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Abstract

Several recent papers describe algorithms for gen-
erating conditional and/or probabilistic plans. In
this paper, we synthesize this work, and present
a unifying algorithm that incorporates and clar-
ifies the main techniques that have been devel-
oped in the previous literature. Our algorithm de-
couples the search-control strategy for conditional
and/or probabilistic planning from the underlying
plan-refinement process. A similar decoupling has
proven to be very useful in the analysis of classical
planning algorithms, and we suspect it can be at
least as useful here, where the search-control deci-
sions are even more crucial. We describe an exten-
sion of conditional, probabilistic planning, to pro-
vide candidates for decision-theoretic assessment,
and describe the reasoning about failed branches
and side-effects that is needed for this purpose.

Introduction

Several recent papers describe algorithms for gen-
erating conditional and/or probabilistic plans. In
this paper, we synthesize this work, and present
a unifying algorithm that incorporates and clar-
ifies the main techniques that have been devel-
oped in the previous literature. Our algorithm de-
couples the search-control strategy for conditional
and/or probabilistic planning from the underlying
plan-refinement process. A similar decoupling has
proven to be very useful in the analysis of classical
planning algorithms (Weld 1994), and we suspect
it can be at least as useful here, where the search-
control decisions are even more crucial.!

Our algorithm relies on three techniques for deal-
ing with a plan with branching actions:

e corrective repair, introduced in the work
on conditional planning, which involves reasoning
about what to do if the desired outcome of the
branching action does not occur,

'We do not directly discuss search-control strategies
in this paper, but see our preceding work (Onder &
Pollack 1997).
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e preventive repair, introduced in the work on
probabilistic planning, which involves reasoning
about how to help ensure that the desired outcome
of the branching action will occur; and

o replacement, which is implemented by back-
tracking in the planning literature, and involves re-
moving the branching action and replacing it with
an alternative.

We wuse our algorithm to describe an ex-
tension of conditional, probabilistic planning—
namely, providing candidates for decision-theoretic
assessment—and we describe the reasoning about
failed branches and side-effects that is needed for
this purpose.

Background

When a planning agent does not have complete
knowledge of the environment in which its plans
will be executed, it may have to create a conditional
plan, which includes observation steps to ascertain
the unknown conditions. Using an example based
on that of Peot and Smith (Peot & Smith 1992), we
can imagine a planning problem in which the goal
is to get go skiing, but the planning agent does not
know whether the road leading from the highway to
the skiway is open. The plan formed thus involves
driving on the highway to the road in question, ob-
serving whether it is open, and if so, continuing on
to the skiway and go skiing.

Conditional planning systems (Warren 1976;
Goldman & Boddy 1994a; Peot & Smith 1992;
Pryor & Collins 1996) generate plans that have
branching actions, i.e., actions with (at least) two
possible outcomes. One of these outcomes (the de-
sired outcome) will be linked to a later step on the
path to the goal, while the other(s) (the undesired
outcomes) will not. We will also refer to an unlinked
outcome as a dangling edge.? In the skiing example,
the knowledge that the road is open is the desired

2To simplify presentation, the authors of the systems
under discussion have focused on observation actions
with binary outcomes. We will follow this practice here.
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Figure 1: Plan for picking up a part.

outcome, while knowledge that it is closed is the
undesired outcome. The plan is guaranteed to suc-
ceed if the desired outcomes of all its observation
actions occur; there is no such guarantee otherwise.

Intuitively, one way to improve such a plan is
to figure out what to do if some observation step
has an undesired outcome. We will call this a cor-
rective repair, since it involves figuring out actions
that can be taken to correct the situation that re-
sults after the undesired outcome occurs. For the
skiing example, one corrective repair might be to
drive further down the highway and try a differ-
ent road to the skiway. In practice, conditional
planners implement corrective repairs by duplicat-
ing the goal state, and attempting to find a plan
that will achieve the (duplicated) goal state without
relying on the assumption that any of the observa-
tion actions in the original plan have their desired
outcomes.

A different approach to the problem of uncer-
tainty during planning is taken in probabilistic
planners. Where conditional planners assume that
agents have no information about the probability
of alternative action outcomes, but will be able
to observe their environments during plan execu-
tion, probabilistic planners such as Buridan (Kush-
merick, Hanks, & Weld 1995) make just the oppo-
site assumption: they assume that planning agents
have knowledge of the probabilities that their ac-
tions will have particular outcomes, but that they
will be unable to observe their environment. Typi-
cally, actions are modeled with a finite set of tuples
< t;,pi,j,€4,; >, where the t; are a set of exhaustive
and mutually exclusive triggers, and p; ; represents
the probability that the action will have effect e; ;
if ¢; is true at the time of the action’s execution.
The triggers serve the role of preconditions in stan-
dard POCL planners. In the example plan fragment
shown in Fig. 1, the PICK-UP step has been inserted
to achieve the goal of holding the part, and there is
thus a causal link from that to the goal. The trig-
ger for holding-part is part-dry, and a DRY step has
been inserted to probabilistically make that true.

As can be seen, this plan is not guaranteed to
succeed. Consider the possible failures that may be
related specifically to the PICK-UP step. If the part
is not dry, the step will fail to achieve the desired
outcome of holding the part. Intuitively, a plan-

ner might therefore help to prevent this undesired
outcome from occurring, by increasing the proba-
bility that the part is dry. One way to do this is
to add a second DRY step. We can call this a pre-
ventive repair, since it involves adding actions that
help prevent the undesired outcome.

Even if one or more of the DRY steps have their
desired outcomes and the part is dry at the time of
the pick-up, there is still no guarantee that the pick-
up will be successful. Nothing can be done to in-
crease the probability that the pick-up will succeed
if the part is dry, but of course, preventive repairs
could be performed for the PAINT step that requires
holding-part, e.g., by adding a second PICK-UP step.

It is only natural to combine the ideas of con-
ditional and probabilistic planning, since often a
planning agent both will have prior knowledge of
the probabilities associated with the outcomes of
its actions, and will be able to observe its environ-
ment during plan execution. 3

The first combined conditional, probabilistic
planning system was C-Buridan (Draper, Hanks,
& Weld 1994). Interestingly, while C-Buridan uses
preventive repair to increase the probability of suc-
cess, it does not use corrective repair to gener-
ate conditional branches. Instead, its branches are
formed in a somewhat indirect fashion, and result
only from detecting a conflict between two actions
that have both been introduced to support some
condition. The Plinth conditional-planning system
was also expanded to perform probabilistic reason-
ing (Goldman & Boddy 1994b). The focus of this
project was on using a belief network to reason
about correlated probabilities in the plan. Another
system designed by Goldman and Boddy can cre-
ate plans that achieves the goals in all the possi-
ble cases without using observation actions (con-
formant planning)(Goldman & Boddy 1996).

Two more recent systems that combine con-
ditional and probabilistic planning are Weaver
(Blythe & Veloso 1997) and Mahinur (Onder &
Pollack 1997). Both these systems more closely fol-
low the general model described above: they pro-

3The Just-In-Case algorithm (Drummond, Bresina,
& Swanson 1994) involves creating an initial schedule
and building contingent schedules for the points that
are most likely to fail. We focus on planning algorithms
in this paper.



PLAN (init, goal, T)
plans + { make-init-plan ( init, goal ) }

while plan-time < T and plans is not empty do

CHOOSE (and remove) a plan P from plans

SELECT a flaw f from P.
add all refinements of P to plans:

plans < new-step(P, f) U step-reuse(P, f)
if f is an open condition,

plans < demote(P, f) U promote(P, f) U confront(P, f) U add-observe-1link(P, f)

if f is a threat.

plans < corrective-repair(P, f) U preventive-repair (P, f)

return (plans)

preventive-repair (plan, f)

if f is a dangling-edge.

open-conditions-of-plan < triggers for the desired outcomes of the

action in f.
return (plan)

corrective-repair (plan, f)

top-level-goals-of-plan <+ top-level-goals-of-plan U top-level-goals-of-plan labeled
not to depend on the desired outcomes of the action in f.

return (plan)

Figure 2: Conditional, probabilistic planning algorithm.

duce an initial plan, and then perform both preven-
tive and corrective repairs to improve it.* Weaver
was built on top of a bidirectional planner (Prodigy
4.0), and therefore uses a different set of basic plan
generation operations than those described in this
paper. The Weaver project focuses on efficiently
reasoning about which actions to choose in order
to most quickly improve the likelihood of success
(Blythe 1995); both preventive and corrective re-
pair are then considered for those actions. Un-
like most of the other planners, it also includes ex-
plicit mechanisms for dealing with external events.
Mahinur was built on top of a backward chaining
planner (Buridan), and introduces utility functions
to reason not just about a plan’s probability of suc-
cess, but also about its expected value. It also uses
a different set of techniques than Weaver for se-
lecting the branching actions to focus on, reason-
ing directly on the plan graph instead of using a
separate Bayes net mechanism. It focuses on ex-
plicit mechanisms for selecting failures. This fea-
ture is complementary to the Weaver framework—
Mahinur deals with which failure points to consider
first, and given a failure point, Weaver’s action se-
lection mechanism can determine the best way to

4In Mahinur, the mechanism for preventive repairs
has not yet been implemented.

correct it.

In the next section, we will first describe a gen-
eral algorithm that uses the basic conditional, prob-
abilistic planning operations, and then describe a
modified version that provides plans for assessment.

Algorithm

Based on the discussion above, we can now provide
a clear algorithm for conditional, probabilistic plan-
ning (Fig. 2). The algorithm rests on the obser-
vation that this type of planning involves repairing
plan flaws (closing an open precondition and resolv-
ing a threat) and repairing dangling edges (correc-
tive repair and preventive repair). The input is a
set of initial conditions, a set of goal conditions, and
a time limit 7'. The output is a set of plans. The al-
gorithm is a plan-space search, where, as usual, the
nodes in the search space represent partial plans.
We assume that actions are encoded using the prob-
abilistic action representation described above. To
achieve an open condition ¢, the planner will find
an action that includes a branch < t;,p; j,e;; >,
such that one of the elements of e; ; unifies with c.
The relevant trigger ¢; will then become a new open
condition. Note that a condition ¢ remains “open”
only so long as it has no incoming causal link; once
an action a has been inserted to (probabilistically)



PLAN (init, goal, T)
plans «+ { make-init-plan ( init,goal) }
gp-plans < 0

while plan-time < T and plans is not empty do
CHOOSE (and remove) a plan P from plans

if P is quasi-complete then
gp-plans < qp-plans U P
SELECT a dangling edge f from P

plans < corrective-repair(P, f) U preventive-repair (P, f)

else
SELECT a flaw f from P.
add all refinements of P to plans:

plans + new-step(P, f) U step-reuse(P, f) if f is an open condition,
plans + demote(P, f) U promote(P, f) U separate (P, f) U confront(P, f)

return (gp-plans)

if f is a threat.

Figure 3: Modified conditional, probabilistic planning algorithm.

produce ¢, it is no longer open, even if a has only
a small chance of actually achieving c.

We assume that preventive repair is achieved by
reintroducing the triggers for desired effects into
the set of open conditions, as done in Buridan; we
assume corrective repair is achieved by adding new,
labeled copies of the goal state as in CNLP. Consis-
tent with the prior literature, we use SELECT in
our algorithm to denote a non-deterministic choice
that is not a backtrack point, and CHOOSE for a
backtrack point. As usual, node selection, but not
normal flaw selection, is subject to backtracking.

We will call a plan quasi-complete if it has no
open conditions or unresolved threats, and modify
the above algorithm to incorporate quasi-complete
plans as shown in Fig. 3. This algorithm involves
forming a quasi-complete plan, deciding which dan-
gling edges in it to handle, and then repairing those
edges by, intuitively, figuring out what to do if the
chosen actions have undesired outcomes, and/or
figuring out how to make the chosen action’s de-
sired outcome more likely.

There are two types of partial plans in the search
space: normal plans and quasi-complete plans.
Normal plans are refined in the usual way, by
selecting either an open condition and establish-
ing it, or by selecting a threat and resolving it.
Quasi-complete plans are treated differently. First,
the planning algorithm treats all quasi-complete
plans as potential solutions to the planning prob-
lem. Therefore, whenever a quasi-complete plan is
found, it is stored into the set of plans to be re-
turned at the end of processing. Second, a quasi-
complete plan may be subject to further refine-
ment, to improve its probability of success. The

procedures for corrective and preventive repairs are
therefore invoked. The successor nodes generated
by these procedures are normal nodes, and thus will
be subject to normal refinement for at least one it-
eration of the main loop.

The output of this algorithm is a set of quasi-
complete plans, which may be subsequently evalu-
ated, as we describe in the next section.

Outcome Completion

Existing planners all attempt to find a plan that
achieves a given goal with a probability exceed-
ing some threshold. They implicitly assume that
the cases in which the plan fails are all equiva-
lent, and they explicitly assume that the cases in
which it succeeds are all equivalent. Of course, nei-
ther of these assumptions is true in general. Some
plan failures are worse than others. Moreover, even
if we maintain the assumption that the achieve-
ment of a specific goal has a fixed value, different
plans may have different “side-effects” that influ-
ence their value. A plan P that has a higher prob-
ability of achieving a goal G may nonetheless be
less desirable than some other plan @ with lower
probability of achieving G, because either the situ-
ation that will result should P fail will be bad, or
because the side-effects associated with P’s success
are bad, or both.

This observation is the basis of the well-
established field of decision theory. The classic
example that illustrates the problem is Savage’s
omelet-making example (Savage 1972, pp. 13-14):

“Your [spouse] has just broken five good
eggs into a bowl when you come in and vol-
unteer to finish making the omelet. A sixth
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Figure 4: A quasi-complete plan for making an omelet.

State

Alternative Egg Good

| Egg Rotten

break into bowl 6-egg omelet

no omelet, 5 good eggs destroyed

break into saucer | 6-egg omelet, saucer to wash

5-egg omelet, saucer to wash

throw away

5-egg omelet, 1 good egg destroyed | 5-egg omelet

Table 1: Savage’s Omelet Decision Problem (adapted from (Savage 1972)).

egg, which for some reason must either be used
for the omelet or wasted altogether, lies unbro-
ken beside the bowl. You must decide what to
do with this unbroken egg. Perhaps it is not
too great an oversimplification to say that you
must decide among three acts only, namely, to
break it into the bowl containing the other five,
to break it into a saucer for inspection, or to
throw it away without inspection. Depending
on the state of the egg, each of these three acts
will have some consequence to you ...”

The consequences, of course, depend on whether
the egg happens to be good or rotten, as illustrated
in Table 1. While decision theory provides a way of
comparing these alternatives, what it does not pro-
vide is an account of where the alternatives come
from in the first place. The planning algorithms
we have been considering, however, can do just
this. In particular, the quasi-complete plans that
are returned by the second algorithm in the previ-
ous section can constitute the alternatives to which
decision-theoretic reasoning should apply. How-
ever, for this approach to work, additional reason-
ing must be performed to compute the “comple-
tions” of the quasi-complete plans.

We illustrate the idea of completion computa-
tion with Savage’s omelet example. Fig. 4 shows
a quasi-complete plan that would be found by our
algorithm, given the CRACK-EGG and COOK-EGGS Op-
erators depicted. (For clarity, we have omitted the
initial state, and some preconditions/effects that
are not immediately relevant.) This corresponds to
the first alternative in Table 1: it is the obvious
plan in which the agent cracks the egg directly into
the bowl already containing five other eggs. How-
ever, this plan contains a dangling edge: the one
that will occur after CRACK-EGG is performed, if the
egg is bad. To assess this plan, we need to deter-
mine what the state of the world will be, should this
outcome occur. This can be computed by means of

action progression, as it is commonly understood
in the planning literature. A linearization of the
plan must be selected, and then the results of each
action in sequence must be computed.

The particular plan shown in Fig. 4 cannot be re-
fined by either preventive or corrective repair: there
is no way to increase the probability that the egg
will be good, and, if the egg is bad, once it has been
cracked into the bowl with the other eggs, there is
no way to recover from the mess created. However,
another quasi-complete plan that would be formed
by our algorithm corresponds to the second alter-
native in Savage’s table: here the agent first cracks
the egg into a saucer, then observes it, and, if it is
good, dumps it into the bowl with the other five
eggs.

Again, in order to evaluate this plan, it is neces-
sary to know what the outcome will be should the
branching action—this time, an observe action—
have its undesired outcome. But it is also im-
portant here to note that even when the goal s
achieved—i.e., when there are six eggs cracked into
the bowl—the plan will have a negative side-effect,
namely, that there will be an extra dirty saucer.
What this suggests is that action progression needs
to be performed not only for the states that follow
dangling-edges, but also for the goal states them-
selves. This is a departure from standard planning
algorithms, which assume that so long as the goal
propositions are achieved, it does not matter what
else is achieved as well.

The last of the alternatives in Savage’s table is
quite interesting, since it describes a plan to achieve
a different goal than the original one: namely, the
goal in which the omelet has only five eggs. We
suggest that the new goal may be generated from
an analysis of the previous plan, along the following
lines. Assume that the planner begins with a goal
of G. In the process of trying to form plans for G,
it finds one with two branches. In the first branch,



outcome completion results in a final state includ-
ing < G, d >, where d is some detractor, i.e. a side-
effect with negative impact. In the second branch,
outcome completion yields < G',d >, where d is
the same detractor, and G’ is a goal that is reason-
ably close to G (in this case, having 5 eggs instead
of 6 in the bowl). This configuration of outcomes
may suggest to the planner that it try and form a
plan for the transformed goal G, seeking a solution
that does not have the negative side-effect d. We
suspect that other such goal-transformation prin-
ciples can be derived from an analysis of outcome
completion, but leave this to future research.

There have only been a few prior efforts at
decision-theoretic planning. The best known and
most well-developed of these is the DRIPS system
(Haddawy & Suwandi 1994). DRIPS takes a very
different approach to the problem. It is a hierarchi-
cal task-network (HTN) planner, which computes
the expected utility of each plan it expands, and
prunes those whose possible utility is dominated
by other options. The mechanisms for handling un-
certainty in an HTN framework are quite different
from those in the causal-link framework: much of
the reasoning that is encoded as preventive and cor-
rective repair is done by the designer of the HTN
task networks, rather than by the system during
plan expansion.

DRIPS interleaves plan expansion and decision-
theoretic assessment, which is another significant
difference from the approach we are describing. In-
deed, it is reasonable to ask why we have chosen
not to do this interleaving as well. To some ex-
tent, our algorithm does rely on assessments that
will occur during the planning process, in particu-
lar, in the implementation of the CHOOSE and SE-
LECT decision. But in many circumstances, it may
be reasonable to generate several alternatives—our
quasi-complete plans—and store them for future
use. Once the alternatives have been computed
and stored, they can be recalled in subsequent sit-
uations, and decision-theoretic assessment can be
directly applied, using the particular probability
and utility functions that pertain to the current set-
ting. Once you have figured out that you can first
crack an egg into a saucer and only then dump it
in with the other eggs, you can thereafter consider
this alternative without “rediscovering” it. Some-
times you may decide to use it (say, because it’s
very important to you to that the other eggs not
be ruined, since you’re preparing a special dish for
guests), while other times you may decide not to
use it (say, because you haven’t seen a rotten egg
in three years, and expect that the probability that
this particular egg is quite low). The generation
and computation of the outcomes of quasi-complete
plans can thus be seen as a means of populating a
case-base for later re-use.

Conclusion

In real-world environments, planners must deal
with the fact that actions do not always have cer-
tain outcomes, and that the state of the world will
not always be completely known. Good plans can
nonetheless be formed if the agent has knowledge
of the probabilities of action outcomes and/or can
observe the world. Intuitively, if you don’t know
what the world will be like at some point in your
plan, there are two things you can do: (i) you can
take steps to increase the likelihood that it will be
a certain way, and (ii) you can plan to observe the
world, and then take corrective action if things are
not the way you would like them to be. These ba-
sic ideas have been included, in different ways, in
the prior literature on conditional and probabilistic
planning. The focus of this paper has been to syn-
thesize this prior work in a unifying algorithm that
cleanly separates the control process from the plan
refinement process.

Finally, we discussed the use of our planning al-
gorithm as a source of alternatives for decision-
theoretic assessment. We described the importance
for this purpose of computing the failed states and
side-effects in goal states, and we suggested that
the analysis of the computed states can suggest new
goals for consideration. We consider this last ques-
tion, of how planning itself can lead to transformed
goals, to be particularly interesting and important,
and we plan to pursue it in our future research.
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