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Abstract

Progress in cognitive robotics can come either
from efforts to provide physical robots with more
autonomy, or from efforts to make Al techniques
more generally applicable to the needs of robotic
agents. We are conducting research on dynamic
plan management, which is an instance of the lat-
ter type of effort. In this paper, we provide an
overview of our research project. Plan manage-
ment is the process (or set of related processes)
by which a goal-directed agent coordinates, up-
dates, and monitors its plans in response to on-
going changes in its environment. We discuss the
main challenges in automating plan management,
and then illustrate our approach by focusing on
one plan management task: evaluating options
for action in the context of existing plans. We
also briefly describe the Plan Management Agent
(PMA), a system we are building as a testbed for
our plan management theories. Although PMA
is not a robotic system, we are interested in also
applying dynamic plan management techniques to
mobile robots, which is why we are participating
in this symposium.

Introduction

Cognitive robotics is aimed at bridging the gap be-
tween traditional Al research and traditional research
in robotics. The former has studied a wide range of rea-
soning processes, including processes for forming plans
to achieve goals. However, it has not paid adequate
attention to the issues involved in grounding those pro-
cesses in real, changing, uncertain environments. In
contrast, robotics research has concentrated on the in-
teraction between reasoning processes and the environ-
ments in which they are performed, but the reasoning
processes studied have generally been fairly “low-level”,
aimed at tasks like path planning or object recognition.
Clearly, there is a need to develop and analyze tech-
niques for high-level reasoning by agents situated in
real environments. Progress towards this goal can come
from either of two directions: from efforts to provide
physical robots with more autonomy, or from efforts to
make Al techniques more generally applicable.
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We are conducting research on dynamic plan man-
agement, which is an instance of the latter type of ef-
fort. In this paper, we provide an overview of our re-
search project. Plan management is the process (or set
of related processes) by which a goal-directed agent co-
ordinates, updates, and monitors its plans in response
to ongoing changes in its environment. We discuss the
main challenges in automating plan management, and
then illustrate our approach by focusing on one plan
management task: evaluating options for action in the
context of existing plans. We also briefly describe the
Plan Management Agent (PMA), a system we are build-
ing as a testbed for our plan management theories. Al-
though PMA is not a robotic system, we are interested
in also applying plan dynamic management techniques
to mobile robots, which is why we are participating in
this symposium.

Background

A significant amount of prior research effort in the field
of Artificial Intelligence has gone into the design and
analysis of planning algorithms. For the most part,
this work has been guided by several strong, simplifying
assumptions, most notably, that the plans will be per-
formed in static, deterministic environments. Although
these assumptions have made rigorous formal analysis
possible, and indeed, may have been required for initial
progress in the field, they make sense only for a limited
number of applications, in which planning is done more
or less in isolation of other reasoning tasks, and also in
isolation of plan execution. Once we turn our atten-
tion to agents that perform autonomously in dynamic,
uncertain environments, the assumptions made by tra-
ditional planners are violated, and it becomes necessary
to rethink the traditional Al approaches to planning.
In fact, we argue that the rethinking required is
quite radical. Traditional Al planning systems do one
thing: they form plans, that is, sequences of actions
that lead to a specified goal state when executed in
a specified initial state. To give up the assumptions
of traditional planning, one needs to change the rep-
resentations and algorithms used to form plans. A
body of recent work has been aimed at doing just
that, e.g., by developing algorithms for conditional



(Etzioni et al. 1992; Peot & Smith 1992; Collins &
Pryor 1995) and probabilistic planning (Blythe 1998;
Draper, Hanks, & Weld 1994; Kushmerick, Hanks, &
Weld 1995; Goldman & Boddy 1994; Onder & Pollack
1997), and for generating plans in the context of time-
dependent utility functions (Williamson & Hanks 1994;
Haddawy, Doan, & Goodwin 1995).

But changing the way in which plans are formed is
only part of what is required. The demands of dynamic,
uncertain environments mean that in addition to be-
ing able to form plans—even probabilistic, uncertain
plans—agents must be able to effectively manage their
plans. That is, they need to be able to decide which
planning problems to consider in the first place. They
need to be able to form incomplete plans now, adding
detail later, and they thus need to be able to decide
how much detail to include now and when to add more
detail. They need to be able to weigh alternative in-
complete plans, and to decide among competing alter-
natives. They need to be able to integrate plans with
one another, and to decide when to treat an existing
plan as an inflexible commitment and when, instead, to
consider modifications of it.

Some of the issues that arise in plan management
have been studied in the design of plan execution sys-
tems (sometimes also called “reactive planners”), in
which the process of deciding which actions to perform
is interleaved with the process of executing those ac-
tions (Firby 1996; Gat 1992; Georgeff & Ingrand 1989).
However, most of the work on plan execution focuses
on controlling a set of processes that are either im-
mediately executable or have been suspended but will
become executable in response to a particular, known
trigger. Plan execution technology has been less con-
cerned with the issues that arise when an agent must
not only control its current activities, but also manage
future commitments.

An Iustration of Plan Management

We can illustrate the reasoning tasks involved in plan
management by means of a simple example, based on
the kind of reasoning that humans perform daily. Sup-
pose you have an lecture to present on Monday morn-
ing. The week before, you decide to prepare the lec-
ture over the weekend. You don’t decide exactly when
you will do the preparation, because your other week-
end tasks are not fixed yet, and you are confident that
you will have sufficient time during the weekend for the
preparation. On Friday, before you leave the office for
the weekend, you decide on the general outline of the
lecture, so that you can bring home the books you will
need for the preparation. On Saturday morning, you
decide that you will do errands on Saturday, go to a
movie Saturday night, and prepare your lecture on Sun-
day. However, Saturday afternoon, you receive a phone
call from a friend who has an extra ticket to the football
game on Sunday afternoon. You therefore revise your
plans, and decide not to go to the movie, but instead
to begin preparing your lecture on Saturday evening.

You’re not sure whether you’ll be able to complete it
Saturday evening, but you know that if you can’t, you
will still have time to do so Sunday evening, after the
football game.

This scenario illustrates the type of reasoning tasks
we need to model. Plan management consists in making
the following sorts of decisions:

e How much detail should now be included in the plans
being formed, and how much can be deferred? In the
current example, it is important to decide on the gen-
eral outline of the lecture on Friday, so that you can
bring home the right books, but it is not necessary
to determine all the details yet.

e When should the missing detail be filled in? You
can wait until the weekend to decide exactly when
to prepare the lecture. However, once you receive
the phone call about the football ticket, you need to
decide when you will prepare the lecture, so that you
can determine whether it is possible to attend the
game and still successfully carry out your existing
plan.

e When should existing plans be modified or re-
planned? This decision is relatively easy when some-
thing occurs that causes a plan to break: in such
cases, replanning is obviously required. The question
is more difficult in cases in which an existing plan is
still sound, but where the possibility of modification
is suggested by a new opportunity. This kind of situ-
ation occurs in our example, where it is still possible
for you to adhere to your original plan of preparing
the lecture Sunday afternoon, but where replanning
is necessary if you would rather go to the football
game.

e How can a partial plan be evaluated in the context of
existing commitments? In the current example, one
“cost” of attending the football game is that you can
no longer attend the movies.

Our current research project focuses on developing au-
tomated mechanisms for making these kinds of deci-
sions. In the next section, we describe our approach to
one of these questions: evaluating a a plan in context.

Evaluating Options in a Context

The theory of rational choice, as formulated in the eco-
nomic and philosophical literature, assumes that agents
evaluate alternative actions by reference to a probabil-
ity distribution over their possible outcomes together
with a utility function defined on those outcomes: in
the simplest case, the agent combines probability and
utility into a notion of expected utility defined over ac-
tions, and then chooses some action whose expected
utility is maximal. Our approach to this problem dif-
fers in two important ways from that of classical deci-
sion theory. First, while decision theory assumes that
the utility of an outcome is given as part of the back-
ground setting, we note that the overall desirability of



an option presented to an agent is often not immedi-
ately apparent; and we are explicitly concerned with
the mechanism through which it might be discovered.
We focus, in particular, on the case in which the op-
tion presented to an agent has a known benefit, but
requires some effort—the execution of a plan—for its
achievement. In order to evaluate the overall desirabil-
ity of the option, the agent thus has to arrive at some
assessment of the cost involved in achieving it.

Second, we insist that the task of evaluating an option
should be computationally realizable; and in particular,
our work here is developed within the theoretical frame-
work first articulated in (Bratman 1987), and then fur-
ther elaborated in (Bratman, Israel, & Pollack 1988;
Pollack 1992), according to which it is best to view a
resource-bounded agent as operating always against the
background of some current set of intentions, or plans.
In contrast to standard decision theory, where actions
are evaluated in isolation, we develop a model in which
the options presented to an agent are evaluated against
a background context provided by the agent’s current
plans—commitments to future activities, which, at any
given point, may themselves be only partially specified.
The interactions between the new option and the back-
ground context can complicate the task of evaluating
the option, rendering it either more or less desirable in
context than it would have been in isolation.

Here, we sketch our theory for a restricted setting,
in which all plans are primitive (not hierarchical) and
complete, and all actions have deterministic outcomes.
In this simple setting, the only ways in which one plan
can influence the cost of another is by allowing or block-
ing the possibility that separate steps might be merged
into one. Although our restriction to this special case
prevents us from considering many of the more interest-
ing ways in which plans might interact, even this very
simple setting is sufficiently rich to allow us to illus-
trate the shape of our theory, and we defer a detailed
treatment of more complicated plan interactions to sub-
sequent, work.

Primitive plans

Basic concepts We represent primitive plans using
the standard formalism in which a plan consist of a
set of steps, temporal constraints on those steps, and
causal links, which record dependency relations among
steps. As usual, we assume a set of action types, de-
fined in terms of preconditions and effects (for clarity,
we limit our attention only to propositional precondi-
tions and effects). The plan steps are instances of the
action types. We allow for both qualitative and quan-
titative temporal constraints; the latter associate steps
with actual time points. To this end, we model time as
a totally ordered set of moments {mg, my,...}, where
m; < m; if and only if ¢ < j, and we assume here that
each step occupies a single moment of time.

Definition 1 (Primitive plan) A primitive plan P is
a triple of the form (S, 0, L), with these components

defined as follows: & is a set of steps of the form S;, each
associated with a time indicator ¢;; O is a set of ordering
constraints, of the form ¢; = ¢;, t; < t;, t; = my, or
t; < my, where ¢; and ¢; are time indicators associated
with steps belonging to § and my, is a moment; £ is a
set of causal links of the form (Sj, @, S;), where @ is
an effect of the step S; and a precondition of the step
S;.

We assume a function Type associating each step S;
with Type(S;), its action type. We require O to con-
tain a temporal constraint of the form #; < ¢; whenever
there is a link {S;, @, S;) in £. And we suppose that an
entailment relation  is defined on the temporal con-
straint language, allowing us to draw out implicit con-
sequences (for example, {t; = m,t; < t;} F t; < m),
and providing us, also, with a notion of consistency for
a set of temporal constraints.

Below, we will use as illustration a plan to
buy a shirt at the mall, represented as Py =
<81,01,£1>, where 81 = {51,52,53,54}, 01 =
{t1 < t3,t2 < t3,t3 < tayts = mg}, and L1 =
{<517 Aa 53>7 <527 Ba 53>7 <537 Ca S4>} Step Sl repre-
sents the action of going to the mall; Sy is the action
of bringing one’s wallet (which, we suppose, includes a
credit card); S3 represents the action of actually buy-
ing the shirt; and S4 is a dummy step representing the
achievement of the goal. The first three temporal con-
straints are qualitative ones, inherited from the causal
links, while the fourth is a quantitative constraint spec-
ifying that S3 must be performed precisely at mg (the
moment, perhaps, that the shirt is on sale).

We will say that a plan is scheduled when each of its
steps has been assigned a specific moment of execution.
In this paper, we prohibit schedules with concurrent
actions, although, importantly, two steps of the same
action type can be merged—assigned to the same mo-
ment of execution.

Definition 2 (Schedules) A schedule for a plan P =

(8,0, L) is a set of constraints O such that: (1) there
is a constraint of the form ¢; = m in O for each S; in S;
(2) OU O is consistent; and (3) Type(S;) = Type(S;)
whenever O U O F t; = t;. The plan P is said to
be scheduled whenever there exists a set of constraints
O C O such that O is a schedule for the plan; P is said
to be schedulable whenever there exists a schedule for
it.

As an example, the constraint set O = {t; = mg,ty =
ma,t3 = mg,ta = mr} is a schedule for the plan Py
above, showing that this plan is schedulable. Of course,
a plan whose ordering constraints are themselves incon-
sistent cannot be scheduled, but even a plan whose or-
dering constraints are consistent may nevertheless fail
to be schedulable, since its only consistent lineariza-
tions may be those in which type distinct steps are as-
signed to the same moment. Schedulability is thus a
stronger requirement than mere consistency of tempo-
ral constraints.



We focus here on plans that are complete, in the sense
that no further planning is needed in order to guaran-
tee the preconditions of their various steps, although
additional scheduling may still be required.

Definition 3 (Complete plans) Let P = (8,0, L)
be a plan. A precondition A of a step S; from & is
established whenever there is some link (S}, 4, S;) in L.
A link (S;, A, S;) from £ is threatened whenever there
is both an action Sg in § with effect —=A and a schedule
O for P such that @ UO + t; < tp <t;. The plan P
is complete just in case each precondition of each step
from & is established and no link from £ is threatened.

This definition of plan completeness is equivalent to
the standard notion from the literature, except that
it replaces the idea of temporal consistency with the
stronger notion of schedulability.

In order to assess the desirability of a new option
against a background context, we need to be able to
reason about the plans that are formed when two others
are combined, as follows.

Definition 4 (Union of plans) Given plans P =
(8,0,L) and P’ = (§',0', L), the union of the two
plansis PUP' =(SUS,OU O, LUL').

Note that the union of two independently schedulable
plans might not be schedulable, since their temporal
constraint sets may not even be jointly consistent; also,
the union of two complete plans might not be complete,
since steps in one may threaten links in the other. If
the union of two complete plans can be made complete
and schedulable simply through the addition of ordering
constraints, we say that the plans are strongly compat-

ible.

Definition 5 (Strong compatibility)

Let P = (S,0,L) and P’ = (8,0, L") be complete
plans. Then P and P’ are strongly compatible just in
case there is a temporal constraint set @ such that
(SUS,0UO'UO”, LUL') is complete and schedula-
ble.

As an example, consider the plan Py = (Sz2, Oz, L2},
where Sy = {55,5}, O2 = {t5 < ts}, and L2 =
{{(Ss, D, S¢}}, and where the step S5 has D and -4
as effects. (Intuitively, P2 might represent the plan of
going home, with D representing the proposition that
the agent is at home, and —A, of course, the propo-
sition that the agent is no longer at the mall.) Then
P, and the previous P; are strongly compatible, as
shown by the constraint set O = {t3 < t5}, since
(S1US82, 01 U0 U0", L1UL3) is complete and schedu-
lable.

The notion of strong compatibility is just that: very
strong. It does not allow either of two compatible plans
to be modified in any way, but only supplemented with
additional scheduling information, in order for their
joint execution to be guaranteed. This notion is not,
however, the strongest available. A stronger notion is
that of perfect compatibility, where two complete plans

‘P and P’ are defined as perfectly compatible just in case
their union PUP’ is itself complete and schedulable. Tt
is easy to see that Py and Pa, though strongly compat-
ible, are not perfectly compatible, since the joint plan
P1UP, allows for schedules in which S5 occurs between

S1 and Ss, threatening the link (57, A4, S3).

Semantics Eventually, we will want to interpret a
plan as specifying a set of allowed futures—intuitively,
those futures consistent with an execution of the plan.
For reasons of space, however, we restrict ourselves in
this paper to a simpler account, in which complete and
scheduled plans, rather than futures, are taken as the
points in the semantic space, and more abstract plans
are associated with sets of these.

We begin by adapting the notion of refinement
(Kambhampati, Knoblock, & Yang 1995) from the plan
generation literature.

Definition 6 (Refinement; C ) Let P = (S,0, L)
and P’ = (8,0, L) be plans. Then P’ is a refine-
ment of P (P C P’) just in case S C & and O C O’
and £L C L'

Letting IT represent the set of complete and scheduled
plans, we define the semantic interpretation of a plan
as follows.

Definition 7 (Interpretation; v[P]) The interpre-
tation of a plan P is the set of its complete and sched-

uled refinements: v[P]={P’': PC P’} NIL

The idea, of course, is that a plan is to be interpreted
as the set of ways in which it might be carried out, and
so it is natural to define a plan as consistent whenever
there is some way in which it can be carried out.

Definition 8 (Plan consistency) A plan P is con-
sistent just in case v[P] # 0.

Note that a complete plan is consistent just in case it is
schedulable, and that an incomplete plan is consistent
just in case it has a complete and schedulable refine-
ment.

Evaluation of options

For the purposes of this paper, we define an option as
a complete plan that is presented to an agent for ac-
ceptance or rejection. We suppose that an agent eval-
uates each new option P against the background of a
context C, some plan to which it is already commit-
ted, and that the process of evaluation proceeds as fol-
lows. First, the agent determines whether P is com-
patible with C—where, for the purposes of this paper,
we will assume that the concept of compatibility can
be usefully approximated through our notion of strong
compatibility—and if not, P is rejected. Of course,
this policy of immediately rejecting incompatible op-
tions is a considerable simplification. More realistically,
an agent faced with an incompatible option P could
explore either local revisions to the plan that might
guarantee compatibility, or else alternative plans for
achieving the goal that P aims at; and if the goal is



valuable, the agent might also consider modifications
of his background context. However, we cannot exam-
ine these more sophisticated alternatives in the present
paper.

Assuming compatibility, then, the agent should ac-
cept the new option just in case its benefit outweighs
its cost in the context. Again, we simplify by suppos-
ing that the benefit of the option P—represented here
as B(P)—is both apparent and independent of context
(in the most natural case, this benefit will derive from
the goal state at which the plan is directed). All that
remains to be specified, then, is the cost of the new
option P in the context C.

Cost in isolation

We begin by defining the cost of a plan in isolation. We
take as given a function Cost mapping action types into
real numbers representing their costs, and assume that
the function is extended to the steps of a plan in the
natural way: Cost(S;) = Cost(Type(S;))-

Next, we introduce an auxiliary notion of point cost,
defined only for complete, scheduled plans—the points
in the semantic space. Where P = (S,0, L) is such
a plan, we partition the plan steps into sets of actions
forced (by the temporal constraints) to occur at the
same moment, taking [S;] = {S; : O F t; = t;} for
each S; € S. We then let [P] represent the set of these
equivalence classes: [P] = {[S;] : S; € §}. It follows
from our definition of a schedule that steps in the same
equivalence class will necessarily represent actions of
the same type; these type-identical steps performed at
the same moment are to be thought of as collapsing into
a single merged step. We therefore define the point cost
of the plan itself as the sum of the costs assigned to the
merged steps it contains:

Point-cost (P) = E Cost(S;).
[Sile[P]

Given this auxiliary notion, it is now natural to define
the cost of an arbitrary consistent plan as the point cost
of the least expensive way in which it might be carried
out, that is, the least expensive point in its semantic
interpretation.

Definition 9 (Cost of a plan; x(P)) Where P is a
consistent plan, the cost of P is the point cost of its least
expensive complete and scheduled refinement: x(P) =

min{ Point-cost (P') : P' € v[P]}.

Tt is easy to see that x(P) = Point-cost (P) whenever
P is itself a complete and scheduled plan, and that
k(Pg) = 0 for the null plan Py = (0, 0, 0).

Cost in context Having defined the cost of a plan in
isolation, we now turn to our central task of defining the
cost of a new option P in the context of a background
plan C. Our treatment of this concept is simple: we take
the cost of the new option in context to be its marginal
cost—the cost of carrying out P along with C, less the
cost of carrying out C alone.

Definition 10 (Cost of a plan in a context; x(P/C))

Where the plans C and P are strongly compatible, the
cost of P in the conterxt C is k(P/C) = k(PUC)—«(C).

It follows immediately from this definition that the
cost of a plan in the null context is identical to its cost in
isolation: k(P /Py) = &(P). It is also worth noting that
the cost of a plan in any context that already includes
that plan as a component is zero: x(P/P UC) = 0.

This definition can be illustrated with a case in which
the cost of a new option is actually affected by the
background context. Suppose the agent’s background
context is simply the plan to buy a shirt at the mall,
represented by our earlier P, and imagine that the
agent is presented with the new option of going to the
mall for some swim goggles. More exactly, we can take
the new option as the plan P3 = (Ss3, O3, L3), where
S3 = {57, S8, 59, S10}, O3 = {t7 < tg,ts < tg,t9 < t10},
and ES = {<S77 A7 59>7 <587 Ba SQ)a <597 E7 SlO)}' Here,
the steps S7 and Ss again represent actions of going
to the mall and bringing one’s wallet, steps sharing
the respective types of S7 and S from the background
plan Pq; the step Sy represents the action of purchas-
ing the goggles; Si¢ is again a dummy step represent-
ing goal achievement; and the statement E represents
the proposition that the agent has swim goggles. Let
us suppose that these various steps carry the following
costs: each of Sy, S3, Sg, and Sy carries a cost of 1,
since both carrying a wallet and making a purchase are
easy to do; each of §7 and S7 carries a cost of 10, since
any trip to the mall is abhorrent; and S4 and Sig, as
dummy steps, both carry a cost of 0.

Given this information, it is clear that x(Py) = 12—
the cost of the agent’s background plan is 12. Presum-
ably, then, the benefit of this background plan must be
at least 12—we must have 8(P1) > 12—or the agent
would not have adopted it. Suppose, however, that
B(Ps) = 2. Tt is clear also that x(P3) = 12, so that,
considered in isolation, the new option would not be
worth pursuing. On the other hand, it is easy to see that
k(P3 UPy) = 13, since the least expensive execution of
the joint plan, in which both the steps S7 and S; as well
as the steps S; and Sg are merged, carries a cost of 13.
Therefore, we have k(Ps/P1) = &(PsUP1)—«(P1) = 1.
Even though the new option would not be worth pur-
suing in isolation, it is worth pursuing in context, since
its benefit is greater than its cost in context.

As this example shows, the cost of a plan in context
may be less than its cost in isolation, but it is also
possible for the cost is context to be greater.

Cost estimates Although the notion of cost as the
least expensive method of execution is defined for any
consistent plan, we do not necessarily assume that the
agent knows the true cost either of his background plan
or of any new options under consideration. Instead, the
agent may only estimate the cost of its plans.

Definition 11 (Cost estimate for a plan)
Where P is a consistent plan, a cost estimate for P is an



interval of the form ¢ = [¢7,€T], where ¢~ and ¢t are
nonnegative real numbers such that e~ < k(P) < e™.

Cost estimates, so defined, accurately bound the ac-
tual cost of a plan, and are thus related to the inter-
val measures of plan cost used in the decision-theoretic
plan generation literature (Williamson & Hanks 1994;
Haddawy, Doan, & Goodwin 1995; Goodwin & Sim-
mons 1998).

We now show that, under certain coherence condi-
tions, a cost estimate for a plan in context can be de-
rived from a cost estimate for the context together with
a cost estimate for the plan and context combined. As-
sume that P and C are strongly compatible plans, and
that ec = [ez, el and epuc = [epye, Ebuc] are cost esti-
mates for the plans C and P U C respectively. We know
from the definition of a cost estimate that ¢, < el and
epue < e7tuc, but the definition tells us nothing about
the relations among the intervals e and epyc them-
selves. Nevertheless, it is reasonable to conclude that
€c < €p¢, since the least expensive execution of the
compound plan P U C cannot be less costly than the
least expensive execution of C, one of its components;
and similarly, eg < G;UC‘ We characterize the pair of
estimates ¢¢ and epyc as jointly coherent just in case
these two conditions hold: ¢, < €5 and e < €7tuc-

As long as e¢ and epy¢ are jointly coherent we can
derive a cost estimate ep/c = [67_,/C, 6;/(1] for the plan
P in the context C in the following way. Given joint
coherence, the end points of the intervals e¢ and epyc
can stand in only two possible ordering relations:

- + - +
(1) € S € S GPUC S ePuca

(2) e <epue <e¢ <ehyc
In either case, it is clear that 67t/c should be defined

as 67-';Uc — ¢z , the maximum possible distance between
points in epyc and ec. In case (1), we know that pc

should likewise defined as €3, — eg, the minimum pos-
sible distance. In case (2), it is reasonable to take €p/c
as 0, since we know, even when the low estimate for exe-
cuting PUC is less than the high estimate for executing
C, that the true cost of executing P UC can be no less
than the true cost of executing C. Combining cases (1)
and (2), we can therefore take €pjc as max|0, e;uc—eg],

leading to the following general definition.

Definition 12 (Cost estimate for a plan in context)

Where the plans P and C are strongly compatible,
let ec = [ez,€l] and epuc = [epye, €puc] be a pair
of jointly coherent cost estimates for the plans C and
P UC. Then the cost estimate for the plan P in the
contert C is the interval epc = [f;/cveg/c]v where
€pjc = max[0, €5, — €/ ] and €7t/c =chue — -

It follows immediately from this definition that
k(P/C), the true cost of P in the context C, lies within
the derived interval ¢p,¢; and it is also easy to see that

the derived interval ep /¢ narrows monotonically as the
intervals e¢ and epyc¢ are narrowed.

The derived interval estimate of cost in context is
useful because, in many cases, it allows an agent to
accept or reject an option without calculating its true
cost. Suppose, for example, that an agent with back-
ground plan C is considering the new option P with
benefit 3(P); and imagine that the agent has assigned
estimated costs e€¢ and epyc to the plans C and P UC,
from which it derives the estimate ep;c = [6;/C, 6;';/(:]

for the cost of P in the context C. Then if 3(P) > 67-';/(17

the agent is justified in adopting the new option, since
the cost in context of the option is necessarily less
than its benefit; and likewise, the agent is justified
in rejecting the option if 8(P) < €p)c» since its cost
in context is necessarily greater than its benefit. If
5,0 < B(P) < €k, there are two subcases to con-
Plc = S Cpjeo

sider. First, if it happens that 67_,/C = 6;/(1’ then, since
we know that «(P/C) lies within the interval ep ¢, it
follows that 3(P) = k(P/C), and so the agent is jus-
tified either in accepting or rejecting the option. If
67_>/c < 6;/(:, on the other hand, the agent’s interval

estimates do not provide enough information to deter-
mine whether the option should be adopted or rejected.
In this last case, and only this case, the agent is forced
to refine his estimates further before making a rational
decision, narrowing his cost estimates for C and P UC,
and thereby also narrowing his derived estimate for P
in the context of C.

Reasoning procedures

We have developed and implemented algorithms that
enable an artificial agent to perform the reasoning pro-
cesses described above. The first stage of the process-
ing involves determining whether a new option P is
strongly compatible with a given context C. Algorithms
for checking plan compatibility have been studied in
earlier work (Yang 1997); we have extended the algo-
rithms developed there to handle plans with quantita-
tive temporal constraints. The second stage of process-
ing computes the estimates €5 ,, and e7tuc, comparing
these to 3(P), and then iterating to refine the estimates
if needed. The computation of the estimates is done us-
ing two lattices, representing possible schedules for P
and P UC, where the ordering in the lattice is induced
by the step merging decisions in the schedule. In a fash-
ion somewhat reminiscent of the candidate-elimination
algorithm (Mitchell 1997), our algorithm maintains, for
each lattice, frontiers that bound the space of possible
legal schedules for the plans. We provide details of our
algorithms elsewhere (Horty & Pollack 1998).

PMA: The Plan Management Agent

To further investigate our theories of plan management,
including the theory of option evaluation, we have been
building a testbed system, the Plan Management Agent
(PMA). This system is intended to be a “smart assis-
tant”, that helps a user manage a potentially large and
complex set of plans in a dynamic setting. To date, we



have been developing a PMA for an academic user, al-
though the core of the system is domain-independent,
and could be re-used for other types of user by modify-
ing the knowledge base. The system currently consists
of four main components:

1. a reasoning module, which performs the main plan
management tasks;

2. a knowledge base, which stores both static informa-
tion, about the types of procedures performed in the
domain, and dynamic information, about the com-
mitments the user currently has.

3. a GUI, which has knowledge of display information,
and serves as the interface between the user and the
reasoning module.

4. a message-processing module, which controls infor-
mation flow between the systems component.

Examples of procedures that might be stored in the
knowledge base of an academic user include knowledge
of the procedures associated with teaching a class, sub-
mitting a paper to a conference, overseeing the review
of a paper, and so on. Each of these procedures may
decompose into other procedures: for instance, submit-
ting a paper involves submitting an electronic abstract,
copying the paper, and sending it. There may also
be events that need monitoring: after submission, you
should expect a notification of receipt within a week.
Some procedures may be performed in alternative ways:
you may send a paper by mail, by overnight courier, or,
if you live in the same city as the program chair, by
hand-delivering it. And of course, activities can con-
flict with one another. For instance, a new option to
oversee the review of a might paper conflict with one’s
plans to be away on vacation at the time the reviews
were due.

The reasoning module so far has these capabilities:
it can record commitments to structured procedures,
determine whether a new option conflicts with exist-
ing commitments, determine some (though not all) of
the refinements to a new option that are required to
prevent such conflicts, and compute the cost of a new
option in the context of existing commitments. We are
now working to add more plan management reasoning
capabilities. Examples include having the PMA alert
the user when an expected activity has not occurred—
for instance, if you have not received a notice that your
submission was received—so that the user can take an
appropriate action. In fact, eventually the PMA might
take some such actions itself, on behalf of the user.

PMA is not a robotic system, but to be useful it
must be capable of effective plan management in dy-
namic systems. We therefore expect that much of what
we learn in building PMA can have impact for robot
agents, who clearly need the same capabilities.
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