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Abstract. This paper points out some problems with two recent logical systems – one due to
Prakken and Sartor, the other due to Kowalski and Toni – designed for the representation of defeasible
arguments in general, but with a special emphasis on legal reasoning.

1. Introduction

In recent years, researchers in nonmonotonic logic have turned increasing atten-
tion to formal systems in which nonmonotonic reasoning is analyzed through the
study of interactions among competing defeasible arguments; a survey appears in
Prakken and Vreewsijk (forthcoming). These argument systems are promising for
several reasons. First, they often allow a more natural treatment of priorities among
conflicting defeasible rules than the standard fixed-point or model-preference ap-
proaches, such as default logic or circumscription. Second, the explicit emphasis
on the manipulation and comparison of arguments – finite syntactic entities – sug-
gests immediate implementational possibilities; these systems are often developed
within the logic programming paradigm. Finally, the formal study of relations
among conflicting arguments is particularly important for the application of tech-
niques from artificial intelligence to fields in which adversarial reasoning figures
prominently, such as negotiation or, of course, the law.

I focus in this paper on two recent argument systems, both of which are heavily
indebted to the work of Dung (1995) and Bondarenko et al. (1997). The first of
these systems is due to Prakken and Sartor, with an initial proposal appearing in
Prakken and Sartor (1996) and more elaborate developments in Prakken and Sartor
(1996, 1997). This system, which will be referred to as the PS logic, extends the
standard language of logic programming with strong negation and a connective
representing defeasible implication; it allows for reasoning with prioritized defeas-
ible rules and also for reasoning about the priorities themselves that govern these
rules. The system has been provided with a fixed-point semantics, as well as a
proof theory in the form of a “dialogue game”, intended to model the structure
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of a dispute; it was originally motivated through applications to rule-based legal
reasoning, but it has also been applied to the problem of reasoning with legal
precedents (Prakken and Sartor 1998).

The second system considered here is presented by Kowalski and Toni (1996)
as an application of the theory set out in Bandarenko et al. (1997). This system,
which will be referred to as the KT logic, is not yet as fully developed as that
of Prakken and Sartor, but is, in principle, equally expressive, also allowing for
reasoning about the priorities among defeasible rules. The system is provided in
Kowalski and Toni (1996) only with a semantics, but it inherits the proof theory
of Dung et al. (1996), and again, it is motivated primarily with examples involving
legal reasoning.

Although the intuitions underlying many argument systems often seem to be
obscured behind a cloud of syntactic complexity, the two logics studied here are
clear and straightforward; they offer a real advance in our understanding of defeas-
ible argumentation. Nevertheless, my remarks in this note are largely critical. I set
out some simple examples in which it seems that these systems fail to deliver the
correct results, and I explore the reasons for this failure.

The examples are drawn from the domain of defeasible inheritance networks,
which has functioned as a testbed for theories of defeasible reasoning ever since the
initial exploration of Criscuolo, Etherington, and Reiter in papers such as Ethering-
ton (1987), Etherington and Reiter (1983), and and Reiter and Criscuolo (1981). Of
course, the two logics studied here are formulated in a much richer language than
that of defeasible inheritance networks. Still, even though they are substantially
more expressive, these logics should yield correct results when restricted to the
simple language of inheritance; and this, I argue, they fail to do. In particular, I
show that the results of these logic conflict with the account of inheritance reason-
ing developed by Thomason, Touretzky, and myself in a series of papers including
Horty (1994), Horty and Thomason (1988), Horty et al. (1990), and Touretzky et
al. (1987, 1991).

2. The PS Logic

The language of the PS logic extends that of standard logic programming by al-
lowing strong (or classical) negation in addition to the usual weak negation (or
negation by failure), and by allowing rules to be formed through defeasible as well
as strict implication. The logic is given two formulations: in the first, the priorities
among defeasible rules are specified as part of the background theory, through
a fixed ordering; in the second, more general formulation, these priorities might
themselves be established through defeasible reasoning.

Although, as Prakken and Sartor show, this expressive richness is useful for
representing realistic legal argument, the background language can be simplified
considerably once we restrict our attention to simple inheritance reasoning: there
is then no need for weak negation, no need, even, for rules containing multiple
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antecedents; and we can make do with the first formulation of the logic, with fixed
priorities among defeasible rules. As a result, the presentation of the system can be
simplified considerably.

In order to isolate the aspects of the PS logic that will concern us here, I set
out in this section a simple and streamlined version of the system, adequate only
for the formalization of inheritance reasoning. Given the linguistic restrictions, the
reader can verify that the theory described here is a special case of the full logic.

2.1. LITERALS, RULES, AND THEORIES

We begin with a description of the simple language.
A literal is either an atomic formula A or a formula ¬A with A atomic. We say

that A and ¬A are complements, and where L is a literal, that L is the complement
of L. A special statement � is singled out to represent truth.

Literals can be combined through either strict or defeasible implication con-
nectives to form rules. A strict rule has the form

ri : Lj ⇒ Lk,

while a defeasible rule has the form

ri : Lj → Lk,

where, in each case, ri is a label of the rule (and is often omitted in presentation).1

An assertion is represented by a rule having truth as its antecedent: the categorical
assertion of the literal L, for example, is carried by the strict rule � → L, while
the assertion that L holds by default is carried by the defeasible rule � → L. In
order to avoid complications having to do with unification, we follow the familiar
practice of avoiding variables in rules, expressing a general statement through the
collection of its instances.

An ordered theory is a tuple of the form � = 〈S,D,<〉, where S is a set of strict
rules, D a set of defeasible rules, and < a partial ordering representing priority on
the defeasible rules: if ri < rj , the defeasible rule rj is taken to have a higher
priority than ri , and should be preferred in case of conflict.

In order to illustrate the way in which inheritance networks can be interpreted
as ordered theories, we consider the ordered theories corresponding to two familiar
networks, the Tweety Triangle and the Nixon Diamond. The first is depicted in Fig-
ure 1, with P t , Bt , and F t representing the propositions that Tweety is a penguin,
a bird, and a flying thing; more exactly, this first theory is the tuple 〈S,D,<〉 with

1 This use of ⇒ and → to represent strict and defeasible implication respectively follows the
convention established in Horty and Thomason (1988) for inheritance networks, and seems to make
typographical sense as well, with the visually stronger arrow representing the logically stronger form
of implication. Prakken and Sartor adopt the opposite convention, using ⇒ to represent defeasible
and→ strict implication.
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Figure 1. The Tweety Triangle.

Figure 2. The Nixon Diamond.

S = {� → P t, P t → Bt}, with D = {r1 : Bt → F t, r2 : P t → ¬F t, },
and with r1 < r2.2 The second of these two theories is depicted in Figure 2,
with Qn, Rn, and Pn representing the propositions that Nixon is a Quaker, a
Republican, and a pacifist; more exactly, this theory is the tuple 〈S,D,<〉 with
S = {� ⇒ Qn,� ⇒ Rn}, with D = {r1 : Qn→ Pn, r2 : Rn→ ¬Pn}, and
with no priority relations holding among the two defeasible rules.

2.2. ARGUMENTS, CONFLICT, AND DEFEAT

We now turn to the arguments that can be constructed on the basis of the back-
ground language. Because we have simplified the language so thoroughly – and
in particular, because we have restricted the rules to contain only single literals as
antecedents – we can make due with a linear notion of argument, as follows.
• An argument based on an ordered theory � = 〈S,D,<〉 is a finite sequence
α = [r0, . . . , rn] of rules from S∪D such that: (i) the antecedent of r1 is�; (ii)

2 In our graphical depiction of ordered theories, rules of the form Lj → ¬Lk and Lj ⇒ ¬Lk

are drawn in a way that conforms to the standard inheritance notation, as Lj �→ Lk and Lj �⇒ Lk

respectively.
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Figure 3. An implicit conflict.

the antecedent of ri+1 is identical with the consequent of ri for all 0 ≥ i ≥ n;
and (iii) no two rules from α have the same consequent.

The first two conditions of this definition guarantee that an argument based on a
theory begins with an assertion immediately supported by that theory, and then
proceeds through instances of strict and defeasible modus ponens; the third con-
dition is intended simply to rule out incidental complications involved in the
consideration of cyclic arguments. We illustrate the definition by noting that the
sequence

α = [� ⇒ P t, P t ⇒ Bt, r1 : Bt → F t]
is an argument based on the Tweety Triangle from Figure 1. Since the arguments
that concern us here are linear, and in order to further emphasize the relations
with inheritance theory, we will depict these arguments in a manner analogous to
the familiar path notation from the inheritance literature; thus, for example, the
argument α above will be depicted as the path

� ⇒ P t ⇒ Bt→
r1

F t.

Where � is an ordered theory, we let Args� represent the set of arguments based
on that theory, the set of arguments that can be constructed using the materials
contained in �. Like rules, arguments themselves can be classified as strict or
defeasible – strict if they contain no defeasible rules, and defeasible if they do.
Finally, the set of conclusions of an argument are defined as the set of literals
contained in that argument, so that, for example, the argument α above has as its
conclusions the literals: �, P t , Bt , and F t .

Arguments based on ordered theories, such as those depicted in the Tweety and
Nixon examples, can conflict with one another; and it is at first tempting to think
of two arguments as conflicting just in case they contain complementary literals
as conclusions. This notion of conflict fails to account, however, for those implicit
conflicts that might be induced by the strict rules contained in an ordered theory.



6 JOHN F. HORTY

Consider Figure 3, for example. Here the two arguments�→
r1

A and�→
r2

B do not

themselves contain complementary literals, but it is all the same natural to think of
them as conflicting. Anyone who accepts the first of these arguments is committed
to accepting its extension �→

r1
A⇒ C, anyone who accepts the second is likewise

committed to the extension �→
r2

B ⇒ ¬C, and these two extended arguments do

stand in explicit conflict.
Motivated by examples like this, Prakken and Sartor define a notion of conflict

among arguments in a way that takes their strict extensions into account; in the
current, simplified setting, the idea behind their definition can be presented as fol-
lows. First, where α is an argument and σ is a sequence of strict rules, we let α+σ

represent the concatenation of α and σ . Then, where α and α′ are two arguments
based on an ordered theory �, we can say that α conflicts with α′ just in case there
are strict sequences σ and σ ′ and complementary literals L and L such that: α+ σ

is an argument based on � with conclusion L, and α′ + σ ′ is an argument based on
� with conclusion L.

In fact, we are not interested so much in conflict as in the related notion of
defeat, where, intuitively, one argument defeats another if it conflicts with and is
not weaker than that argument. Again, because of their rich background language,
the notion of defeat set out by Prakken and Sartor is complicated, relying upon a
number of preliminary technical concepts (such as rebutting and undercutting), but
in the current setting we can take a more direct route.

Concerning argument strength, we assume, following Prakken and Sartor, that
all strict arguments are equally strong, and stronger than all defeasible arguments,
and that the strength of a defeasible argument in support of a particular conclusion
is measured by the strength of the final defeasible rule supporting that conclusion.
In order to capture this idea precisely, let us first introduce a special symbol ∞
representing infinite strength, the strength of a strict argument, and so placed in the
priority ranking above any defeasible rule (that is, r < ∞ for each defeasible rule
r). Adapting Prakken and Sartor’s notation, we suppose, where α is an argument
with conclusion L, that RL(α) is defined as follows: if the subargument of α prior
to the occurrence of L is strict, then RL(α) = ∞; otherwise, RL(α) refers to the
final defeasible rule in α that either contains L as consequent or occurs entirely
prior to L. (Example: if α = � ⇒ A→

r1
B→

r2
C ⇒ D→

r3
E, we have RE(α) = r3,

RD(α) = r2, and RA(α) = ∞.) The strength of the argument α in support of the
conclusion L can then be measured by RL(α).

With this notion of strength in place, we can now specialize Prakken and
Sartor’s notion of defeat to our simple setting.
• Let α and α′ be two arguments based on an ordered theory �. Then α defeats
α′ just in case there are strict sequences σ and σ ′ and complementary literals
L and L such that: (i) α+ σ is an argument based on � with conclusion L, (ii)
α′ +σ ′ is an argument based on � with conclusion L, and (iii) it is not the case
that RL(α + σ ) < RL(α

′ + σ ′).
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The first two clauses of this definition, which are carried over from the definition
of conflict, tell us simply that the arguments α and α′ conflict with one another
concerning the conclusions L and L; the third clause tells us that the support
provided by α for L is not weaker than that provided by α′ for L.

It is possible, of course, for each of two arguments to defeat the other. This
occurs, for example, in the Nixon Diamond, where each of the two arguments
� ⇒ Qn→

r1
Pn and � ⇒ Rn→

r2
¬Pn defeats the other, since they support the

complementary literals Pn and ¬Pn, yet neither offers stronger support than the
other; we have neither r1 < r2 nor r2 < r1. Unlike the relation of conflict, however,
the defeat relation is not necessarily symmetric. In the case of the Tweety Triangle,
for instance, the argument � ⇒ P t→

r2
¬F t defeats the argument � ⇒ P t ⇒

Bt→
r1

F t , since these two arguments support the complementary literals ¬F t and

F t and the support provided by the second is not stronger than that provided by the
first; we do not have r2 < r1. On the other hand, the second of these two arguments
does not defeat the first, since the support provided by the first is stronger than the
support provided by the second; here, we do have r1 < r2.

In a case like this, where one argument α defeats another argument α′, but α′
does not defeat α, we say that α strictly defeats α′.

2.3. ACCEPTABILITY AND JUSTIFICATION

The general picture of defeasible reasoning underlying the PS logic is this. Given
an ordered theory �, one first constructs the entire set Args� of arguments based
on �, and then computes the defeat relations among these arguments. On the basis
of this pattern of defeat relations, one then isolates a particular subset of the argu-
ments that are to count as justified. The conclusions supported by the theory are
the conclusions of these justified arguments.

In our simple setting, we now know how to construct the set of arguments Args�
from the theory �, and also how to define the defeat relations among the members
of Args�; and of course, it is a simple matter, once the set of justified arguments is
isolated, to collect their conclusions. All that is missing, therefore, is a definition
that tells us, given the pattern of defeat relations among arguments, which of these
arguments are to be regarded as justified.

It may seem tempting to suppose that an argument should be regarded as jus-
tified if it is, in fact, not defeated. Prakken and Sartor, however, base their theory
on the more complicated idea of reinstatement – deriving most immediately from
Dung (1995), but going back at least to Pollock (1987) – according to which even
certain defeated arguments should be regarded as justified, as long as the arguments
defeating them are themselves defeated. Suppose, for example, that a theory allows
for the construction of three arguments α1, α2, and α3, subject to the following
defeat relations: α2 defeats α1, and α3 defeats α2. In such a case, according to
Prakken and Sartor, the argument α3 should be thought of as reinstating α1, by
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defeating the only argument that defeats it, so that α1 itself is to be regarded as
justified.

The particular way in which reinstatement enters into the PS logic is through
the concept of acceptability, closely related to that of Dung, and defined here as
follows.
• Let � be an ordered theory and S a subset of Args� . Then an argument α is

acceptable with respect to S just in case each argument α′ that defeats α is
itself strictly defeated by some argument α′′ belonging to S.

The idea, of course, is that α should be acceptable with respect to S whenever α
either is not defeated at all or, if defeated, is reinstated by some argument already
belonging to S.

Given this notion of acceptability, Prakken and Sartor then define a function,
again due to Dung, that maps each set of arguments into the set containing those
arguments that are acceptable with respect to the initial set.
• The characteristic function of an ordered theory � is the function F� where,

for each subset S of Args� ,

F�(S) = {α ∈ Args� : α is acceptable with respect to S}.
It is easy to see that the function F� is monotonic on subsets of Args� , under the
subset relation. By the Knaster–Tarski theorem, it therefore has a least fixed point;
and Prakken and Sartor suggest that the arguments that are justified on the basis
of � – represented as JustArgs� – should be defined as the members of this least
fixed point.
• Where � is an ordered theory, the set JustArgs� is the least fixed point of the

characteristic function F� .
Prakken and Sartor discuss various desirable properties of the justified arguments
defined in this way, and they note, following Dung, that in the finitary case, where
each argument is defeated by at most a finite number of arguments, the set of
justified arguments can be defined through an iterative construction. More exactly,
where � is an ordered theory and the sequence F 1

� , F 2
� , F 3

� , . . . is defined by taking

F 1
� = F�(∅),

F i+1
� = F i

� ∪ F�(F
i
�),

it can be shown that
⋃∞

i=1(F
i
�) = JustArgs� .

We illustrate the various definitions underlying the PS logic by applying this
iterative construction to the Tweety and Nixon examples. Beginning with Tweety,
let � represent the ordered theory depicted in Figure 1. Then Args� contains the
arguments

α1 = � ⇒ P t,

α2 = � ⇒ P t ⇒ Bt,

α3 = � ⇒ P t ⇒ Bt→
r1

F t,

α4 = � ⇒ P t→
r2
¬F t,
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with the only defeat relation being: α4 strictly defeats α3. Because α1, α2, and α4

are undefeated, it is easy to see that F 1
� = {α1, α2, α4}, and that F 2

� = F 1
� . This

set, therefore, is the least fixed point of the function F� , containing the justified
arguments. Because it classifies α4 as justified, the theory thus yields the intuitively
correct result that Tweety flies.

Turning to Nixon, we let � represent the ordered theory depicted in Figure 2,
so that Args� contains the arguments

α1 = � ⇒ Qn,

α2 = � ⇒ Rn,

α3 = � ⇒ Qn→
r1

Pn,

α4 = � ⇒ Rn→
r2
¬Pn,

subject to the defeat relations: α3 defeats α4 and α4 defeats α3. It can then be seen
that F 1

� = {α1, α2} and that F 2
� = F 1

� . This set, then, is the least fixed point of
F� , and since it contains neither α3, nor α4, the theory again yields the result that
is correct from a skeptical point of view, that it is unreasonable to conclude that
Nixon is a pacifist but also unreasonable to conclude that he is not.

3. Problems with the PS Logic

Having considered some cases in which Prakken and Sartor’s logic seems to work
well, I now wish to point out some problems with system. Ignoring various matters
of detail, I concentrate on what I take to be two major issues: first, a difficulty in
the process of constructing and evaluating arguments; second, a difficulty with the
notion of reinstatement.

I illustrate these difficulties by exhibiting some examples in which the logic
seems to yield incorrect results. In each case, I argue that the results of the logic
are incorrect using the only method that I know of in this area, where there is no
recourse to anything like a formal semantics: telling a story, encoding the story in
the logic, calculating the supported conclusions, and then relying on the reader’s
intuitions to coincide with my own view that the conclusions generated by the logic
do not agree with those that would reasonably be drawn from the story.

3.1. ARGUMENT CONSTRUCTION AND EVALUATION

Here is the first story. Let us suppose, as may even be the case, that lawyers tend to
be wealthy, but that a certain subclass of lawyers, public defenders, tend not to be
wealthy. And imagine that there is an area of town – say, Brentwood – containing
a large number of expensive private homes along with a much smaller number
of middle-income rental properties, so that the residents of Brentwood tend to be
wealthy, although a certain subclass of Brentwood residents, the renters, tend not
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Figure 4. Is Ann wealthy?

to be. We will suppose that Ann is a public defender, and therefore a lawyer, who
rents in Brentwood, and is therefore a resident of Brentwood.

The information from this story is presented in the ordered theory �, depicted
in Figure 4, where PDa, La, Ra, Ba, and Wa represent the respective propos-
itions that Ann is a public defender, a lawyer, a renter in Brentwood, a resident
of Brentwood, and wealthy. Since we prefer information based on subclasses to
information based on superclasses, we have r1 < r2 and r3 < r4 – that is, the rule
that Ann is not wealthy because she is a public defender has a higher priority than
the rule that she is wealthy because she is a lawyer, and the rule that Ann is not
wealthy because she is a rents in Brentwood has a higher priority than the rule that
she is wealthy because she is a Brentwood resident. The rules r1 and r4, however,
are incomparable, as are the rules r2 and r3.

Given �, it is easy to see that Args� contains the following arguments:

α1 = � ⇒ PDa,
α2 = � ⇒ Ra,

α3 = � ⇒ PDa⇒ La,
α4 = � ⇒ Ra ⇒ Ba,

α5 = � ⇒ PDa⇒ La→
r1

Wa,

α6 = � ⇒ PDa→
r2
¬Wa,

α7 = � ⇒ Ra ⇒ Ba→
r3

Wa,

α8 = � ⇒ Ra→
r4
¬Wa.

What about defeat relations? Well, the argument α6 defeats α5, since these two
arguments support the conflicting literals ¬Wa and Wa, and the support provided
by the second is not stronger than that provided by the first: we do not have r2 < r1.
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And we know likewise that α8 defeats α7. But it also turns out that α5 defeats α8

and that α7 defeats α6, since, again, these arguments support the conflicting literals
Wa and ¬Wa, and the support provided by the defeated arguments is no stronger
than the support provided by their defeaters: we have neither r1 < r4 nor r3 < r2.
Given these defeat relations, it is easy to see that F 1

� = {α1, α2, α3, α4}, and then
that F 2

� = F 1
� , so that this set is the least fixed point of F�. Neither α6 nor α8 is

acceptable relative to this set, since each is defeated by some argument – α7 and α5

respectively – that is not strictly defeated by an argument already belonging to the
set. The PS logic therefore does not allow us to draw any conclusions about Ann’s
wealth.

This result seems to run contrary to intuition, or at least, contrary to the in-
tuitions underlying the theory of skeptical inheritance presented in Horty et al.
(1990). According to this theory, neither of the arguments α5 nor α7 should be
given any weight at all, either in supporting conclusions or in interfering with other
arguments, since each of these arguments is itself strictly defeated. Therefore, the
fact that these arguments defeat α8 and α6 should have no bearing on the acceptab-
ility of the latter; α8 and α6 should thus be accepted, leading to the conclusion that
Ann is not wealthy.

In fact, Prakken and Sartor are sympathetic with this perspective, and suggest in
their treatment of the somewhat similar Example 3.16 from their (1997), and also
in personal conversation that the appropriate results might be achievable within the
general framework of the PS logic with only some minor modifications. In particu-
lar, they note that the set of justified arguments supported by skeptical inheritance
– that is, the set {α1, α2, α3, α4, α5, α7} – is in fact a fixed point of the function F� ,
but simply not the least fixed point.

My own diagnosis is that the problem is more serious. I believe it is symptom
of a general strategic error involved in the design of the PS logic: the separation of
the process of argument construction from that of argument evaluation. As we have
seen, the PS logic reflects a picture of defeasible reasoning according to which all
of the possible arguments based on a particular theory are first constructed, rela-
tions of defeat among these arguments are noted, and then the justified arguments
are defined on the basis of this overall pattern of defeat. As a result, it is possible
for arguments that are clearly indefensible to perturb the pattern of defeat so as to
affect arguments that, from an intuitive point of view, should count as justified. The
alternative strategy – followed in the inheritance literature – involves interleaving
the construction and evaluation of arguments. Arguments are constructed step by
step, and are evaluated after each step in their construction; those that are indefens-
ible, such as α5 and α7 above, are discarded at once, and so cannot influence the
status of others.

A more striking example of the problems resulting from the separation of argu-
ment construction and evaluation is presented in Figure 5, which can be given an
intuitive interpretation by taking RCb, RNb, CCb, CUb, and VUb to represent the
respective propositions that Bob is a resident of Cuba, a resident of North America,
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Figure 5. Can Bob vote in the US?

a citizen of Cuba, a citizen of the US, and a person with voting rights in the US. The
story that goes along with this diagram is as follows. First, we are to assume that
Bob is a resident of Cuba. Second, that residents of Cuba are residents of North
America; this holds by definition, since Cuba is a part of North America. Third,
there is a weak default – with some statistical justification – according to which
residents of North America tend to be citizens of the US. Fourth, there is a stronger
default according to which residents of Cuba tend to be citizens of Cuba. Fifth and
sixth, citizens of Cuba cannot also be citizens of the US, or have voting rights in
the US. Seventh, there is a very strong default – stronger than any of the others, and
violated, as far as I know, only by convicted felons – according to which citizens
of the US tend to have voting rights in the US.

Given this story, what does the PS logic tell us about Bob? If the depicted theory
is �, then Args� contains the following arguments:

α1 = � ⇒ RCb,
α2 = � ⇒ RCb⇒ RNb,
α3 = � ⇒ RCb⇒ RNb→

r1
CUb,

α4 = � ⇒ RCb⇒ RNb→
r1

CUb→
r3

VUb,

α5 = � ⇒ RCb→
r2

CCb,

α6 = � ⇒ RCb→
r2

CCb⇒ ¬CUb,

α7 = � ⇒ RCb→
r2

CCb⇒ ¬VUb.

Turning to defeat relations, let us consider for simplicity only the three arguments
ending with defeasible inferences – α3, α4, and α5 – since the defeat relations
among the other defeasible arguments, α6 and α7, are determined by these. It is
clear, first, that α5 strictly defeats α3. For the argument α6, which is simply a
strict extension of α5, supports the conclusion ¬CUb, which conflicts with the
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conclusion CUb supported by α3; and since RCUb(α3) = r1 and R¬CUb(α6) = r2,
the default supporting ¬CUb in α6 is stronger than the default supporting CUb
in α3. For the same reason, it is clear that α5 defeats α4, because α4 likewise
supports CUb through a default rule weaker than that through which α7 supports
¬CUb. In this case, however, the defeat is not strict, for it turns out that α4 also
defeats α5. Why? Well, the argument α7, which is again a strict extension of α5,
supports the conclusion ¬VUb, which conflicts with the conclusion VUb; and since
R¬VUb(α7) = r2 and RVUb(α4) = r3, the default supporting VUb in α3 is stronger
than that supporting ¬VUb in α7.

Given these defeat relations, the iterative procedure tells us that F 1
� = {α1, α2},

and then that F 2
� = F 1

� , so that this set is the least fixed point of F� . In particular,
then, the PS logic does not count the arguments α5, α6, and α7 as justified, and
so does not support the conclusions that Bob is citizen of Cuba, that Bob is not a
citizen of the US, or that Bob does not have voting rights in the US.

Again, this result is contrary to the intuitions underlying the skeptical inher-
itance theory of Horty et al. (1990), which would classify all of the arguments
from this example except α3 and α4 as justified, and therefore tell us that Bob is
a citizen of Cuba, not a citizen of the US, and that he does not have voting rights
in the US. Again, the reason for this disparity seems to be the separation in the
PS logic between the processes of argument construction and evaluation. In this
case, as we have seen, α5 strictly defeats α3, but then α5 is itself defeated by α4.
What makes the example so striking is that α4 is itself an extension of α3, so that
α5 is defeated by an extension of an argument that it strictly defeats. In a theory
that evaluates arguments immediately upon construction, α3 would be classified as
indefensible as soon as it was discovered to be strictly defeated by α5; this argument
would therefore not be available to serve as a basis for the construction of further
arguments, such as α4, which might then interfere with α5.

Note also that Prakken and Sartor’s tentative suggestion that the appropriate set
of arguments might be identifiable as some fixed point of the F� function, even
if not the least fixed point, does not work in this case. Here, the set of justified
arguments according to the skeptical theory is S = {α1, α2, α5, α6, α7}, but this set
is not a fixed point of F�, since the argument α5 belongs to S but not to F�(S).

3.2. REINSTATEMENT

The second difficulty I want to discuss concerns the notion of reinstatement – the
idea that an argument should count as acceptable even if it is defeated, as long as
all the arguments defeating it are themselves strictly defeated.

As we have seen, this idea plays an important role in the architecture of the PS
logic. Its effect can be illustrated through the ordered theory displayed in Figure 6,
where WCa, Ca, Ba, and Fa represent the respective propositions that Al is a wild
chicken, a chicken, a bird, and a flying thing. The story that goes along with this
picture is mostly familiar – as a rule, birds tend to fly and chickens tend not to –
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Figure 6. Does Al fly because he is a bird?

but there is one fresh twist: we have discovered a new kind of chicken, known as a
wild chicken, which is able to fly, and we are told that Al is a wild chicken.3

Taking � as the depicted theory, the set Args� contains

α1 = � ⇒ WCa,
α2 = � ⇒ WCa⇒ Ca,
α3 = � ⇒ WCa⇒ Ca⇒ Ba,
α4 = � ⇒ WCa⇒ Ca⇒ Ba→

r1
Fa,

α5 = � ⇒ WCa⇒ Ca,→
r2
¬Fa,

α6 = � ⇒ WCa→
r3

Fa.

Given the ordering on defaults, the defeat relations among these arguments are
clear: α5 strictly defeats α4, and α6 strictly defeats α5. Even though α4 is defeated,
then, the only argument that defeats it is itself strictly defeated. The argument α4 is
therefore reinstated, and we should expect it to count as justified according to the
PS logic. The iterative procedure confirms this expectation, telling us that F 1

� ={α1, α2, α3, α6}, that F 2
� = {α1, α2, α3, α4, α6}, and that F 3

� = F 2
� , so that this set

is the minimal fixed point of the F� operator, containing the justified arguments.
The classification of α4 as justified may seem odd, however – not so much

because of its conclusion that Al flies, which is legitimately supported by α6, but
because the argument itself is problematic, suggesting that Al flies because he is a
bird, that this is a good reason for believing him to fly. In the context, this argument
appears to be flawed, since Al is a special kind of bird, a chicken, that does not fly.
The reason Al flies is that he is a wild chicken, and one might wonder why, just
because this reason is sufficient to justify the conclusion, another reason that has
already been discredited should again be endorsed.

3 Wild chickens were first introduced into the inheritance literature in Touretzky et al. (1991).
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Still, even if one agrees with this criticism, it might seem like a minor point.
Perhaps all we should worry about in evaluating an argument system is the set of
conclusions it supports. Perhaps it is best not to take the arguments themselves
too seriously, beyond their technical role in generating the appropriate set of con-
clusions; if reinstatement provides a technically convenient specification of the
appropriate conclusion set, perhaps this is a sufficient justification for the principle.

Indeed, as discussed in Touretzky et al. (1991), the initial version of skeptical
inheritance set out in Horty et al. (1990) did accept reinstatement primarily for reas-
ons of technical convenience – in order to allow for the parallel marker propagation
inference algorithm described in that paper. It was soon realized, however, that rein-
statement had a more serious semantic impact, and could not be accepted no matter
how convenient: in addition to forcing us to accept certain problematic arguments
for correct conclusions, it leads to conclusions that are simply incorrect. Because of
this, the skeptical inheritance theory originally presented in Horty et al. (1990) was
reformulated in Horty (1994) in a way that avoids any reliance on reinstatement.

The kind of incorrect conclusion supported by reinstatement is illustrated by
the following story. Imagine that, in virtue of stock options accrued over the years,
most Microsoft employees are by now millionaires; imagine it is at least a weak
default that Microsoft employees are millionaires.4 Suppose also, as a slightly
stronger default, that most new Microsoft employees, many of them just out of
college, have not yet accumulated so much as half a million dollars. Finally, ima-
gine that Beth is a new Microsoft employee, but suppose there is reason to believe,
as a very strong default – perhaps someone has actually seen a recent list of assets
– that Beth does happen to have half a million dollars. And let us supplement this
defeasible information by explicitly noting the strict truths that any new Microsoft
employee is necessarily a Microsoft employee, and that anyone with a million
dollars also has half a million dollars.

The information from this story can be represented as the ordered theory �

shown in Figure 7, with NMEb, MEb, 1Mb, 1/2Mb representing the respective pro-
positions that Beth is a new Microsoft employee, that she is a Microsoft employee,
that she has a million dollars, and that she has half a million dollars. The arguments
belonging to Args� are

α1 = � ⇒ NMEb,
α2 = � ⇒ NMEb⇒ MEb,
α3 = � ⇒ NMEb⇒ MEb→

r1
1Mb,

α4 = � ⇒ NMEb⇒ MEb→
r1

1Mb⇒ 1/2Mb,

α5 = � ⇒ NMEb→
r2
¬ 1/2Mb,

α6 = �→
r3

1/2Mb.

4 For support of this default, see Sloan (1997).
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Figure 7. Is Beth a millionaire?

And given the ordering on defaults, the defeat relations are as follows: first, α5

strictly defeats both α4 and α3; second, α6 strictly defeats α5. (The reason that α5

defeats α3 as well as α4 is that α4 is a strict extension of α3; both α3 and α4 therefore
support the statement 1/2Mb through the default rule r1, which is weaker than the
rule r2 through which α5 supports the conflicting statement ¬ 1/2Mb.) Because α6

strictly defeats α5, it reinstates both α3 and α4, and so we should expect these two
arguments to be endorsed by the PS logic. The iterative procedure again confirms
this expectation, telling us that F 1

� = {α1, α2, α6}, that F 2
� = {α1, α2, α6, α3, α4},

and that F 3
� = F 2

� , so that this set contains the justified arguments.
Looking only at the terminal conclusions of these various arguments, α4 is no

more problematic than what we have already seen in the wild chicken example: it
is, at worst, a flawed argument for the correct conclusion 1/2Mb, which is legitim-
ately supported by the argument α6. But the classification of α3 among the justified
arguments presents a more serious difficulty: the conclusion 1Mb seems simply to
be mistaken. Our only reason for believing that Beth has a million dollars is that
she is a Microsoft employee, but this is overridden by the consideration that Beth
is a new Microsoft employee, and is therefore unlikely to have even half a million
dollars. As it happens, we do have an independent reason for believing that Beth
has half a million dollars – but this gives us no reason at all to conclude that she
has a million dollars. Reinstatement leads us to an incorrect conclusion.

4. The KT Logic

4.1. THE BACKGROUND FRAMEWORK

The KT logic, developed by Kowalski and Toni, is cast against the background
of a framework developed earlier by these authors along with Bondarenko and
Dung (1997). Although this framework is very general, and is shown to subsume a
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number of familiar formalisms for nonmonotonic reasoning, we concentrate here
on its application to the semantics of logic programs containing classical negation
as well as negation as failure.

To fix notation, let us take H as the set of ground atoms from the language and
H+ as H together with those formulas of the form ¬A for A belonging to H . The
set Literals then includes the members of H+ as well as those formulas of the form
∼ A for A belonging to H+. The statement ¬A represents the classical negation
of A; the statement ∼ A represents the fact that A is not provable, or negation as
failure.

An extended logic program is a set of rules of the form

A⇐ B1, . . . , Bn,

with n ≥ 0, with B1, . . . , Bn belonging to Literals, and with A belonging to H+.
Such a rule tells us that A can be inferred on the basis of B1, . . . , Bn. If we identify
axioms with rules in which n = 0 – rules containing a conclusion but no premises
– it is then straightforward to adapt the standard notion of an axiomatic proof to
extended logic programs, resulting also in a standard concept � of derivability.
Note that these rules do not permit backwards reasoning akin to modus tollens: in
the rule displayed above, nothing in particular can be inferred from a negation of A.
Note also that statements of the form ∼ A are permitted only among the premises
of a rule, not in its conclusion; the language does not contain rules allowing us to
infer that a statement is not provable.

The basic idea underlying the framework set out in Bondarenko et al. (1997)
is that default reasoning should be seen as resulting from the supplementation of
a theory with some suitable set of assumptions; such reasoning is nonmonotonic
because adding statements to a theory might affect the suitability of certain assump-
tions, leading to the withdrawal of conclusions. In the case of theories expressed as
a logic programs, the possible assumptions can be restricted to claims that certain
formulas are not provable; more exactly, any possible assumption is a formula of
the form ∼ A.

Within this general framework, the notion of a suitable set of assumption can be
characterized in a number of different ways, leading to different styles of default
reasoning; but Kowalski and Toni favor a characterization that is based on the
notion of admissibility. Fixing a logic program P as background, let us say that an
assumption set " attacks a particular assumption ∼ A whenever P ∪" � A; and
let us say that one assumption set " attacks another assumption set "′ whenever
" attacks some assumption belonging to "′. The notion of an admissible set of
assumptions can then be defined as follows:
• An assumption set " is admissible just in case (i) " does not attack itself, and

(ii) if an assumption set "′ attacks ", then " also attacks "′.
The first clause in this definition is simply a coherence condition; the intuition
behind the second clause is that an assumption set is admissible if it is capable of
“defending” itself, by attacking any other assumption set that attacks it.
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Once the suitable assumption sets are identified with the admissible sets, it is a
simple matter to define a notion of credulous consequence for logic programs:
• A statement A is a credulous consequence of a logic program P just in case

P ∪" � A for some admissible set ".
It may then seem natural to characterize the skeptical consequences of a logic
program as those that follow whenever that program is supplemented with any
admissible set, but this characterization turns out to be overly restrictive since
a number of relatively uninformative assumption sets, including the empty set,
are admissible. It is more reasonable first to introduce the notion of a preferred
assumption set, defined as a maximal admissible set, and then to rely on this notion
in the characterization of skeptical consequence:
• A statement A is a skeptical consequence of a logic program P just in case

P ∪" � A for each preferred assumption set ".

4.2. DEFEASIBLE RULES

The approach as presented so far, which is entirely contained in Bondarenko et
al. (1997), applies only to extended logic programs as defined above, involving
only strict rules. What Kowalski and Toni (1996) add is a way of generalizing this
approach to apply also to a class of defeasible extended logic programs, which
might contain, in addition to these strict rules, also certain defeasible rules of the
form

r : A← B1, . . . , Bn, (1)

where r functions as a label of the rule, and where A and B1, . . . , Bn are subject to
restrictions identical to those set out above. Such a rule tells us that the statements
B1, . . . , Bn provide a reason for drawing the conclusion A, even if the reason is not
conclusive.

Among the rules of a defeasible logic program, there may be certain rules,
themselves either strict or defeasible, whose purpose is to specify priority rankings
among various defeasible rules, referring to these rules through their labels. As an
example, the rule

r < r ′ ⇐,

would tell us that the defeasible rule r ′ is always to be given greater priority than
the defeasible rule r.

There is an evident similarity between the defeasible extended logic programs
described here and the earlier ordered theories of Prakken and Sartor; it is a simple
matter to translate information presented in one formalism into the other. In analyz-
ing this information, however, Kowalski and Toni follow a different strategy from
that of Prakken and Sartor. Rather than presenting a semantic account that applies
directly to logic programs containing defeasible rules, Kowalski and Toni instead
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suggest a general scheme for transforming any defeasible extended logic program
into an ordinary extended logic program, containing no defeasible rules at all, but
containing a few additional predicates: holds, defeated, and conflict. The ordinary
logic program into which the defeasible logic program is transformed is supposed
to provide an accurate and precise representation of the meaning of the original
defeasible program.

The idea behind the transformation scheme is simple. Each defeasible rule of
the form (1) above is to be replaced with two strict rules of the form

A⇐ holds(r),
holds(r)⇐ B1, . . . , Bn,∼ defeated(r),

telling us, intuitively, that the consequent A of the original rule can be established
if the rule “holds,” and that the rule holds if its antecedent formulas B1, . . . , Bn can
be established and the rule itself is not shown to be defeated.5 The notion of defeat
is then characterized through the single rule

defeated(r)⇐ r < r ′, conflict(r, r ′), holds(r ′), (2)

telling us that the rule r is defeated whenever a rule r ′ that has a higher priority
than r and that also conflicts with r can be shown to hold.

Unfortunately, Kowalski and Toni do not provide a full definition of the no-
tion of conflict that figures in their characterization of defeat; the idea is simply
illustrated with rules such as

conflict(r, r ′)⇐ conclusion(r, A), conclusion(r ′,¬A),
where conclusion(r, A) is supposed to hold whenever A is the conclusion of the
rule r. This partial definition is sufficient for explicit conflicts, between rules with
complementary conclusions; but it is not able to capture the kind of implicit con-
flicts illustrated earlier in Figure 3, where, as we recall, the rule r1 supporting A

and the rule r2 supporting B conflict in the presence of the strict information telling
us that A implies C and that B implies ¬C. In order to complete the definition of
their transformation scheme, Kowalski and Toni would have to provide a treatment
that handles implicit as well as explicit conflicts.

For present purposes, however, we avoid the issue of actually characterizing the
notion of conflict, and use the conflict predicate instead simply to list the rules that
a proper definition would classify as conflicting; our only general assumption is the
notion of conflict is symmetric, expressed through the rule

conflict(r, r ′)⇐ conflict(r ′, r). (3)

5 Kowalski and Toni note that a rule label r is used ambiguously in the transformed program, to
refer both to the original defeasible rule and to its conclusion.
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4.3. EXAMPLES

In order to illustrate the transformation scheme, let us turn first to the Tweety
Triangle from Figure 1. The information from this diagram can be presented as
a defeasible extended logic program containing the two strict rules

P t ⇐,

Bt ⇐ P t,
(4)

telling us that Tweety is a penguin, and that Tweety is a bird if he is a Penguin; the
two defeasible rules

r1 : F t ← Bt,

r2 : ¬F t ← P t,

providing us with a reason to believe that Tweety flies, since he is a bird, and also
with a reason for believing Tweety does not fly, since he is a penguin; and the
priority ranking

r1 < r2 ⇐, (5)

telling us that the second of these reasons is stronger than the first. Following the
scheme, this defeasible program can be transformed into an ordinary program by
replacing the first of its defeasible rule with the pair of strict rules

F t ⇐ holds(r1),

holds(r1)⇐ Bt,∼ defeated(r1),
(6)

by replacing the second of its defeasible rules with the strict rules

¬F t ⇐ holds(r2),

holds(r1)⇐ P t,∼ defeated(r2),
(7)

and by supplementing the program with the statement

conflict(r1, r2)⇐ (8)

to capture the appropriate conflict relations. The transformed program P repre-
senting the original information thus includes the rules (4), (5), (6), (7), and (8),
as well as the background rules (2) and (3) concerning the notions of defeat and
conflict.

In calculating the admissible assumption sets for this logic program, we can
restrict our attention to assumptions of the form ∼ defeated(r), since these are the
only assumptions that the program contains. Apart from the empty set, then, there
are only three assumption sets to consider:

"1 = {∼ defeated(r1)},
"2 = {∼ defeated(r2)},
"3 = {∼ defeated(r1),∼ defeated(r2)}.
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When added to the program P , the information from the assumption set "3 imme-
diately yields the contradictory conclusions F t and ¬F t , and so both defeated(r1)

and defeated(r2). The set "3 therefore attacks itself, and so violates the first clause
of the admissibility definition. Turning to "1, we can see that this set is attacked
by "2, since "2 together with P allows us to derive defeated(r1). But "1 does not
itself attack "2: although "1 together with P allows us to derive holds(r1), and
we know conflict(r1, r2), we do not have r2 < r1 as required by the rule (2) for a
justification of defeated(r2). Since "2 attacks "1, but "1 cannot defend itself by
attacking "2, it violates the second clause of the admissibility definition.

Only "2 is an admissible assumption set: it does not attack itself, and it defends
itself against the only set "3 that attacks it. The set "2 is, moreover, the unique
preferred assumption set, since the only other admissible assumption set is the
empty set, and "3 is maximal among these two. When supplemented with the in-
formation from this unique preferred assumption set, p yields ¬F t as a conclusion.
This statement is therefore a skeptical consequence of this program, as desired.

The treatment of the Nixon Diamond from Figure 2 is in many ways similar.
The defeasible logic program representing this information contains the two strict
rules

Qn⇐,

Rn⇐,
(9)

telling us that Nixon is a Quaker and a Republican, as well as the rules

r1 : Pn← Qn,

r2 : ¬Pn← Rn,

providing defeasible reasons to believe that Nixon is a pacifist if he is Quaker, and
that he is not a pacifist if he is a Republican. In carrying out the transformation,
these two defeasible rules are replaced, as before, by the four strict rules

Pn⇐ holds(r1),

holds(r1)⇐ Qn,∼ defeated(r1),

¬Pn⇐ holds(r2),

holds(r2)⇐ Rn,∼ defeated(r2),

(10)

and then supplemented with the statement

conflict(r1, r2)⇐ (11)

reflecting the conflict between the defeasible rules.
In our defeasible representation of the Tweety Triangle, the rule concerning

penguins was explicitly assigned a higher priority than the rule concerning birds
through the statement (5), which was carried over into the strict program. In the
present case, by contrast, neither of the rules r1 nor r2 is explicitly given a higher
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priority than the other in the defeasible representation, and so it is natural to think
that the strict transformation of this program would likewise fail to register any
priority between these rules. Kowalski and Toni take a different approach, however:
“where priorities are not given explicitly, . . . we treat each rule as having a higher
priority than every other rule with a contradictory conclusion” (Kowalski and Toni
1996). Following these instructions, the strict transformation of the Nixon diamond
should be supplemented also with the statements

r1 < r2 ⇐,

r2 < r1 ⇐,
(12)

giving each of these rules a higher priority than the other. The strict program P
representing the Nixon Diamond thus contains the rules (9), (10), (11), and (12),
as well as the background rules (2) and (3).

It is easy to see that both "1 = {∼ defeated(r1)} and "2 = {∼ defeated(r2)}
are preferred assumption sets for this program. When supplemented with "1, the
program P yields Pn but not ¬Pn as a conclusion; when supplemented with "2,
the program yields ¬Pn but not Pn as a conclusion. Since the program does not
yield either Pn or ¬Pn when supplemented with every preferred assumption set,
the skeptical interpretation of the KT logic does not allow us to conclude either that
Nixon is a pacifist or that he is not, as desired.

5. Problems with the KT Logic

Like the PS logic, then, the KT logic yields the desired results when applied to
the Tweety Triangle and the Nixon Diamond, two familiar benchmark examples;
and Kowalski and Toni show that the theory gives an adequate treatment of several
richer and more complex reasoning scenarios.

As it turns out, however, the KT logic also exhibits two problems closely ana-
logous to those faced by the PS logic – concerning argument construction and
evaluation, and also reinstatement – which can be illustrated by the same examples
set out earlier.

5.1. ARGUMENT CONSTRUCTION AND EVALUATION

In order to illustrate the first problem we formulate the example from Figure 4 in
the KT logic. The representation of this information as a defeasible logic program
would contain the strict rules

PDa⇐,

Ra ⇐,

La ⇐ PDa,
Ba ⇐ Ra,

(13)
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telling us that Ann is a public defender and a renter in Brentwood, that she is a
lawyer if she is a public defender, and that she is a resident of Brentwood if she
rents in Brentwood; the defeasible rules

r1 : Wa ← La,

r2 : ¬Wa← PDa,
r3 : Wa ← Ba,

r4 : ¬Wa← Ra,

giving us reason to believe that Ann is wealthy if she is a lawyer but not wealthy if
she is a public defender, and that Ann is wealthy if she is a resident of Brentwood
but not wealthy if she is a renter in Brentwood; and the priority information

r1 < r2 ⇐,

r3 < r4 ⇐ (14)

telling us that the defeasible rule concerning public defenders is to be given
greater weight than that concerning lawyers, and that the defeasible rule concerning
Brentwood renters is to be given greater weight than that concerning Brentwood
residents.

In transforming this information into a strict logic program, the four defeasible
rules are replaced by the eight strict rules

Wa ⇐ holds(r1),

holds(r1)⇐ La,∼ defeated(r1),

¬Wa ⇐ holds(r2),

holds(r2)⇐ PDa,∼ defeated(r2),

Wa ⇐ holds(r3),

holds(r1)⇐ Ba,∼ defeated(r3),

¬Wa ⇐ holds(r4),

holds(r4)⇐ Ra,∼ defeated(r4),

(15)

and the conflicts among these various rules is registered:

conflict(r1, r2)⇐,

conflict(r1, r4)⇐,

conflict(r3, r2)⇐,

conflict(r3, r4)⇐ .

(16)

As far as priorities, the explicitly provided information from (14) is carried over to
the strict program; but in addition, following the recipe provided by Kowalski and
Toni, conflicting rules for which no explicit priorities are provided must each must
each be given a higher priority than the other. No priorities are provided for the
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conflicting rules r1 and r4, or for the conflicting rules r3 and r3, and so the program
must be supplemented with the statements

r1 < r4 ⇐,

r4 < r1 ⇐,

r2 < r3 ⇐,

r3 < r2 ⇐ .

(17)

The overall strict representation of the information from Figure 4 is thus the
program P containing (13), (14), (15), (16), and (17), as well as (2) and (3).

This strict program allows for two preferred assumption sets:

"1 = {∼ defeated(r1),∼ defeated(r3)},
"2 = {∼ defeated(r2),∼ defeated(r4)}.

The second of these is intuitively attractive, and yields the results supported by
skeptical inheritance reasoning: when supplemented with the assumption set "2,
the program P yields the conclusion ¬Wa. The first assumption set, however,
seems less attractive: when supplemented with "1, the program P yields the con-
clusion Wa. Since ¬Wa does not follow from both preferred assumption sets,
this statement is not generated as a skeptical conclusion. Contrary to the intuitions
underlying inheritance reasoning, we are not able to conclude that Ann is not
wealthy.

What is the difficulty? From an intuitive point of view, it seems that the as-
sumption set "1 should be, in some sense, overridden or preempted by the set
"2: the rule r1 is conclusively defeated by the rule r2 and the rule r3 is con-
clusively defeated by the rule r4. In fact, "2 does attack "1, since r2 defeats r1

and r4 defeats r3. But according to the KT logic, it turns out that "1 is able to
defend itself from this attack, since r3 defeats r2 and r1 defeats r4. The problem
here is that neither assumption belonging to this set – neither ∼ defeated(r1) nor
∼ defeated(r3) – should be tenable. When taken as a pair, however, each of these
untenable assumptions is able to buttress the other by attacking the assumption that
should conclusively defeat it, like two dissemblers each defending the veracity of
the other.

Although the KT logic does not involve reasoning with explicitly constructed
arguments, it is nevertheless possible to see the current difficulty presented by
Figure 4 as analogous to the problem that this example presented earlier, for the PS
logic. In the earlier case, the example was used to show that the idea of constructing
all arguments prior to the process of evaluation allowed certain unacceptable argu-
ments – α5 and α7 from that discussion – to perturb the overall pattern of defeat.
An iterative approach, similar to that followed in the inheritance literature, would
avoid this problem by requiring arguments to be evaluated upon construction, and
then immediately discarded if found to be unacceptable.

In the present case, the policy of considering all possible assumption sets is
in many ways like the previous policy of considering all possible arguments. The
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assumptions ∼ defeated(r1) and ∼ defeated(r3) are like the earlier arguments α5

and α7, supporting the conclusion that Ann is wealthy because she is a lawyer
or a Brentwood resident. These assumptions should not enter into considera-
tion, but should be individually defeated by the assumptions ∼ defeated(r2) and
∼ defeated(r4), supporting the conclusion that Ann is not wealthy because she is
a public defender and a Brentwood renter. Again, it may be worth exploring an
iterative approach, according to which assumptions are ordered in accord with the
arguments they support, and then evaluated – and either accepted or rejected – in
that order.

5.2. REINSTATEMENT

We illustrate the second problem by providing a KT logic formulation of the ex-
ample from Figure 7. The representation of this information as a defeasible logic
program would include the strict rules

NMEb⇐,

MEb⇐ NMEb,
1/2Mb⇐ 1Mb,

(18)

telling us that Beth is a new Microsoft employee, that she is a Microsoft employee
if she is a new Microsoft employee, and that she has half a million dollars if she
has a million dollars; the defeasible rules

r1 : 1Mb← MEb,
r2 : ¬ 1/2Mb← NMEb,
r3 : 1/2Mb← ,

giving us reason to believe that Beth has a million dollars if she is a Microsoft
employee, that she does not have even half a million dollars if she is a new Mi-
crosoft employee, but that she in fact has half a million dollars; and the priority
information

r1 < r2 ⇐,

r2 < r3 ⇐,
(19)

telling us that the defeasible information concerning new Microsoft employees is
to be given greater weight than the information concerning Microsoft employees
in general, but that the defeasible information concerning Beth in particular is to
be given even greater weight than that concerning new Microsoft employees.
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Transforming this representation into a defeasible program, we replace the three
defeasible rules listed above by the six strict rules

1Mb⇐ holds(r1),

holds(r1)⇐ MEb,∼ defeated(r1),

¬ 1/2Mb⇐ holds(r2),

holds(r2)⇐ NMEb,∼ defeated(r2),
1/2Mb⇐ holds(r3),

holds(r1)⇐ ∼ defeated(r3),

(20)

and supplement the result with statements registering the conflict between the rule
r2 and the rules r1 and r3:

conflict(r1, r2)⇐,

conflict(r2, r3)⇐ .
(21)

Since explicit priorities are listed for each pair of conflicting rules, no new priorities
must be added, and so the strict representation of the information from this example
is the program p containing (18), (19), (20), and (21), along with (2) and (3).

It is easy to see that this strict program allows for exactly one preferred
assumption set:

"1 = {∼ defeated(r1),∼ defeated(r3)}.
When taken together with the program p, the assumption set "1 yields both 1/2Mb

and 1Mb as conclusions. The skeptical interpretation of the KT logic thus allows
us to conclude, correctly, that Beth has half a million dollars, but also – contrary to
the intuitions underlying skeptical inheritance reasoning – that Beth has a million
dollars.

Again, although the KT logic does not involve the consideration of expli-
citly constructed arguments, it is possible to see the current difficulty presented
by Figure 7 as analogous to the difficulty that this example presented for the
PS logic – a matter of reinstatement. Intuitively, it seems that the assumption
∼ defeated(r1), supporting the conclusion that Beth has a million dollars since she
is a Microsoft employee, should be defeated by the assumption ∼ defeated(r2),
telling us that she does not have even half a million dollars since she is only a
new Microsoft employee. Why, then, is "1 not undermined by the assumption set
"2 = {∼ defeated(r2)}? In fact, "2 does attack "1. But "1 is able to defend itself
against this attack, since it also contains the assumption ∼ defeated(r3), telling
us that Beth does have half a million dollars, and so attacking the assumption
∼ defeated(r2). In allowing "1 to defend itself against the attack from "2, the
assumption ∼ defeated(r3) therefore attacks the assumption that attacks the as-
sumption∼ defeated(r1), and so, according to the theory, reinstates ∼ defeated(r1)

as a legitimate assumption. It is this assumption that supports the result that Beth
has a million dollars: reinstatement again leads to a peculiar conclusion.
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6. Conclusion

Argument systems offer a promising approach both in the analysis of defeasible
reasoning and also, more recently, as a foundation for negotiation and dispute-
resolution protocols in multi-agent systems. Nevertheless, these formalisms are
often complicated and occasionally based on unclear principles.

In this paper I have argued that two of the cleanest and most carefully developed
recent argument systems – the PS logic and the KT logic – support incorrect con-
clusions when applied in the simple domain of defeasible inheritance networks.
Although it is always difficult, in evaluating a system with multiple, interacting
components, to attribute problems to any one particular feature, I have identi-
fied two ideas in these argument systems, prominent also in a number of other
argument-based formalisms for defeasible reasoning, that seem to be responsible
for the difficulties. The first is the idea that the set of acceptable arguments should
be determined on the basis of a pattern of defeat relations holding among all
possible arguments, including those arguments that are to be definitively rejected.
The second is the idea of reinstatement – that an argument is acceptable, even if
defeated, as long as all the arguments that defeat it are themselves defeated. The
examples set out in this paper suggest that both of these ideas are mistaken.
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