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Abstract

The purpose of this paper is to question some commonly accepted patterns of reasoning involving
nonmonotonic logics that generate multiple extensions. In particular, I argue that the phenomenon
of floating conclusions indicates a problem with the view that the skeptical consequences of
such theories should be identified with the statements that are supported by each of their various
extensions.  2001 Elsevier Science B.V. All rights reserved.

Keywords: Nonmonotonic logic; Default logic; Skeptical reasoning

1. Introduction

One of the most striking ways in which nonmonotonic logics can differ from classical
logic, and even from standard philosophical logics, is in allowing for multiple sanctioned
conclusion sets, known as extensions. The term is due to Reiter [12], who thought of
default rules as providing a means for extending the strictly logical conclusions of a
knowledge base with plausible information. Multiple extensions arise when a knowledge
base contains conflicting default rules, suggesting different, often inconsistent ways of
supplementing its strictly logical conclusions.

The purpose of this paper is to question some commonly accepted patterns of reasoning
involving theories that generate multiple extensions. In particular, I argue that the
phenomenon of floating conclusions indicates a problem with the view that the skeptical
consequences of such theories should be identified with the statements that are supported
by each of their various extensions.
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2. Multiple extensions

The canonical example of a knowledge base with multiple extensions is the Nixon
Diamond, depicted in Fig. 1. Here, the statements Qn, Rn, and Pn represent the
propositions that Nixon is a Quaker, a Republican, and a pacifist; statements of the form
A ⇒ B and A → B represent ordinary logical implications and “default” implications
respectively, with A � B and A � B abbreviating A ⇒ ¬B and A → ¬B; and the special
statement � represents truth. What the knowledge base tells us, of course, is this: Nixon
is both a Quaker and a Republican, the fact that he is a Quaker provides a good reason for
concluding that he is a pacifist, and the fact that he is a Republican provides a good reason
for concluding that he is not a pacifist.

This example can be coded into default logic as the theory ∆ = 〈W,D〉, with W =
{Qn,Rn} representing the basic facts of the situation and D = {(Qn : Pn / Pn), (Rn :
¬Pn / ¬Pn)} representing the two defaults. The theory yields two extensions: E1 =
Th(W ∪ {Pn}) and E2 = Th(W ∪ {¬Pn}). The first results when the basic facts of
the situation are extended by an application of the default concerning Quakers; the
second results when the facts are extended by an application of the default concerning
Republicans.

In light of these two extensions, what are we to conclude from the initial information:
is Nixon a pacifist or not? More generally, when a default theory leads to more than one
extension, what should we actually infer from that theory—how should we define its set of
consequences, or conclusions?

Several proposals have been discussed in the literature. One option is to suppose that
we should arbitrarily select a particular one of the theory’s several extensions and endorse
the conclusions contained in it; a second option is to suppose that we should be willing
to endorse a conclusion just in case it is contained in some extension of the theory. These
first two options are sometimes said to reflect a credulous reasoning policy. A third option,

Fig. 1. The Nixon Diamond.
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now generally described as skeptical, is to suppose that we should endorse a conclusion
just in case it is contained in every extension of the theory. 1

Of these three options, the first—pick an arbitrary extension—really does seem to
embody a sensible policy, or at least one that is frequently employed. Given conflicting
defeasible information, we often simply adopt some internally coherent point of view in
which the conflicts are resolved in some particular way, regardless of the fact that there
are other coherent points of view in which the conflicts are resolved in different ways.
Still, although this reasoning policy may be sensible, it is hard to see how it could be
codified in a formal consequence relation. If the choice of extension really is arbitrary,
different reasoners could easily select different extensions, or the same reasoner might
select different extensions at different times. Which extension, then, would represent the
real conclusion set of the original theory?

The second of our three options—endorse a conclusion whenever it is contained in some
extension—could indeed be codified as a consequence relation, but it would be a peculiar
one. According to this policy, the conclusion set associated with a default theory need not
be closed under standard logical consequence, and might easily be inconsistent, even in
cases in which the underlying default theory itself seems to be consistent. The conclusion
set of the theory representing the Nixon Diamond, for example, would contain both Pn and
¬Pn, since each of these formulas belongs to some extension of the default theory, but it
would not contain Pn ∧ ¬Pn, since this formula is not contained in any extension.

One way of avoiding these peculiar features of the second option is to think of the
conclusions generated by a default theory as being shielded by a kind of modal operator.
Where A is a statement, let B(A) mean there is good reason to believe that A; and suppose
a theory provides us with good reason to believe a statement whenever that statement is
included in some extension of the theory, some internally coherent point of view. Then we
could define the initial conclusions of a default theory ∆ = 〈W,D〉 as the set that extends
W with a formula B(A) whenever A belongs to some extension of ∆, and we could go on
to define the theory’s conclusion set as the logical closure of its initial conclusions.

This variant of the second option has some interest. It results in a conclusion set that
is both closed under logical consequence and consistent as long as W itself is consistent.
And Reiter’s original paper on default logic [12, Section 4] provides a proof procedure,
sound and complete under certain conditions, that could be used in determining whether
B(A) belongs to the conclusion set as defined here. Unfortunately, however, this variant of
the second option also manages to sidestep our original question. We wanted to know what
conclusions we should actually draw from the information provided by a default theory—
whether or not, given the information from the Nixon Diamond, we should conclude that
Nixon is a pacifist, for example. But according to this variant, we are told only what there
is good reason to believe—that both B(Pn) and B(¬Pn) are consequences of the theory, so
that there is good reason to believe that Nixon is a pacifist, but also good reason to believe

1 The use of the credulous/skeptical terminology in this context was first introduced by Touretzky et al. [15],
but the distinction itself is older than this; it was already implicit in Reiter’s paper on default logic, and was
described explicitly by McDermott [10] as the distinction between brave and cautious reasoning. Makinson [8]
refers to the first of the two credulous options described here as the choice option.
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that he is not. This may be useful information, but it is still some distance from telling us
whether or not to conclude that Nixon is a pacifist. 2

Of our three options for defining a notion of consequence in the presence of multiple
extensions, only the third, skeptical proposal—endorse a conclusion whenever it is
contained in every extension—seems to hold any real promise. This option leads to a single
conclusion set, which is both closed under logical consequence and consistent as long as
the initial information is. And it provides an answer that is at least initially attractive to our
original question concerning proper conclusions. In the case of the Nixon Diamond, for
example, since neither Pn nor ¬Pn belongs to every extension, this third option tell us that
we should not conclude that Nixon is a pacifist, but that we should not conclude that Nixon
is not a pacifist either. Since there is a good reason for each of these conflicting conclusion,
we should remain skeptical.

3. Floating conclusions

Default logic defines a direct, unmediated relation between a particular default theory
and the statement sets that form its extensions. Another class of formalisms—known as
argument systems—takes a more roundabout approach, analyzing nonmonotonic reasoning
through the study of interactions among competing defeasible arguments. 3

Although the arguments themselves that are studied in these argument systems are often
complex, we can restrict our attention here entirely to linear arguments, analogous to the
reasoning paths studied in theories of defeasible inheritance. 4 These linear arguments are
formed by starting with a true statement and then simply stringing together strict and
defeasible implications; each such argument can be said to support the final statement
it contains as its conclusion. As an abstract example, the structure � ⇒ A → B � C can
be taken to represent an argument of the form “A is true, which defeasibly implies B ,
which strictly implies ¬C”, supporting the conclusion ¬C. As a less abstract example, we
can see that the Nixon Diamond provides the materials for constructing the two arguments
� ⇒ Qn → Pn and � ⇒ Rn � Pn, supporting the conflicting conclusions Pn and ¬Pn.

Where α is an argument, we will let ∗α represent the particular conclusion supported by
α. Where Φ is a set of arguments, we will let ∗Φ represent the set of conclusions supported
by the arguments in Φ—that is, the set containing the statement ∗α for each argument α

belonging to Φ .
The primary technical challenge involved in the development of an argument system

is the specification of the coherent sets of arguments that an ideal reasoner might be
willing to accept on the basis of a given body of initial information. We will refer to
these coherent sets of arguments as argument extensions, to distinguish them from the

2 Note that this objection is directed only against the use of modal operators to capture the epistemic
interpretation of default logic. Other interpretations, involving other modal operators, are possible; it is shown
in [4], for example, that a deontic interpretation, with default conclusions wrapped inside of deontic operators,
generates a logic for normative reasoning corresponding to that originally suggested by van Fraassen [16].

3 A recent survey of a variety of argument systems can be found in Prakken and Vreeswijk [11].
4 The development of the path-based approach to inheritance reasoning was initiated by Touretzky [14]; a

survey can be found in [5].
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statement extensions defined by theories such as default logic. Again, the actual definition
of argument extensions is often complicated in ways that need not concern us here. Without
going into detail, however, we can simply note that, just as theories like default logic
allow multiple statement extensions, argument systems often associate multiple argument
extensions with a single body of initial information. In the case of the Nixon Diamond,
for example, an argument system patterned after multiple-extension theories of defeasible
inheritance would generate the two extensions

Φ1 = {� ⇒ Qn,� ⇒ Rn,� ⇒ Qn → Pn},
Φ2 = {� ⇒ Qn,� ⇒ Rn,� ⇒ Rn → ¬Pn}.

The first results from supplementing the initial information with the argument that Nixon
is a pacifist because he is a Quaker, the second from supplementing this information with
the argument that Nixon is not a pacifist because he is a Republican.

When a knowledge base leads to multiple argument extensions, there are, as before,
several options for characterizing the appropriate set of conclusions to draw on the basis
of the initial information. Again, we might adopt a credulous reasoning policy, either
endorsing the set of conclusions supported by an arbitrary one of the several argument
extensions, or perhaps endorsing a conclusion as believable whenever it is supported by
some extension or another. In the case of the Nixon Diamond, this policy would lead us
to endorse either ∗Φ1 = {Qn,Rn,Pn} or ∗Φ2 = {Qn,Rn,¬Pn} as the conclusion set of
the original knowledge base, or perhaps simply to endorse the statements belonging to the
union of these two sets as believable.

As before, however, we might also adopt a kind of skeptical policy in the presence of
these multiple argument extensions, defining the appropriate conclusion set through their
intersection. In this case, though, since these new extensions contain arguments rather than
statements, there are now two alternatives for implementing such a policy. First, we might
decide to endorse an argument just in case it is contained in each argument extension
associated with an initial knowledge base, and then to endorse a conclusion just in case
that conclusion is supported by an endorsed argument. Formally, this alternative leads to
the suggestion that the appropriate conclusions of an initial knowledge base Γ should be
the statements belonging to the set

∗(⋂
{Φ: Φ is an extension of Γ }

)
.

Or second, we might decide to endorse a conclusion just in case that conclusion is itself
supported by each argument extension of the initial knowledge base Γ , leading to the
formal suggestion that the appropriate conclusions of the knowledge base should be the
statements belonging to the set

⋂
{∗Φ: Φ is an extension of Γ },

where the order of ∗ and
⋂

is reversed.
Of course, these two alternatives for implementing the skeptical policy come to the

same thing in the case of the Nixon Diamond: both lead to {Qn,Rn} as the appropriate
conclusion set. But there are other situations in which the two alternatives yield different
results. A well-known example, due to Ginsberg, appears in Fig. 2, where Qn and Rn are
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Fig. 2. Is Nixon politically extreme?

interpreted as before, Dn and Hn are interpreted to mean that Nixon is a dove or a hawk
respectively, and En as meaning that Nixon is politically extreme (regarding the appropriate
use of military force). What this diagram tells us is that Nixon is both a Quaker and a
Republican, that there is good reason to suppose that Nixon is a dove if he is a Quaker,
a hawk if he is a Republican, and that he is politically extreme if he is either a dove or a
hawk.

Again, a system patterned after multiple-extension inheritance theories would associate
two argument extensions with this knowledge base, as follows:

Φ1 = {� ⇒ Qn, � ⇒ Rn,

� ⇒ Qn → Dn,

� ⇒ Qn → Dn � Hn,

� ⇒ Qn → Dn ⇒ En},

Φ2 = {� ⇒ Qn, � ⇒ Rn,

� ⇒ Rn → Hn,

� ⇒ Rn → Hn � Dn,

� ⇒ Rn → Hn ⇒ En}.
Since no arguments except for the trivial � ⇒ Qn and � ⇒ Rn are contained in both of
these extensions, the first of our two alternatives for implementing the skeptical policy,
which involves intersecting the argument extensions themselves, would lead to {Qn,Rn}
as the appropriate conclusion set, telling us nothing more than the initial information that
Nixon is a Quaker and a Republican. On the other hand, each of these two argument
extensions supports the statement En—one through the argument � ⇒ Qn → Dn ⇒ En,
the other through the argument � ⇒ Rn → Hn ⇒ En. The second of our two alternatives
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for implementing the skeptical policy, which involves intersecting supported statements
rather than the arguments that support them, would therefore lead to the conclusion set
{Qn,Rn,En}, telling us also that Nixon is politically extreme.

Statements like En, which are supported in each extension associated with a knowledge
base, but only by different arguments, are known as floating conclusions. This phrase,
coined by Makinson and Schlechta [9], nicely captures the picture of these conclusions
as floating above the different and conflicting arguments that might be taken to support
them.

The phenomenon of floating conclusions was first investigated in the context of
defeasible inheritance reasoning, particularly in connection with the theory developed by
Thomason, Touretzky, and myself in [6]. In contrast to the multiple-extension accounts
considered so far, that theory first defined a single argument extension that was thought of
as containing the “skeptically acceptable” arguments based on a given inheritance network.
The skeptical conclusions were then defined simply as the statements supported by those
skeptically acceptable arguments.

Ginsberg’s political extremist example was meant to show that no approach of this
sort, relying on a single argument extension, could correctly represent skeptical reasoning.
A single argument extension could not consistently contain both the arguments � ⇒ Qn →
Dn ⇒ En and � ⇒ Rn → Hn ⇒ En, since the strict information in the knowledge base
shows that each of these arguments conflicts with an initial segment of the other. The single
argument extension could not contain either of these arguments without the other, since that
would involve the kind of arbitrary decision appropriate only for credulous reasoning. And
if the single argument extension were to contain neither of these two arguments, it would
not support the conclusion En, which Ginsberg considers to be an intuitive consequence of
the initial information: “given that both hawks and doves are politically [extreme], Nixon
certainly should be as well” [3, p. 221]. 5

Both Makinson and Schlechta [9] and Stein [13] also consider floating conclusions in
the context of defeasible inheritance reasoning. Makinson and Schlechta share Ginsberg’s
view that the appropriate conclusions to derive from a knowledge base are those that are
supported by each of its argument extensions:

It is an oversimplification to take a proposition A as acceptable . . . iff it is supported
by some [argument] path α in the intersection of all extensions. Instead A must be
taken as acceptable iff it is in the intersection of all outputs of extensions, where the
output of an extension is the set of all propositions supported by some path within it
[9, pp. 203–204].

From this they likewise argue, not only that the particular theory developed in [6]
is incorrect, but more generally, that any theory attempting to define the skeptically
acceptable conclusions by reference to a single set of acceptable arguments will be
mistaken. And Stein reaches a similar judgment, for similar reasons:

5 Although, as far as I know, this example was first published in the textbook cited here, it had previously
been part of the oral tradition for many years—I first heard it during the question session after the AAAI-87
presentation of [6], when Ginsberg raised it as an objection to that theory.
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The difficulty lies in the fact that some conclusions may be true in every credulous
extension, but supported by different [argument] paths in each. Any path-based
theory must either accept one of these paths—and be unsound, since such a path is
not in every extension—or reject all such paths—and with them the ideally skeptical
conclusion—and be incomplete [13, p. 284].

What lies behind these various criticisms, of course, is the widely-held assumption that
the second, rather than the first, of our two skeptical alternatives is correct—that floating
conclusions should be accepted, and that a system that fails to classify them among the
consequences of a defeasible knowledge base is therefore in error. The purpose of this
paper is to question that assumption.

4. An example

Why not accept floating conclusions? Their precarious status can be illustrated through
any number of examples, but we might as well choose a dramatic one.

Suppose, then, that my parents have a net worth of one million dollars, but that they
have divided their assets in order to avoid the United States inheritance tax, so that each
parent currently possesses half a million dollars apiece. And suppose that, because of their
simultaneous exposure to a fatal disease, it is now settled that both of my parents will die
within a month. This is a fact: medical science is certain.

Imagine also, however, that there is some expensive item—a yacht, say—whose
purchase I believe would help to soften the blow of my impending loss. Although the
yacht I want is currently available, the price is good enough that it is sure to be sold by the
end of the month. I can now reserve the yacht for myself by putting down a large deposit,
with the balance due in six weeks. But there is no way I can afford to pay the balance
unless I happen to inherit at least half a million dollars from my parents within that period,
and if I fail the pay the balance on time, I will lose my large deposit. Setting aside any
doubts concerning the real depth of my grief, let us suppose that my utilities determine the
following conditional preferences: if I believe I will inherit half a million dollars from my
parents within six weeks, it is very much in my benefit to place a deposit on the yacht; if I
do not believe this, it is very much in my benefit not to place a deposit.

Now suppose I have a brother and a sister, both of whom are extraordinarily reliable
as sources of information. Neither has ever been known to be mistaken, to deceive, or
even to misspeak—although of course, like nearly any source of information, they must be
regarded as defeasible. My brother and sister have both talked with our parents about their
wills, and feel that they understand the situation. I have written to each of them describing
my delicate predicament regarding the yacht, and receive letters back. My brother writes:
“Father is going to leave his money to me, but Mother will leave her money to you, so
you’re in good shape”. My sister writes: “Mother is going to leave her money to me, but
Father will leave his money to you, so you’re in good shape”. No further information is
now available: the wills are sealed, my brother and sister are trekking together through the
Andes, and our parents, sadly, have slipped into a coma.
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Fig. 3. Should I buy the yacht?

Based on my current information, what should I conclude? Should I form the belief that
I will inherit half a million dollars—and therefore place a large deposit on the yacht—or
not?

The situation is depicted in Fig. 3, where the statement letters are interpreted as follows:
F represents the proposition that I will inherit half a million dollars from my father,
M represents the proposition that I will inherit half a million dollars from my mother,
BA(¬F ∧ M) represents the proposition that my brother asserts that I will inherit my
mother’s money but not my father’s, and SA(F ∧ ¬M) represents the proposition that
my sister asserts that I will inherit my father’s money but not my mother’s. The defeasible
links BA(¬F ∧ M) → ¬F ∧ M and SA(F ∧ ¬M) → F ∧ ¬M reflect the fact that any
assertion by my brother or sister provides good reason for concluding that the content
of that assertion is true. The strict links in the diagram record various implications and
inconsistencies. Notice that, although the contents of my brother’s and sister’s assertions—
the statements ¬F ∧ M and F ∧ ¬M—are jointly inconsistent, the truth of either entails
the disjunctive claim F ∨ M , which is, of course, all I really care about. As long as I can
conclude that I will inherit half a million dollars from either my father or my mother, I
should go ahead and place a deposit on the yacht.

A multiple-extension approach would associate the following two argument extensions
with this knowledge base:

Φ1 = {� ⇒ BA(¬F ∧ M),

� ⇒ SA(F ∧ ¬M),

� ⇒ BA(¬F ∧ M) → ¬F ∧ M,

� ⇒ BA(¬F ∧ M) → ¬F ∧ M � F ∧ ¬M,

� ⇒ BA(¬F ∧ M) → ¬F ∧ M ⇒ F ∨ M
}
,
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Φ2 = {� ⇒ BA(¬F ∧ M),

� ⇒ SA(F ∧ ¬M),

� ⇒ SA(F ∧ ¬M) ⇒ F ∧ ¬M,

� ⇒ SA(F ∧ ¬M) ⇒ F ∧ ¬M � ¬F ∧ M,

� ⇒ SA(F ∧ ¬M) ⇒ F ∧ ¬M ⇒ F ∨ M
}
.

Again, the first of our two alternatives for implementing the skeptical reasoning policy,
which involves intersecting arguments, would lead to {BA(¬F ∧ M),SA(F ∧ ¬M)} as
the appropriate conclusion set, telling me only that my brother and sister asserted what
they did. But since each of the two extensions contains some argument supporting the
statement F ∨M , the second alternative, which involves intersecting supported statements,
leads to the conclusion set {BA(¬F ∧ M),SA(F ∧ ¬M),F ∨ M}, telling me also—as
a floating conclusion—that I will inherit half a million dollars from either my father or my
mother.

In this situation, then, there is a vivid practical difference between the two skeptical
alternatives. If I were to reason according to the first, I would not be justified in concluding
that I am about to inherit half a million dollars, and so it would be foolish for me to place
a deposit on the yacht. If I were to reason according to the second, I would be justified in
drawing this conclusion, and so it would be foolish for me not to place a deposit.

Which alternative is correct? I have not done a formal survey, but most of the people
to whom I have presented this example are suspicious of the floating conclusion, and so
favor the first alternative. Most do not feel that the initial information from Fig. 3 would
provide sufficient justification for me to conclude, as the basis for an important decision,
that I will inherit half a million dollars. Certainly, this is my own opinion—that the example
shows, contrary to the widely-held assumption, that it is at least coherent for a skeptical
reasoner to withhold judgment from floating conclusions. Although both my brother and
sister are reliable, and each supports the conclusion that I will inherit half a million dollars,
the support provided by each of these reliable sources is undermined by the other; there
is no unopposed reason supporting the conclusion. Since either my brother or sister must
be wrong, it is therefore easy to imagine that they might both be wrong, and wrong in this
way: perhaps my father will leave his money to my brother and my mother will leave her
money to my sister, so that I will inherit nothing.

5. Comments on the example

First, in case this example does not yet seem convincing, it might help to modify things
a bit. Suppose, then, that I had written only to my brother, and received his response—that
my father had named him as sole beneficiary, but that my mother would leave her money
to me. That is, suppose my starting point is the information depicted in the left-hand side
of Fig. 3. In this new situation, should I conclude that I will inherit half a million dollars,
and therefore place a deposit on the yacht?

Some might say no—that even in this simplified situation I should not make such a
important decision on the basis of my brother’s word alone. But this objection misses the
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point. Most of what we know, we know through sources of information that are, in fact,
defeasible. By hypothesis, we can suppose that my brother is arbitrarily reliable, as reliable
as any defeasible source of information could possibly be—as reliable as perception, for
instance, or the bank officer’s word that the money has actually been deposited in my
account. If we were to reject information like this, it is hard to see how we could get by in
the world at all. When a source of defeasible information that is, by hypothesis, arbitrarily
reliable tells me that I will inherit half a million dollars, and there is no conflicting evidence
in sight, it is reasonable for me to accept this statement, and to act on it. Note that both of
the two skeptical alternatives yield this outcome in our simplified situation, since the initial
information, represented by the left-hand side of Fig. 3, generates only a single argument
extension, in which the conclusion that I will inherit half a million dollars is supported by
a single argument.

Now suppose that, at this point, I hear from my equally reliable sister with her
conflicting information—that she is my mother’s beneficiary, but that my father will
leave his money to me. As a result, I am again in the situation depicted in the full
Fig. 3, with two argument extensions, and in which the statement that I will inherit
half a million dollars is supported only as a floating conclusion. Ask yourself: should
my confidence in the statement that I will inherit half a million dollars be diminished
in this new situation, now that I have heard from my sister as well as my brother? If
it seems that my confidence can legitimately be diminished—that this new information
casts any additional doubt on the outcome—then it follows that floating conclusions
are somewhat less secure than conclusions that are uniformly supported by a common
argument. And that is all we need. The point is not that floating conclusions might be
wrong; any conclusion drawn through defeasible reasoning might be wrong. The point is
that a statement supported only as a floating conclusion seems to be less secure than the
same statement when it is uniformly supported by a common argument. As long as there is
this difference in principle, it is coherent to imagine a skeptical reasoner whose standards
are calibrated so as to accept statements that receive uniform support, but to reject floating
conclusions.

As a second comment, notice that, if floating conclusions pose a problem, it is not
just a problem for argument systems, but also for traditional nonmonotonic formalisms,
such as default or model-preference logics. Indeed, the problem is even more serious
for these traditional formalisms. With argument systems, where the extensions generated
are argument extensions, it is at least possible to avoid floating conclusions by adopting
the first of our two skeptical alternatives—endorsing only those arguments belonging
to each extension, and then endorsing only the conclusions of the endorsed arguments.
Since arguments are represented explicitly in these systems, they can be used to
filter out floating conclusions. In most traditional nonmonotonic logics, arguments are
suppressed, and so the materials for carrying out this kind of filtering policy are not even
available.

To illustrate, a natural representation of the information from our yacht example in
default logic is the theory ∆ = 〈W,D〉, where

W = {
BA(¬F ∧ M), SA(F ∧ ¬M)

}

describes what my brother and sister said and
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D = {(
BA(¬F ∧ M) : ¬F ∧ M/¬F ∧ M

)
,(

SA(F ∧ ¬M) : F ∧ ¬M / F ∧ ¬M
)}

reflects the defaults that whatever my brother and sister say should be taken as true. This
theory has two extensions:

E1 = Th(W ∪ {¬F ∧ M}),
E2 = Th(W ∪ {F ∧ ¬M}).

The extensions of default logic are statement extensions, and so the only possible policy
for skeptical reasoning appears to be: intersect the extensions. Since the statement F ∨ M

belongs to both extensions, skeptical reasoning in default logic tells me, immediately and
without ambiguity, that I will inherit half a million dollars.

Of course, default logic is essentially a proof-theoretic formalism, and it is easy to see
how it could be modified so that the extensions defined would contain proofs rather than
statements; such a modification would then allow for floating conclusions to be filtered out
by a treatment along the lines of our first alternative. 6 It is harder to see how floating
conclusions could be avoided in model-preference logics. In a circumscriptive theory,
for instance, the yacht example could naturally be expressed by supplementing the facts
BA(¬F ∧ M) and SA(F ∧ ¬M) with the statements (BA(¬F ∧ M) ∧ ¬Abb) ⊃ ¬F ∧ M

and (SA(F ∧ ¬M) ∧ ¬Abs) ⊃ F ∧ ¬M , and then preferring those models in which as
few as possible of the propositions Abb and Abs—the abnormalities associated with the
rare situations in which my brother or sister is mistaken—are true. Of course, there
can be no models in which neither Abb not Abs is true. The most preferred models
will therefore be those in which only one of these abnormalities holds. The statement
F ∨ M is true in all of these models, and would therefore follow as a circumscriptive
consequence. 7

6. Objections to the example

I have heard two objections worth noting to the yacht example as an argument against
floating conclusions.

The first focuses on the underlying methodology of logical formalization. Even though
what my brother literally said is “Father is going to leave his money to me, but Mother
will leave her money to you”, one might argue that the real content of his statement—
what he really meant—is better conveyed through the two separate sentences “Father is
going to leave his money to me” and “Mother will leave her money to you”. In that case,
rather than formalizing my brother’s assertion through the single conjunction ¬F ∧ M , it
would be more natural to represent its content through the separate statements ¬F and M;

6 One suggested modification of default logic that is particularly relevant, because it bears directly on examples
of the sort considered here, can be found in Brewka and Gottlob [2].

7 This form of circumscription, which involved minimizing the truth of statements rather than the extensions
of predicates, is a special case of the more usual form; see Lifschitz [7, pp. 302–303] for a discussion.
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and the content of my sister’s assertion could likewise be formalized through the separate
statements F and ¬M .

Considered from the standpoint of default logic, the situation could then be represented
through the new default theory ∆ = 〈W,D〉, with

W = {
BA(¬F), BA(M), SA(F ), SA(¬M)

}

describing what now appear to be the four independent assertions made by my brother and
sister, and with

D = {
(BA(¬F) : ¬F / ¬F),

(BA(M) : M / M),

(SA(F ) : F / F),

(SA(¬M) : ¬M / ¬M)
}

carrying the defaults that any assertion by my brother or sister should be taken as true, if
possible. This new default theory would then have four extensions:

E1 = Th(W ∪ {F,M}),
E2 = Th(W ∪ {F,¬M}),
E3 = Th(W ∪ {¬F,M}),
E4 = Th(W ∪ {¬F,¬M}).

And since not all of these extensions contain the statement F ∨ M , the policy of defining
skeptical conclusions simply by intersecting the statements supported by each extension
no longer leads, in this case, to the conclusion that I will inherit half a million dollars.

The idea behind this objection is that the problems presented by floating conclusions
might be avoided if we were to adopt a different strategy for formalizing the statements
taken as inputs by the logical system, which would involve, among other things,
articulating conjunctive inputs into their conjuncts. This idea is interesting, has some
collateral benefits, and bears certain affinities to proposals that have been suggested in
other contexts. 8 Nevertheless, in the present setting, the strategy of factoring conjunctive
statements into their conjuncts in order to avoid undesirable floating conclusions suggests
a procedure that might be described as “wishful formalization”—carefully tailoring the
inputs to a logical system so that the system then yields the desired outputs. Ideally, a logic
should take as its inputs formulas conforming as closely as possible to the natural language

8 Imagine, for example, that my brother asserts a statement of the form P ∧ Q, where it turns out that P is a
logical contradiction—perhaps a false mathematical statement—but Q expresses a perfectly sensible proposition
that just happens to be conjoined with P for reasons of conversational economy. Here, the representation of the
situation through the default theory 〈W,D〉 with W = {BA(P ∧ Q)} and D = {(BA(P ∧ Q) : P ∧ Q / P ∧ Q)}
would prevent us from drawing either P or Q as a conclusion, since the justification for the default could not be
satisfied. But if the situation were represented through the articulated theory 〈W,D〉 with W = {BA(P ),BA(Q)}
and D = {(BA(P ) : P / P ), (BA(Q) : Q / Q)}, we could at least draw the conclusion Q. This idea of articulating
premises into simpler components, in order to draw the maximum amount of information out of a set of input
statements without actually reaching contradictory conclusions, has also been studied in the context of relevance
logic; a carefully formulated proposal can be found in Section 82.4 of Anderson et al. [1].
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premises provided by a situation, and then the logic itself should tell us what conclusions
follow from those premises. Any time we are forced to adopt a less straightforward
representation of the input premises in order to avoid inappropriate conclusions—replacing
conjunctions with their conjuncts, for example—we are backing away from that ideal. By
tailoring the inputs in order to assure certain outputs, we are doing some work for the logic
that, in the ideal case, the logic should be doing for us.

The second objection to the yacht example as an argument against floating conclusions
concerns the method for evaluating supported statements. Part of what makes this example
convincing as a reason for rejecting the floating conclusion that I will inherit half a million
dollars is the fact that it is developed within the context of an important practical decision,
where an error carries significant consequences: I will lose my large deposit. But what if
the consequences were less significant? Suppose the deposit were trivial: one dollar, say. In
that case, many people would then argue that the support provided for the proposition that
I will inherit half a million dollars—even as a floating conclusion—would be sufficient,
when balanced against the possibility for gain, to justify the risk of losing my small
deposit. The general idea behind this objection is that the proper notion of consequence
in defeasible reasoning is sensitive to the risk of being wrong. The evaluation of a logic
for defeasible reasoning cannot, therefore, be made outside of some particular decision-
theoretic setting, with particular costs assigned to errors; and there are certain settings in
which one might want to act even on the basis of propositions supported only as floating
conclusions.

This is an intriguing objection. I will point out only that, if accepted, it suggests a
major revision in our attitude toward nonmonotonic logics. Traditionally, a logic—unlike a
system for probabilistic or evidential reasoning—is thought to classify statements into only
two categories: those that follow from some set of premises, and those that do not. The
force of this objection is that nonmonotonic logics should be viewed, instead, as placing
statements into several categories, depending on the degree to which they are supported by
a set of premises, with floating conclusions then classified, not necessarily as unsupported,
but perhaps only as less firmly supported than statements that are justified by the same
argument in every extension.

7. Other examples

Once the structure of the yacht example is understood, it is easy to construct other
examples along similar lines: just imagine a situation in which two sources of information,
or reasons, support a common conclusion, but also undermine each other, and therefore
undermine the support that each provides for the common conclusion.

Suppose you are a military commander pursuing an enemy that currently holds a strong
defensive position. It is suicide to attack while the enemy occupies this position in force,
but you have orders to press ahead as quickly as possible, and so you send out your
reliable spies. After a week, one spy reports back that there can now be only a skeleton
force remaining in the defensive position; he has seen the main enemy column retreating
through the mountains, although he also noticed that they sent out a diversionary group to
make it appear as if they were retreating along the river. The other spy agrees that only



J.F. Horty / Artificial Intelligence 135 (2002) 55–72 69

a skeleton force remains in the defensive position; he has seen the main enemy column
retreating along the river, although he notes that they also sent out a diversionary group to
make it appear is if they were retreating through the mountains. Based on this information,
should you assume at least that the main enemy force has retreated from the defensive
position—a floating conclusion that is supported by both spies—and therefore commit
your troops to an attack? Not necessarily. Although they support a common conclusion,
each spy undermines the support provided by the other. Perhaps the enemy sent out two
diversionary groups, one through the mountains and one along the river, and managed to
fool both your spies into believing that a retreat was in progress. Perhaps the main force
still occupies the strong defensive position, awaiting your attack.

Or suppose you attend a macroeconomics conference during a period of economic
health, with low inflation and strong growth, and find that the community of macroeco-
nomic forecasters is now split right down the middle. One group, working with a model
that has been reliable in the past, predicts that the current strong growth rate will lead to
higher inflation, triggering an economic downturn. By tweaking a few parameters in the
same model, the other group arrives at a prediction according to which the current low
inflation rate will actually continue to decline, leading to a dangerous period of deflation
and triggering an economic downturn. Both groups predict an economic downturn, but for
different and conflicting reasons—higher inflation versus deflation—and so the prediction
is supported only as a floating conclusion. Based on this information, should you accept the
prediction, adjusting your investment portfolio accordingly? Not necessarily. Perhaps the
extreme predictions are best seen as undermining each other and the truth lies somewhere
in between: the inflationary and deflationary forces will cancel each other out, the inflation
rate will remain pretty much as it is, and the period of economic health will continue.

There is no need to labor the point by fabricating further examples in which floating
conclusions are suspect. But what about the similar cases, exemplifying the same pattern,
that have actually been advanced as supporting floating conclusions, such as Ginsberg’s
political extremist example from Fig. 2?

I have always been surprised that this particular example has seemed so persuasive to
so many people. The example relies on our understanding that individuals adopt a wide
spectrum of attitudes regarding the appropriate use of military force, but that Quakers and
Republicans tend to be doves and hawks, respectively—where doves and hawks take the
extreme positions that the use of military force is either never appropriate, or that it is
appropriate in response to any provocation, even the most insignificant. Of course, Nixon’s
own position on the matter is well known. But if I were told of some other individual that
he is both a Quaker and a Republican, I would not be sure what to conclude. It is possible
that this individual would adopt an extreme position, as either a dove or a hawk. But it
seems equally reasonable to imagine that such an individual, rather than being pulled to
one extreme of the other, would combine elements of both views into a more balanced,
measured position falling toward the center of the political spectrum—perhaps believing
that the use of military force is sometimes appropriate, but only as a response to serious
provocation. Given this real possibility, it might be appropriate to take a skeptical attitude,
not only toward the questions of whether this individual would be a dove or a hawk, but
also toward the question whether he would adopt a politically extreme position at all.
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Another example appears in Reiter’s original paper on default logic, where he suggests
[12, pp. 86–87] defaults representing the facts that people tend to live in the same cities as
their spouses, but also in the cities in which they work, and then asks us to consider the case
of Mary, whose spouse lives in Toronto but who works in Vancouver. Coded into default
logic, this information leads to a theory with two extensions, in one of which Mary lives
in Toronto and in one of which she lives in Vancouver. Reiter seems to favor the credulous
policy of embracing a particular one of these extensions, either concluding that Mary lives
in Toronto or concluding that Mary lives in Vancouver. But then, in a footnote, he also
mentions what amounts to the skeptical possibility of forming only the belief that Mary
lives in either Toronto or Vancouver—where this proposition is supported, of course, as a
floating conclusion.

Given the information from this example, I would, in fact, be likely to conclude that
Mary lives either in Toronto or Vancouver. But I am not sure this conclusion should follow
as a matter of logic, even default logic. In this case, the inference seems to rely on a
good deal of knowledge about the particular domain involved, including the vast distance
between Toronto and Vancouver, which effectively rules out any sort of intermediate
solution to Mary’s two-body problem.

By contrast, consider the happier situation of Carol, who works in College Park,
Maryland, but whose spouse works in Alexandria, Virginia; and assume the same two
defaults—that people tend to live in the same cities as their spouses, but also tend to live in
the cities in which they work. Represented in default logic, this information would again
lead to a theory with multiple extensions, in each of which, however, Carol would live
either in College Park or in Alexandria. Nevertheless, I would be reluctant to accept the
floating conclusion that Carol lives either in College Park or in Alexandria. Just thinking
about the situation, I would consider it equally likely that Carol and her spouse live together
in Washington, DC, within easy commuting distance of both their jobs.

8. Skepticism

Why is it so widely thought that floating conclusions should be accepted by a skeptical
reasoner, so that a system that fails to generate these conclusions is therefore incorrect? It
is hard to be sure, since this point of view is generally taken as an assumption, rather than
argued for, but we can speculate.

Suppose an agent believes that either the statement B or the statement C holds, that
B implies A, and that C also implies A. Classical logic then allows the agent to draw A

as a conclusion; this is a valid principle of inference, sometimes known as the principle
of constructive dilemma. The inference to a floating conclusion is in some ways similar.
Suppose a default theory has two extensions, E1 and E2, that the extension E1 contains the
statement A, and that the extension E2 also contains the statement A. The standard view is
that a skeptical reasoner should then draw A as a conclusion, even if it is not supported by
a common argument in the two extensions.

Notice the difference between these two cases, though. In the first case, the classical
reasoning agent believes both that B and C individually imply A, and also that either B or
C holds. In the second case, we might as well suppose that the skeptical reasoner knows
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that A belongs to both the extensions E1 and E2, so that both E1 and E2 individually imply
A. The reasoner is therefore justified in drawing A as a conclusion by something like the
principle of constructive dilemma—as long as it is reasonable to suppose, in addition, that
either E1 or E2 is correct. This is the crucial assumption, which underlies the standard view
of skeptical reasoning and the acceptance of floating conclusions. But is this assumption
required? Is it necessary for a skeptical reasoner to assume, when a theory leads to multiple
extensions, that one of those extensions must be correct?

Suppose that each of the theory’s multiple extensions is endorsed by some credulous
reasoner. Then the assumption that one of the theory’s extensions must be correct is
equivalent to the assumption that one of these credulous reasoners is right. But why
should a skeptical reasoner assume that some credulous reasoner, following an entirely
different reasoning policy, must be right? Of course, there may be situations in which it is
appropriate for a skeptical reasoner to adopt this standard view—that one of the various
credulous reasoners must be right, but that it is simply unclear which one. That might be
the extent of the skepticism involved. But there also seem to be situations in which a deeper
form of skepticism is appropriate—where each of the multiple extensions is undermined
by another to such an extent that it seems like a real possibility that all of the credulous
reasoners could be wrong. The yacht, spy, and economist examples illustrate situations that
might call for this deeper form of skepticism.

As a policy for reasoning with conflicting defaults, the notion of skepticism was
originally introduced into the field of nonmonotonic logic to characterize the particular
system presented in [6], which did not involve the assumption that one of a theory’s
multiple extensions must be correct, and did not support floating conclusions. By now,
however, the term is used almost uniformly to describe approaches that do rely on
this assumption, so that the “skeptical conclusions” of a theory are generally identified
as the statements supported by each of its multiple extensions, including the floating
conclusions. Of course, there is nothing wrong with this usage of the term, as a technical
description of the statements supported by each extension—except that it might tend to
cut off avenues for research, suggesting that we now know exactly how to characterize
the skeptical conclusions of a theory, so that the only issues remaining are matters
concerning the efficient derivation of these conclusions. On the contrary, if we think
of skepticism as the general policy of withholding judgment in the face of conflicting
defaults, rather than arbitrarily favoring one default or another, there is a complex space of
reasoning policies that could legitimately be described as skeptical, many of which involve
focusing on the arguments that support particular conclusions, not just the conclusions
themselves.
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