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Abstract

This paper contributes to the foundations of a theory of rational choice for artificial agents in
dynamic environments. Our work is developed within a theoretical framework, originally due to
Bratman, that models resource-bounded agents as operating against the background of some current
set of intentions, which helps to frame their subsequent reasoning. In contrast to the standard theory
of rational choice, where options are evaluated in isolation, we therefore provide an analysis of
situations in which the options presented to an agent are evaluated against a background context
provided by the agent’s current plans—commitments to future activities, which may themselves be
only partially specified. The interactions between the new options and the background context can
complicate the task of evaluating the option, rendering it either more or less desirable in context than
it would have been in isolation.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper contributes to the foundations of a theory of rational choice for artificial
agents in dynamic environments. As usually formulated in the economic and philosophical
literature [11,23], the theory of rational choice assumes that an agent evaluates alternative
actions by reference to a probability distribution over their possible outcomes together with
a utility function defined on those outcomes, which are both taken as part of the background
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setting and assumed to be immediately apparent to the agent. In the simplest case, the agent
combines probability and utility into a notion of expected utility defined over actions, and
then chooses some action whose expected utility is maximal. The theory developed here
differs in two important ways from this standard approach.

First, while the standard theory of rational choice takes the utility of an outcome as
part of the background setting, we note that the overall desirability of an option presented
to an agent is often not immediately apparent; and we are explicitly concerned with the
mechanism through which it might be discovered by the agent. We focus, in particular,
on the case in which the option presented to an agent has a known benefit, but requires
some effort—the execution of a plan—for its achievement. In order to evaluate the overall
desirability of the option, the agent thus has to arrive at an assessment of the cost involved
in achieving it.

Second, we insist that the task of evaluating an option should be computationally
realizable; and in particular, our work here is developed within a theoretical framework
first articulated in [3], and then further elaborated in [4,19], that models resource-bounded
agents as operating always against the background of some current set of intentions,
or plans, which helps to frame their subsequent reasoning. In contrast to the standard
theory of rational choice, where actions are evaluated in isolation, we therefore develop
a model in which the options presented to an agent are evaluated against a background
context provided by the agent’s current plans—commitments to future activities, which,
at any given point, may themselves be only partially specified. The interactions between
the new option and the background context can complicate the task of evaluating the
option, rendering it either more or less desirable in context than it would have been in
isolation.

As an example, suppose an agent is already committed to going to the airport tomorrow
afternoon to catch a plane, but has not yet decided whether to get there by taxi or by
taking the airport shuttle van. Given this background context, the agent might then have
to evaluate the newly presented option of attending a lunch time meeting tomorrow. If
the meeting is to be held on campus, and is likely to run late, a decision to attend may
rule out the possibility of taking the van. Assuming that the van costs less than the
taxi, the new option would then be less desirable in context than it would have been in
isolation; the benefit of attending the meeting must be at least great enough to compensate
for the difference in cost between taxi and van to make the new option worthwhile. On
the other hand, suppose the meeting is to be held at an airport hotel. In this case, the
background context reduces the cost associated with the new option, increasing its overall
desirability, since the agent is already committed to going to the airport: the agent might
rationally choose to attend the meeting in this context, since it is going to the airport
anyway, even if this option is not one that the agent would have decided to pursue in
isolation.

Although this situation might appear to be trivial, there are two reasons for trying to
understand the reasoning processes involved. The first is as an exercise in cognitive science:
the ability to manage one’s activities in a dynamic environment—which crucially involves
the evaluation of new options—is an important component of human cognitive capacity,
and thus worth exploring as part of the effort to understand the human mind. The second
is as a prerequisite to designing better computational tools. It is generally agreed that
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intelligent autonomous agents would be extremely useful in applications ranging from
military to industrial to educational. But for many of these applications, autonomous
agents would need to be able to perform the kind of option evaluation illustrated by our
example.

The work presented here begins the task of providing a theoretical and computational
analysis of the reasoning involved in these situations, where a new option must be evaluated
within the context of a background plan, or set of plans, to which the agent is already
committed. While we make no commitments as to how such plans are generated, we do
restrict our attention in the present paper to plans that are primitive (not hierarchical) and
complete, and in which all actions have deterministic outcomes. In this simple setting, the
only ways in which one plan can influence the cost of another is by allowing or blocking the
possibility that separate steps might be merged into one. (In the airport story, for instance,
when the meeting is held at the airport, the step of getting to the meeting can be merged
with the step of getting to the airport, which is already part of the agent’s background plan.)
Although our restriction to this special case prevents us from considering many of the more
interesting ways in which plans might interact, even this very simple setting is sufficiently
rich to allow us to illustrate the shape of our theory, and we defer a detailed treatment of
more complicated plan interactions to subsequent work.

2. Basic concepts

We represent primitive plans using a standard formalism [15,18,27], in which a plan
consist of a set of steps, temporal constraints on those steps, and causal links, which record
dependency relations among steps. As usual, we assume a set of action types, each with
associated preconditions and effects; for clarity, we limit our attention only to propositional
preconditions and effects. The plan steps are instances of the action types. Much of the
planning literature tends to concentrate on qualitative temporal constraints, which specify
only the relative order of steps (but see [1,7] for some notable exceptions). In our approach,
we allow also for quantitative temporal constraints, which associate steps with actual time
points. To this end, we model time as a totally ordered set of moments {m0,m1, . . .}, with
mi < mj just in case i < j , and we assume here that each plan step occupies a single
moment of time.

Definition 1 (Primitive plan). A primitive plan P is a triple of the form 〈S,O,L〉, with
these components defined as follows: S is a set of steps of the form Si , each associated with
a time indicator ti ; O is a set of ordering constraints, of the form ti = tj , ti < tj , ti =mk ,
or ti < mk , where ti and tj are time indicators associated with steps belonging to S and mk

is a moment; L is a set of causal links of the form 〈Si ,Q,Sj 〉, where Q is an effect of the
step Si and a precondition of the step Sj .

We assume a function type associating each step Si with type(Si), its action type. We
require O to contain a temporal constraint of the form ti < tj whenever there is a
link 〈Si,Q,Sj 〉 in L. And we suppose that an entailment relation � is defined on the
temporal constraint language, allowing us to draw out implicit consequences (for example,



202 J.F. Horty, M.E. Pollack / Artificial Intelligence 127 (2001) 199–220

Fig. 1. A sample plan: buying a shirt.

{tj =m, ti < tj } � ti < m), and providing us, also, with a notion of consistency for a set of
temporal constraints.

To illustrate, let us consider the plan, depicted in Fig. 1, of buying a shirt at the mall
precisely at the moment m6. In the current framework, this plan would be represented as
P1 = 〈S1,O1,L1〉, where S1 = {S1, S2, S3, S4}, O1 = {t1 < t3, t2 < t3, t3 < t4, t3 = m6},
and L1 = {〈S1,At(mall ), S3〉, 〈S2,Have(money), S3〉, 〈S3,Have(shirt), S4〉}. The types,
effects, and preconditions of the various steps from S1 are as depicted. Thus, S1 represents
an action of going to the mall, with the proposition At(mall ) as its effect; S2 is the action
of getting money (which we suppose can be performed either before going to the mall,
or at the mall, using an cash machine), with Have(money) as its effect. 1 The step S3
represents the action of actually buying the shirt; it requires At(mall ) and Have(money)
as preconditions and generates Have(shirt) as an effect. Finally, S4 is a dummy step
representing the achievement of the goal, taking Have(shirt) as its precondition and
generating no effects. The plan includes four ordering constraints. The first three are
qualitative constraints derived from the causal links and are implicit in the plan graph.
The fourth is a quantitative constraint specifying that S3 must be performed precisely at
m6—the moment, perhaps, that the shirt goes on sale. This constraint is explicitly shown
in the figure. 2

We will say that a plan is scheduled when each of its steps has been assigned a specific
moment of execution. In this paper, we adopt the simplifying assumption that different
actions cannot be performed at the same time. We thus prohibit schedules with concurrent
actions, although, importantly, two steps of the same action type can be merged—assigned
to the same moment of execution.

1 In this example, we are treating Have(money) simply as a proposition, which can be true or false, not as
representing access to a consumable resource. Modeling consumable resources in an interesting problem, but one
that is orthogonal to the problem explored here; we believe our theory could integrate many alternative models of
resources that might be independently developed.

2 Most standard plan representations also include an “initial state”, specifying the propositions that are true
or false at the beginning of the plan. Since our research falls within the broad area of dynamic planning, where
propositions can become true at various points in time, we omit the notion of a single initial state as unrealistic.
In general, of course, plan steps must be linked to the truth of their preconditions in a dynamic plan, but rather
than spelling this matter out in detail, we make due with the following assumption governing the plans displayed
here: the preconditions of those steps in a plan that have no establishing actions are true at the time the steps are
performed. Note that this allows a more flexible representation than the standard treatment, since not all “initial
conditions” must be true at once, and indeed, some may not even become true until after execution of the plan
has begun.
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Definition 2 (Schedule, scheduled and schedulable plans). A schedule for a plan P =
〈S,O,L〉 is a set of constraints O such that:

(1) there is a constraint of the form ti =m in O for each Si in S;
(2) O ∪O is consistent; and
(3) type(Si)= type(Sj ) whenever O ∪O � ti = tj .

The plan P is said to be scheduled whenever there exists a set of constraints O ⊆O such
that O is a schedule for the plan; P is said to be schedulable whenever there exists a
schedule for it.

As an example, the constraint set O = {t1 =m3, t2 =m4, t3 =m6, t4 =m7} is a schedule
for the plan P1 for getting a shirt at the mall, showing that this plan is schedulable. Of
course, a plan whose ordering constraints are themselves inconsistent cannot be scheduled,
but even a plan whose ordering constraints are consistent may nevertheless fail to be
schedulable, since its only consistent linearizations may be those in which type distinct
steps are assigned to the same moment. Schedulability is thus a stronger requirement than
mere consistency of temporal constraints.

We focus in this paper on plans that are complete, in the sense that no further planning
is needed in order to guarantee the preconditions of their various steps, although additional
scheduling may still be required.

Definition 3 (Complete plans). Let P = 〈S,O,L〉 be a plan. A precondition A of a step Si

from S is established whenever there is some link 〈Sj ,A,Si〉 in L. A link 〈Sj ,A,Si〉 from
L is threatened whenever there is both an action Sk in S with effect ¬A and a schedule O
for P such that O∪O � tj < tk < ti . The plan P is complete just in case each precondition
of each step from S is established and no link from L is threatened.

This definition of plan completeness is equivalent to the standard notion from the literature,
except that it replaces the idea of temporal consistency with the stronger notion of
schedulability.

In order to assess the desirability of a new option against a background context, we need
to be able to reason about the plans that are formed when two others are combined, as
follows.

Definition 4 (Union of plans). Given plans P = 〈S,O,L〉 and P ′ = 〈S ′,O′,L′〉, the
union of the two plans is P ∪P ′ = 〈S ∪ S ′,O ∪O′,L∪L′〉.

Note that the union of two independently schedulable plans might not be schedulable,
since their temporal constraint sets may not even be jointly consistent; also, the union of
two complete plans might not be complete, since steps in one may threaten links in the
other. If the union of two complete plans can be made complete and schedulable simply
through the addition of ordering constraints, we say that the plans are strongly compatible.

Definition 5 (Strong compatibility). Let P = 〈S,O,L〉 and P ′ = 〈S ′,O′,L′〉 be complete
plans. Then P and P ′ are strongly compatible just in case there is a temporal constraint set
O′′ such that 〈S ∪ S ′,O ∪O′ ∪O′′,L ∪L′〉 is complete and schedulable.
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Fig. 2. A strongly compatible plan.

As an example, consider the plan of going home, depicted in Fig. 2, and represented as
P2 = 〈S2,O2,L2〉, where S2 = {S5, S6}, O2 = {t5 < t6}, and L2 = {〈S5,At(home), S6〉};
the step S5, representing the action of going home, has both At(home) and, of course,
¬At(mall ) as effects. Here, it is clear that P1 ∪ P2, though schedulable, is not complete,
since the action S5 from P2 of going home threatens the link 〈S2,At(mall ), S3〉 from P1.
Still, it is easy to see that the two plans P1 and P2 are strongly compatible. This is shown
by the constraint set O′′ = {t3 < t5}, since 〈S1 ∪ S2,O1 ∪O2 ∪O′′,L1 ∪ L2〉 is complete
and schedulable. The intuitive force of this additional constraint, of course, is to guarantee
that the agent goes home only after it purchases the shirt.

The notion of strong compatibility defined here is, in fact, a very strong notion, but it
is not the strongest available. A stronger notion is that of perfect compatibility, where two
complete plans P and P ′ are defined as perfectly compatible just in case their union P ∪P ′
is itself complete and schedulable. As we have seen, the example plans P1 and P2, though
strongly compatible, are not perfectly compatible. Another compatibility notion—perhaps
more realistic and useful in the long run—is that of weak compatibility, which classifies
two plans as compatible whenever their union can be made complete and schedulable
through the addition, not only of additional constraints, but also, perhaps, of additional
steps and links; formally, then, the plans P = 〈S,O,L〉 and P ′ = 〈S ′,O′,L′〉 can be
defined as weakly compatible whenever there are sets S ′′, O′′, and L′′ such that

〈S ∪ S ′ ∪ S ′′,O ∪O′ ∪O′′,L∪L′ ∪L′′〉
is complete and schedulable. As an example, imagine an agent’s plan to arrive at its office at
10:00 a.m. in order to meet with a colleague there at 1:00 p.m., where arriving at the office
establishes the effect In(office) that is necessary as a precondition for the latter action.
This plan would not be strongly compatible with the plan to get lunch at a restaurant at
noon, since departing for the restaurant would interrupt the link through which arriving at
the office establishes the precondition for the later action of meeting the colleague. But
the two plans are weakly compatible, since this precondition could be reestablished, and
completeness guaranteed, by supplementing the union of these plans also with a further
action of returning to the office after lunch, along with appropriate temporal constraints
and causal links.

Each of the three compatibility notions considered here—perfect, strong, and weak—
focuses only on ways in which plans might be supplemented in order to guarantee
completeness and schedulability. Other compatibility notions might involve actually
modifying, not just supplementing, one of the two plans: perhaps joint execution would
be possible if certain inessential steps were replaced by others. In fact, there are a variety
of notions of plan compatibility that might be worth exploring. Nevertheless, we limit our
attention in the present paper to the notion of strong compatibility, which we take as a
reasonable starting point.
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Turning now to the semantics of our representation language, we take complete and
scheduled plans to be the points in the semantic space, and we associate more abstract
plans with sets of these. We begin by adapting the notion of refinement [12] from the plan
generation literature.

Definition 6 (Refinement;�). Let P = 〈S,O,L〉 and P ′ = 〈S ′,O′,L′〉 be plans. Then P ′
is a refinement of P (P �P ′) just in case S ⊆ S ′ and O ⊆O′ and L⊆ L′.

Letting Π represent the set of all complete and scheduled plans, we define the semantic
interpretation of a plan as follows.

Definition 7 (Interpretation; v[P]). The interpretation of a plan P is the set of its com-
plete and scheduled refinements: v[P] = {P ′: P �P ′} ∩Π.

The idea, of course, is that a plan is to be interpreted as the set of ways in which it might be
carried out, and so it is natural to define a plan as consistent whenever there is some way
in which it can be carried out.

Definition 8 (Plan consistency). A plan P is consistent just in case v[P] �= ∅.

Note that a complete plan is consistent just in case it is schedulable, and that an incomplete
plan is consistent just in case it has a complete and schedulable refinement.

3. Evaluation of options

For the purposes of this paper, we define an option as a plan that is presented to an agent
for acceptance or rejection. This terminology may seem peculiar, since it is often natural to
think of an option as something more along the lines of a goal state—having a new shirt,
say. Nevertheless, even when the value of an option lies entirely in the achievement of some
goal state, sensible reasoning demands that goal states and their means of achievement—in
this case, a trip to the mall—must be evaluated together. 3

We suppose that an agent evaluates each new option P against the background of a
context C , some plan to which it is already committed, the process of evaluation then
proceeds as follows. First, the agent determines whether P is compatible with C—where
again, for the purposes of this paper, we will assume that the concept of compatibility
can be usefully approximated through our notion of strong compatibility—and if not,
P is rejected. This first step reflects a central idea from the theory of resource-bounded
reasoning developed in [3,4]: that one function of an agent’s current commitments is to act
as a “filter of admissibility”, impeding the consideration of options that are incompatible
with those commitments. If P is found to be compatible with C , the agent should accept the

3 Of course, goal states themselves could also be evaluated, by reference to the set of potential plans that
achieve them.
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new option just in case the benefit of this option outweighs its cost in the current context. 4

Again, we simplify by supposing that the benefit of the option P—represented here as
β(P)—is independent of context. In the most natural case, this benefit will derive from the
goal state towards which the plan is directed. All that remains to be specified, then, is the
cost of the new option P in the context C .

Note that the current policy of simply rejecting incompatible options is a highly
simplified implementation of the general idea of using background contexts to filter new
options. More realistically, an agent faced with an incompatible option P could explore
either local revisions to the plan that might guarantee compatibility, or else alternative
plans for achieving the goal that P aims at; and if the goal is valuable, the agent might also
consider modifications of its background context. The presumption, however, will always
be in favor of maintaining plans to which the agent has already committed—that is, of
minimizing modifications to the background context. The full development of this idea
would require a theory of localizing plan conflict and performing localized plan repair.
This is a challenging problem, which we intend to address in future research.

3.1. Cost in isolation

We begin by defining the cost of a plan in isolation. We take as given a function Cost
mapping action types into real numbers representing their costs; this function extends to
the steps of a plan in the natural way: Cost(Si)= Cost(type(Si)).

Next, we introduce an auxiliary notion of point cost, defined only for complete,
scheduled plans—the points in the semantic space. Where P = 〈S,O,L〉 is such a plan,
we partition the plan steps into sets of actions forced (by the temporal constraints) to occur
at the same moment. For each Si ∈ S , we take [Si] = {Sj : O � ti = tj }. We then let P∗
represent the partition of S induced by this equivalence relation: P∗ = {[Si]: Si ∈ S}. It
follows from our definition of a schedule that steps in the same equivalence class will
necessarily represent actions of the same type; these type-identical steps performed at the
same moment are to be thought of as collapsing into a single merged step. We therefore
define the point cost of the plan itself as the sum of the costs assigned to the merged steps
it contains:

Point-cost (P)=
∑

[Si ]∈P∗
Cost(Si).

Given this auxiliary notion, it is now natural to define the cost of an arbitrary consistent
plan as the point cost of the least expensive way in which it might be carried out, the least
expensive point in its semantic interpretation.

Definition 9 (Cost of a plan; κ(P)). Where P is a consistent plan, the cost of P
is the point cost of its least expensive complete and scheduled refinement: κ(P) =
min{Point-cost (P ′): P ′ ∈ v[P]}.

4 Modeling the costs and benefits of actions and plans is the subject of the field of decision analysis [22], which
has developed procedures for eliciting and codifying cost/benefits models. These models could be used to define
the costs and benefits that are taken as primitive in this paper.
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It is easy to see that κ(P)= Point-cost (P) whenever P is itself a complete and scheduled
plan, and that κ(P∅)= 0 for the null plan P∅ = 〈∅,∅,∅〉.

3.2. Cost in context

Having defined the cost of a plan in isolation, we now turn to our central task of defining
the cost of a new option P in the context of a background plan C . Our treatment of this
concept is simple: we take the cost of the new option in context to be its marginal cost—the
cost of carrying out P along with C , less the cost of carrying out C alone.

Definition 10 (Cost of a plan in a context; κ(P/C)). Where the plans C and P are strongly
compatible, the cost of P in the context C is κ(P/C)= κ(P ∪ C)− κ(C).

It follows immediately from this definition that the cost of a plan in the null context is
identical to its cost in isolation: κ(P/P∅)= κ(P). It is also worth noting that the cost of a
plan in any context that already includes that plan as a component is zero: κ(P/P∪C)= 0.

This definition can be illustrated with a case in which the cost of a new op-
tion is actually affected by the background context. Suppose the agent’s background
context is simply the plan to buy a shirt at the mall, represented by P1 from
Fig. 1, and imagine that the agent is presented with the new option of going to the
mall for some swim goggles, depicted as P3 in Fig. 3. Formally, we have P3 =
〈S3,O3,L3〉, where S3 = {S7, S8, S9, S10},O3 = {t7 < t9, t8 < t9, t9 < t10}, andL3 = {〈S7,

At(mall ), S9〉, 〈S8,Have(money), S9〉, 〈S9,Have(goggles), S10〉}. Here, the steps S7 and S8
again represent actions of going to the mall and getting money, steps sharing the respec-
tive types of S1 and S2 from the background plan P1; the step S9 represents the action of
purchasing the goggles, and S10 is again a dummy step representing goal achievement. Let
us suppose that these various steps carry the following costs: each of S2, S3, S8, and S9
carries a cost of 1, since both getting money and making a purchase are easy to do; each
of S1 and S7 carries a cost of 10, since any trip to the mall is abhorrent; and S4 and S10, as
dummy steps, both carry a cost of 0.

Given this information, it is clear that κ(P1)= 12—the cost of the agent’s background
plan is 12. Now, turning to the new option, suppose that the agent would like to have
swim goggles, but that it is not terribly important: β(P3) = 2. It is clear also that
κ(P3)= 12, so that, considered in isolation, this new option would not be worth pursuing

Fig. 3. Another plan: buying goggles.
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Fig. 4. Merged plans.

(β(P3) < κ(P3)). On the other hand, it is easy to see that κ(P3 ∪ P1) = 13, since the
least expensive execution of the joint plan, in which both the steps S1 and S7 as well
as the steps S2 and S8 are merged, carries a cost of 13; see Fig. 4. Therefore, we have
κ(P3/P1)= κ(P3 ∪ P1)− κ(P1)= 1. Even though the new option would not have been
worth pursuing in isolation, it is worth pursuing in context, since its benefit is greater than
its cost in context.

As this example shows, the cost of a plan in context may be less than its cost in isolation,
but it is also possible for the cost in context to be greater. Our earlier taxi/van story already
illustrates this possibility, but it is worth noting that it also arises even in the more restricted
framework of complete, primitive plans. In this setting, a plan in context will have a higher
cost than it has in isolation if the background plan contains steps that might be merged
if it were performed in isolation, but the new option blocks that merge possibility. For
instance, suppose the agent already intends to purchase a shirt at the mall, and intends
also to buy a suitcase at the luggage store, also located in the mall. Although the agent
would prefer to take care of both tasks on the same trip, it is not yet committed to this.
(Suppose that each task is worthwhile even if done separately.) Now suppose that the agent
is considering an option of seeing a movie at the mall theater. Given its other commitments
and the constraints of the store hours, the agent will not be able to combine all three
events—the shirt purchase, the suitcase purchase, and the movie—into a single trip. If
the movie is combined with the shirt purchase, for example, the agent will need to make
another trip to the mall to purchase the suitcase, and similarly if the movie is combined
with the suitcase purchase. Attending the movie, in this context, has an extra cost, since
it means an additional trip to the mall to carry out the already intended plans. Just as in
the taxi/van story, the present example illustrates a case in which a new option is more
expensive in context than in isolation, here because its adoption would rule out the most
efficient executions of the background plan.

3.3. Cost estimates

Although the notion of cost as the least expensive method of execution is defined for
any consistent plan, we do not necessarily assume that the agent knows the true cost either
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of its background plan or of any new options under consideration. Instead, the agent may
only compute an estimate of the cost of its plans.

Definition 11 (Cost estimate for a plan). Where P is a consistent plan, a cost estimate for
P is an interval of the form ε = [ε−, ε+], where ε− and ε+ are nonnegative real numbers
such that ε− � κ(P) � ε+.

Cost estimates, so defined, accurately bound the actual cost of a plan, and are thus related to
the interval measures of plan cost used in the decision-theoretic plan generation literature
[8,10,28].

We now show that, under certain coherence conditions, a cost estimate for a plan in
context can be derived from a cost estimate for the context together with a cost estimate for
the plan and context combined, using notions from interval arithmetic [17]. Assume that
P and C are strongly compatible plans, and that εC = [ε−C , ε+C ] and εP∪C = [ε−P∪C, ε+P∪C]
are cost estimates for the plans C and P ∪ C respectively. We know from the definition of
a cost estimate that ε−C � ε+C and ε−P∪C � ε+P∪C , but the definition tells us nothing about
the relations among the intervals εC and εP∪C themselves. Nevertheless, we can conclude
that ε−C � ε−P∪C , since the least expensive execution of the compound plan P ∪ C cannot
be less costly than the least expensive execution of C , one of its components; and similarly,
we can conclude that ε+C � ε+P∪C , since the most expensive execution of P ∪ C cannot be
less costly than the most expensive execution of C . We characterize the pair of estimates
εC and εP∪C as jointly coherent just in case these two conditions hold: ε−C � ε−P∪C and
ε+C � ε+P∪C .

As long as εC and εP∪C are jointly coherent we can derive a cost estimate εP/C =
[ε−P/C, ε+P/C] for the plan P in the context C by defining ε−P/C and ε+P/C—the minimum
and maximum possible costs that might be incurred in executing the compound plan P ∪C
in place of C alone—in the following way. Given joint coherence, the end points of the
intervals εC and εP∪C can stand in only two possible ordering relations:

(1) ε−C � ε+C � ε−P∪C � ε+P∪C ,
(2) ε−C � ε−P∪C � ε+C � ε+P∪C .

Case (1) is illustrated on the left-hand side of Fig. 5, and case (2) on the right-hand side.
In either case, it is clear that ε+P/C should be defined as ε+P∪C − ε−C , the maximum possible
distance between points in εP∪C and εC ; this is shown by the solid lines in the figure. In

Fig. 5. Jointly coherent cost estimates.
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case (1), we know that ε−P/C should likewise defined as ε−P∪C − ε+C , the minimum possible

distance. In case (2), it is reasonable to take ε−P/C as 0, since we know, even when the low
estimate for executing P∪C is less than the high estimate for executing C , that the true cost
of executing P ∪C can be no less than the true cost of executing C . The minimum possible
distances are shown by the dotted lines in the figure. Combining cases (1) and (2), we can
therefore take ε−P/C as max[0, ε−P∪C − ε+C ], leading to the following general definition.

Definition 12 (Cost estimate for a plan in context). Where the plans P and C are strongly
compatible, let εC = [ε−C , ε+C ] and εP∪C = [ε−P∪C, ε+P∪C] be a pair of jointly coherent
cost estimates for the plans C and P ∪ C . Then the cost estimate for the plan P in the
context C is the interval εP/C = [ε−P/C, ε+P/C], where ε−P/C = max[0, ε−P∪C − ε+C ] and

ε+P/C = ε+P∪C − ε−C .

It follows immediately from this definition that κ(P/C), the true cost of P in the context
C , lies within the derived interval εP/C ; and it is also easy to see that the derived interval
εP/C narrows monotonically as the intervals εC and εP∪C are narrowed.

The derived interval estimate of cost in context is useful because, in many cases, it
allows an agent to accept or reject an option without calculating its true cost, as illustrated
in Fig. 6. Suppose, for example, that an agent with background plan C is considering the
new optionP with benefit β(P); and imagine that the agent has assigned estimated costs εC
and εP∪C to the plans C and P ∪C , from which it derives the estimate εP/C = [ε−P/C, ε+P/C]
for the cost of P in the context C . Then if β(P) > ε+P/C , the agent is justified in adopting
the new option, since the cost in context of the option is necessarily less than its benefit;
and likewise, the agent is justified in rejecting the option if β(P) < ε−P/C , since its cost

in context is necessarily greater than its benefit. If ε−P/C � β(P) � ε+P/C , there are two

subcases to consider. First, if it happens that ε−P/C = ε+P/C , then, since we know that
κ(P/C) lies within the interval εP/C , it follows that β(P) = κ(P/C), and so the agent
is justified either in accepting or rejecting the option. If ε−P/C < ε+P/C , on the other hand,
the agent’s interval estimates do not provide enough information to determine whether the
option should be adopted or rejected. In this last case, and only this case, the agent is
forced to refine its estimates further before making a rational decision, narrowing its cost
estimates for C and P ∪ C , and thereby also narrowing its derived estimate for P in the
context of C .

Fig. 6. Using cost estimates.
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4. Reasoning procedures

We now present some algorithms for the reasoning processes described above. As
explained earlier, the first step of the process involves determining whether P is, in
fact, strongly compatible with the context C . In work reported elsewhere [26], we have
recently developed a new algorithm to compute consistency for plans that have quantitative
temporal constraints and steps with extended duration, as well as observation actions and
conditional branches. The algorithm uses a CSP-based approach to find alternative sets of
constraints that guarantee consistency of the input plans.

In the present paper, we focus on the reasoning that occurs after a set of conditions
for ensuring compatibility has been computed. That is, we develop algorithms by which
an agent can compute a cost estimate for the plan P in the context C . An algorithm for
this purpose was developed in [29], using a dynamic programming approach to find an
optimally merged plan, one with minimal cost. This cost is precisely κ(P ∪ C), which
could then be combined with an exact value for κ(C) to yield an exact value for κ(P/C).
The option P could then be accepted or rejected depending on the relation between κ(P/C)

and β(P).
We do not rely on the algorithm developed in [29], however, for two reasons. First, it

applies only to classical plans, which lack metric temporal constraints. And second, it is
not in general necessary to compute the exact value of κ(P/C) in order to evaluate the
new option; instead, as suggested earlier, an agent may be able to accept or reject a new
option simply on the basis of an interval estimate of its cost in context. The remainder
of this section develops an algorithm to implement this idea: evaluating a new option by
estimating its cost in context, and then progressively refining the estimate where necessary.
Such an approach may prove to be efficient if, as we suspect, it can frequently terminate
in realistic cases without the need to compute an exact cost in context. In addition,
the algorithm presented here displays anytime performance, producing cost estimates of
monotonically increasing accuracy. Thus, if the agent “runs out of time” in evaluating
an option, and is forced to a decision before shrinking the cost range sufficiently, the
agent can at least make an informed decision; it can determine, for example, how much
it stands to lose. Finally, by reasoning about partially scheduled plans and estimated costs,
the algorithm matches our intuitions about deliberation in dynamic environments.

4.1. Stepsets

Given our current restriction to complete plans, the only factor influencing plan cost is
step merging. To support reasoning about possible step merges, we therefore introduce a
data structure called a stepset, which represents possible ways of merging steps in a plan
(or in the union of two plans). A stepset clusters (some) steps in a plan that share the same
time of execution: where P = 〈S,O,L〉 is a consistent plan, a stepset for the plan P is a
partition M = {[S1], . . . , [Sn]} of S subject to the restriction that type(Si) = type(Sj ) for
any steps Si and Sj belonging to the same equivalence class [Sk] in M . Intuitively, a stepset
for a plan P represents the set of schedules for P that merge all and only plan steps in the
same stepset equivalence class.
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Because type-equivalence is a necessary but not sufficient condition for placing two
steps in the same equivalence class, a given plan may have several different stepsets.
Consider an extremely simple plan P containing only two steps, S1 and S2, both of which
are of the same type. The plan P will have one stepset in which its two steps are clustered,
and another in which they are not:

(1) M1 = {[S1, S2]},
(2) M2 = {[S1], [S2]}.

Intuitively, the former corresponds to all schedules for P in which its two steps are
merged, while the latter corresponds to those in which they are not. Note that the temporal
constraints in P may prevent the merging of its two steps.

More precisely, let be P = 〈S,O,L〉 be a plan and let M = {[S1], . . . , [Sn]} be a stepset
based on P . We define the stepset constraints associated with M to be the constraint set
containing ti = tj whenever [Si ] = [Sj ], and ti �= tj whenever [Si ] �= [Sj ], and we will
write Const(M) to denote the stepset constraints for stepset M . A stepset M is then defined
as feasible just in case the plan 〈S,O ∪ Const(M),L〉 is complete and schedulable, and
infeasible otherwise.

Stepsets represent only decisions about which steps in a plan are to be merged,
neglecting any other information about the order of steps or the exact times of their
performance. On the other hand, stepsets do capture all the information that is necessary
for computing plan cost, because, under the current assumptions, cost depends only on
step merging. Given a stepset M for a plan P , we can introduce a notion of stepset cost
determined by M—written SSCost(M)—as follows:

SSCost(M)=
∑

[Si ]∈M
Cost(Si).

The stepset cost determined by M then coincides with the cost of any scheduled refinement
of the plan P whose schedule is consistent with Const(M).

The stepsets based on a plan P can be organized into a lattice, as follows. The top
element of the lattice is the minimally merged stepset Minmerge(P), defined as the
partition {[S1], . . . , [Sn]} in which each equivalence class [Si ] is identified with the unit
set {Si}. The bottom element of the lattice is the maximally merged stepset Maxmerge(P),
defined as the partition {[S1], . . . , [Sn]}, in which each equivalence class [Si ] is identified
with the set {Sj : type(Sj )= type(Si)} containing all steps sharing the type of Si . Clearly,
the minimally merged stepset has maximal cost, and the maximally merged stepset has
minimal cost.

We define one stepset as being below another in the lattice if it results from increased
merging. More exactly, where M and M ′ are elements of the lattice, we define M � M ′
just in case: for each [Si ] in M ′ there is an [Sj ] in M such that [Si ] ⊆ [Sj ]. We can then
define the down successors of a stepset M as those stepsets that are below M in the lattice
and contain exactly one fewer member; and we can define the up successors of M as those
stepsets that are above M in the lattice and contain exactly one more member. The down
successors of M are those stepsets that can be obtained from M by merging two of its
members, and the up successors of M are those stepsets from which M can be obtained
through the merge of two members.
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These various stepset concepts are implemented as the following functions: SSCOST(M)

calculates the stepset cost of a stepset M; MINMERGE(P) and MAXMERGE(P) form the
minimally and maximally merged stepsets of the plan P ; DOWN-SUCCESSORS(M) and
UP-SUCCESSORS(M) return the down successors and up successors of the stepset M in
the relevant lattice; and FEASIBLE(M,P) determines whether M is a feasible stepset for
plan P . All but the last of these functions are trivial. Feasibility requires checking whether
〈S,O∪Const(M),L〉 is complete and schedulable. We do this by casting the problem as a
CSP, in which the constrained variables are the steps in S , and their domains are moments
of execution: a solution to the CSP problem then consists of an assignment of a time
point to each step. Two sets of constraints must be observed: the temporal constraints in
O ∪Const(M), and the threat-avoidance constraints that derive from L. Although solving
a CSP is computationally intractable in the worst case, there are a number of powerful
techniques that are known to work very well in practice, and in fact, have recently been
applied to large planning and scheduling problems [5,6,13,14].

4.2. The algorithm

We now present our algorithm, depicted in Fig. 7, for evaluating an option P in the
context C , under the assumption that the two plans are strongly compatible. The algorithm

procedure EVALUATE-OPTION(P,C) return Accept or Reject

INITIALIZE(P,C)

loop

if COHERENT(ε+C , ε−C , ε+P∪C , ε−P∪C) then

ε−P/C←max[0, ε−P∪C − ε+C ]
ε+P/C← ε+P∪C − ε−C
if β[P]> ε+P/C then

return Accept

end if

if β[P]< ε−P/C then

return Reject

end if

if ε−P/C = ε+P/C then

return Accept or Reject

end if

end if

Call either REFINE(C) or REFINE(P ∪ C)

end loop

Fig. 7. EVALUATE-OPTION(P,C).
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works with two stepset lattices, based on the plans C and P ∪ C . In a fashion somewhat
reminiscent of the candidate-elimination algorithm [16], our algorithms maintains, for each
lattice, an upper frontier containing the highest nodes in the lattice not yet known to be
infeasible, and similarly a lower frontier. It then systematically attempts to establish the
feasibility or infeasibility of the nodes in the frontiers, refining the cost estimates for the
plans C and P ∪ C , and using them to update the derived cost estimate for P in the context
C . After each refinement, the derived estimate of cost in context is compared with β(P),
the benefit of P . If β(P) is outside the range of the current estimate, the algorithm then
terminates with a recommendation to either accept or reject P .

We have left the decision about which estimate to refine (εC or εP∪C) nondeterministic in
the algorithm, thereby decoupling the control heuristics from the algorithm itself. A similar
decoupling has proven to be useful in the analysis of many AI algorithms. This tactic has
two advantages. First, it simplifies the base algorithm; see [27] for an example of this
applied to classical plan generation. Second, it allows for separate, focused investigation
of heuristics for efficient control, something we are now exploring in our ongoing work.
For example, recent work in decision-theoretic plan generation [8] has analyzed the use
of interval-based utility estimates in finding optimal plans, and there is potential for the
transfer of this analysis to our framework. See also our discussion in Section 4.3.

The procedure REFINE(Q)—where Q ranges over C and P ∪ C—is itself straightfor-
ward, simply calling either REFINE-DOWN(Q) or REFINE-UP(Q), again, nondeterminis-
tically choosing between them.

The two refinement procedures are similar, and we first describe REFINE-DOWN(Q),
shown in Fig. 8. Essentially, what it does is select a node M from the upper frontier of Q,
and check its feasibility. The nodes are selected in decreasing order of cost. Thus, if M is

procedure REFINE-DOWN(Q)

if Actual−Q = F then

Select a maximal cost element M from UpperQ
Delete M from UpperQ
Add DOWN-SUCCESSORS(M) to UpperQ
if FEASIBLE(M,Q) then

Actual+Q← T

ε+Q← SSCOST(M)

else

if Actual+Q = F then

ε+Q← ArgmaxU∈UpperQSSCOST(U)

end if

end if

end if

Fig. 8. REFINE-DOWN(Q).
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found to be feasible, its cost is less than that of any previously examined feasible node;
hence the current upper bound on the cost estimate, ε+Q, can be set to the cost of M . What
if M is found to be infeasible? Both C and P ∪ C are consistent; the latter is a consequence
of the strong compatibility of P and C . Thus, regardless of whether Q is C or P ∪ C , its
stepset lattice is guaranteed to contain at least one feasible node. If a feasible node has
not yet been found—that is, if Actual+Q = F—we know that some feasible element exists

whose stepset cost is less than that of M , and so ε+Q can be set to reflect the highest stepset

cost of the remaining elements. Again, this can only lower the value of ε+Q. However, if
a feasible point has already been found, we have no guarantee of finding another, and so
determining that M is infeasible does not lead to updating the value of ε+Q.

After examining M , the procedure removes it from the upper frontier, and replaces it
with its down-successors, so that they can be considered in subsequent iterations.

The procedure REFINE-UP(Q), presented in Fig. 9, is nearly a dual to REFINE-
DOWN(Q): it refines the lower bound ε−Q of the cost estimate for the plan Q, working
from the lower frontier. It differs, however, in its behavior when a feasible node is found.
The reason for this is that the first feasible node found represents κ(Q), the true cost of Q:
because the procedure selects nodes in increasing order of cost, the first feasible node it
finds necessarily corresponds to the least expensive schedule for Q, which is the true cost
of Q. Therefore, immediately upon finding a feasible node, REFINE-UP(Q) sets the upper
bound ε+Q to ε−Q, narrowing the estimate to a point.

One final comment about the algorithms concerns the initial lines of both REFINE-
UP(Q) and REFINE-DOWN(Q), which require that Actual−Q = F . This is simply a

bookkeeping condition: because REFINE-UP(Q) sets both ε−Q and ε+Q to the exact cost

of Q at the same time as it sets Actual−Q = T , this condition blocks additional calls to
either procedure from producing any further effect.

procedure REFINE-UP(Q)

if Actual−Q = F then

Select a minimal cost element M from LowerQ
Delete M from LowerQ
Add UP-SUCCESSORS(M) to LowerQ
if FEASIBLE(M,Q) then

Actual−Q← T

ε−Q← SSCOST(M)

ε+Q← ε−Q
else

ε−Q← ArgminU∈LowerQSSCOST(U)

end if

end if

Fig. 9. REFINE-UP(Q).
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4.3. Implementation and analysis

We implemented our algorithms in Allegro Common Lisp. The amount of time required
for each iteration is dominated by the step that checks whether a stepset is feasible; the
remaining tasks—generating successor stepsets, computing stepset costs, and comparing
the cost estimate to the plan benefit—are all quite fast. To perform feasibility checking,
we used an algorithm we developed to compute compatibility of plans with conditional
branches and rich temporal constraints, as mentioned above [20]. The performance of our
feasibility-checking algorithm depends significantly on a number of factors, including the
size of the plans, the number of branches they contain, the amount of potential conflict
between them, and the tightness of their temporal constraints. Because the algorithm relies
on CSP techniques, its worst-case performance is NP-complete, but there are well-known
methods for achieving in-practice acceptable behavior, and we are currently developing
others [25].

Here we note simply that we have so far used only brute-force constraint propagation
techniques in compatibility checking, and are currently investigating techniques for
significantly more efficient processing.

The performance of our overall algorithm is clearly a function of the number of nodes
in the stepset lattice that must be generated and processed by the EVALUATE-OPTION

routine. We can compute the size of the largest possible stepset lattice for a given plan as
follows. First, note that the number of ways to partition m objects into n buckets leaving
no bucket empty, is

S(m,n)= 1

n! ·
n∑

k=0

[
(−1)k ·C(n,n− k) · (n− k)m

]
,

and that, because a set of m elements can be partitioned into i buckets, where i varies from
1 to m, the total number of distinct ways of partitioning a set of m elements is given by the
following formula [9]:

N(m)=
m∑

n=1

S(m,n).

Suppose that the plan P includes z distinct types of actions, represented as T1, T2, . . . ,

Tz; and define num(P, Ti) to be the number of actions from P belonging to the type of Ti .
Clearly, the number of ways of partitioning the actions in P of type Ti is N[num(P, Ti)].
The partitions of the different actions types are independent, and so the overall size of the
stepset lattice for the plan P is simply

L(P)=
z∏

i=1

N
[
num(P, Ti)

]
,

the product of the numbers of partitions for each of the various action types in the plan.
In the worst case, then, the size of the stepset lattice for a plan is exponential in the size

of the plan, and so the time required by EVALUATE-OPTION to search through the entire
stepset lattices generated by C and P∪C is likewise exponential. However, there are several
reasons to believe that worst case performance will rarely occur. First, we suspect that in
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realistic cases—plans like those confronted by real agents in the real world—it will seldom
be necessary to search through the entire stepset lattices in order to determine whether a
new option should be accepted or rejected. More often, the system should determine fairly
quickly that the value of the plan, β[P], lies outside the cost range [ε−P/C, ε+P/C].

Second, the algorithm as described searches through the stepset lattices blindly, but a
number of promising heuristics suggest themselves. For example, if the value of the new
option v[P] is very close to ε+P/C—much closer than to ε−P/C—then it is natural to attempt

to reduce ε+P/C , hoping to push this value lower than v[P], so that the reasoning can

terminate with a decision to accept the new option. Because ε+P/C is defined as ε+P∪C − ε−C ,
this suggests calling either REFINE-DOWN(P ∪ C) with the hope of lowering the value of
ε+P∪C or calling REFINE-UP(C) with the hope of raising the cost of ε−C . A dual argument
applies when v[P] is very close to ε−P/C . Specifically, it is natural to raise the value of ε−P/C
with the hope of pushing this value above that of v[P], guaranteeing a quick decision to
reject. Since ε−P/C is defined as max[0, ε−P∪C − ε+C ], this suggests attempting either to raise

ε−P∪C through a call to REFINE-UP(P ∪ C) or attempting to lower ε+C through a call to
REFINE-DOWN(C). Heuristics such as these cannot be accurately tested on generic cases,
but must be explored in the context of specific realistic domains.

Finally, the worst case, in which the size of the stepset lattice is exponential in the
number of steps, occurs only with highly artificial plans, in which virtually all of the plan
steps share a very small number of types. The size of the associated stepset lattices rapidly
diminishes as plan steps become more evenly distributed among types; in the limiting case
in which each action in the plan has a unique type, the stepset lattice contains only a single
point. We illustrate this point in Fig. 10, showing the number of nodes in the stepset lattice
for plans of various lengths, under the assumption that the plan steps are divided evenly
into one, two, and four distinct types. Note that the y-axis of this graph is logarithmic—
necessary because of the very rapid growth when all steps have the same type—so that,
although the trend lines have similar slope, the top line (representing the case where all
steps have the same time) actually indicates much more rapid growth than the middle line

Fig. 10. Growth in size of a stepset lattice.
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(representing the case where the half the steps are one action type and half are another),
and similarly the middle line indicates much more rapid growth than the bottom line.

5. Conclusion

In this paper, we have developed the foundations of a theory of rational choice that takes
seriously the view that agents make decisions in the context of their existing plans. The
overall picture we have is one in which an agent maintains a set of commitments, some
of which, at any given time, will be only partially specified. A new option for action must
then be evaluated taking into account interactions between that option and the background
context. Recognizing that agents have computational resource limits, we have developed
an account that does not require the agent always to compute the exact cost of an option in
context; instead, we have shown how estimates of option cost can support rational choice.

The work done to date provides an initial development of the theory. Both formal and
computational extensions are required to increase its robustness. As an instance of the
former, consider our current use of particular executions as points in the semantic space.
It seems reasonable to generalize that approach and interpret a plan as specifying a set
of allowed futures—intuitively, those futures consistent with an execution of the plan. An
interpretation along these lines might be developed within the general logical framework of
branching time [21,24]. With regard to computational issues, it seems clear that significant
work remains to develop heuristics to improve the efficiency of our algorithms.

In addition, we have so far provided details only for a very restricted case of the general
problem, and it is clear that the theory must be extended along a number of dimensions.
Some such extensions are relatively straightforward. For example, we have discussed
only cost savings that result from merging of type-identical steps, but sometimes it is
also possible to merge steps of different types that both achieve the particular conditions
required in the current context. Also, we have discussed only plans that involve a single,
albeit possibly merged, action at a time, but have not here considered plans with true
concurrency: two or more steps of different types performed at the same moment. To
achieve such concurrency, we could make use of mutex relations as in the GraphPlan
literature [2].

Other generalizations will require more significant extensions to the theory as we have
developed it in the paper. Most notably, we have dealt here only with complete, primitive
plans, all of whose actions are instantaneous. In related work, we have been directly
concerned with plans that include rich temporal constraints such as deadlines and durations
[26], and we believe that the techniques developed there can be adapted to the problem of
step merging in a more realistic temporal framework. Handling incomplete plans, however,
requires extending the algorithms for cost computation, because the cost of an incomplete
plan depends not just on possible ways of scheduling it, but also on possible ways of
completing it. Similarly, handling hierarchical plans requires reasoning about possible
decompositions. In both of these cases, methods for plan generation must be interwoven
with the cost computation process.

Finally, we have focused our attention in this paper on new options that are at least
strongly compatible with the background context. Although this is a reasonable starting
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point, it is clearly important to generalize the theory so it can handle other situations. We
are currently examining weaker notions of compatibility—for instance, situations in which
the union of the new option and the background context results in threats that cannot be
resolved with just ordering and linking constraints, but instead require the introduction of
new plan steps. In this case, the computation of plan cost must take into account the cost of
the threat-repair steps. A further generalization, hinted at earlier, would cover situations of
true incompatibility between a background context and a new option, so that adoption of
the new option would require real modification, not just augmentation, of the background
context.
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