004. Kidney exchange. Quarterly
Journal of Economics 119 (2004), 457–488.

[37] Stuart Russell, Daniel Dewey, and Max Tegmark. 2015. Research priorities for

robust and beneficial artificial intelligence. AI Magazine 36, 4 (2015), 105–114.
[38] T. M. Scanlon. 1998. What We Owe to Each Other. Harvard University Press.

[39] Frederick Schauer. 1991. Playing by the Rules: A Philosophical Examination of
Rule-Based Decision-Making in Law and Life. Oxford University Press.

[40] Marek Sergot, Fariba Sadri, Robert Kowalski, Frank Kriwaczek, Peter Hammond,

and H. Therese Cory. 1986. The British Nationality Act as a logic program.

Communications of the Association for Computing Machinery 29 (1986), 370–386.

[41] Walter Sinnot-Armstrong and Joshua August Skorburg. 2021. How AI can aid

bioethics. Journal of Practical Ethics 9 (2021).
[42] Joshua Skorburg, Walter Sinnott-Armstrong, and Vincent Conitzer. 2020. AI

methods in bioethics. AJOB Empirical Bioethics 11 (2020), 37–39.
[43] Daniel Star. 2018. The Oxford Handbook of Reasons and Normativity. Oxford

University Press.

[44] Wijnand Van Woerkom, Davide Grossi, Henry Prakken, and Bart Verheij. 2022.

Landmarks in Case-based Reasoning: From Theory to Data. In Proceedings of the
First International Confefence on Hybrid Human-Machine Intelligence. IOS Press.


	Abstract
	1 Introduction
	2 The common law
	3 Basic concepts
	3.1 Factors and fact situations
	3.2 Reasons and rules
	3.3 Cases and case bases

	4 Constraint by reasons
	4.1 A priority ordering on reasons
	4.2 Constraint
	4.3 The domestic scenario
	4.4 Requirements and permissions

	5 Applications
	5.1 A robot childminder
	5.2 Kidney allocation decisions

	6 Conclusion
	References

