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ABSTRACT. The purpose of this paper is to explore a new deontic operator for representing 
what an agent ought to do; the operator is cast against the background of a modal treatment 
of action developed by Nuel Belnap and Michael Perloff, which itself relies on Arthur 
Prior's indeterministic tense logic. The analysis developed here of what an agent ought to 
do is based on a dominance ordering adapted from the decision theoretic study of choice 
under uncertainty to the present account of action. It is shown that this analysis gives rise to 
a normal deontic operator, and that the result is superior to an analysis that identifies what 
an agent ought to do with what it ought to be that the agent does. 

1. INTRODUCTION 

The purpose of this paper is to define and explore a new deontic operator 
for representing what an agent ought to do, a notion that must be distin- 
guished from that of what ought to be. This new operator is cast against the 
background of  a modal analysis of agency developed by Nuel Belnap and 
Michael Perloff in a series of papers beginning with Belnap and Perloff 
(1988). The general approach to agency set out in these papers - which 
itself relies on a theory of  indeterministic time due to Arthur Prior - is 
sometimes described as stir semantics, because it concentrates on a con- 
struction of  the form 'o~ (an agent) sees to it that A' ,  usually abbreviated 
simply as [a stit: A]. The goal is to provide a precise semantic account of 
this stit operator within the overall logical framework of  indeterminism. 

As it happens, Prior's indeterministic temporal framework allows also 
for the introduction of  a standard deontic operator O, meaning 'It ought 
to be t ha t . . .  '. It is natural, therefore, to explore the interactions between 
this standard deontic operator and the stir operator representing agency; 
and it may seem reasonable to propose a logical complex of  the form O [o~ 
stit: A] - meaning 'It ought to be that a sees to it that A'  - as an analysis of 
the notion that seeing to it that A is something o~ ought to do. The motive 
for this analysis, of  course, is a philosophical thesis, advanced by some 
but disputed by others, according to which what an agent ought to do can 
be identified with what it ought to be that the agent does; a proposal based 
on this identification was investigated in Horty and Belnap (1995), and 
defended there against certain objections found in the literature. 
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In the present paper, I set out a new and powerful objection to the 
general idea of  identifying what an agent ought to do with what it ought to 
be that he does; and driven by this objection, I propose a new analysis of 
what an agent ought to do. This new analysis is based on a loose parallel 
between action in indeterministic time and choice under uncertainty, as it 
is studied in decision theory. Very roughly, a particular preference ordering 
- a kind of  dominance ordering- is adapted from the study of choice under 
uncertainty to the present account of action; it is then proposed that an agent 
ought to see to it that A whenever the agent has available some action which 
guarantees the truth of A, and which is not dominated by another action 
that does not guarantee the truth of A. The primary technical point of the 
paper is the demonstration that this new analysis of  what an agent ought to 
do gives rise to a normal deontic operator. 

The paper is organized as follows. Sections 2 first reviews the theory 
of indeterministic time. Against this background, Section 3 then develops 
a particularly simple version of  stit semantics, and Section 4 defines a 
standard deontic operator representing what ought to be. Section 5 com- 
bines this standard ought operator with the simple stit operator to yield a 
representation of what it ought to be that an agent does, and then sets out 
the hypothesis that this notion can be taken as an analysis also of what an 
agent ought to do. Section 6 is the heart of the paper: it sets out the objec- 
tion to this previous analysis, introduces a relation of dominance among 
actions, and then uses this dominance relation to define a deontic operator 
that captures a new analysis of what an agent ought to do. Finally, Section 
7 describes two ways in which this analysis might be generalized: first, by 
focusing on strategies of action over time, rather than single actions; and 
second, by exploring preference criteria other than the simple dominance 
ordering considered here. 

2. BRANCHING TIME 

The theory of indeterminism underlying the present w o r k -  introduced in 
Chapter 7 of Prior's (1967), and developed in more detail by Richmond 
Thomason in (1970) and (1981) - i s  based on a picture of moments as 
ordered into a treelike structure, with forward branching representing the 
openness or indeterminacy of  the future and the absence of backward 
branching representing the determinacy of the past. 

Such a picture leads, formally, to a notion of  branching temporal frames 
as structures of the form (Tree, < ), in which Tree is a nonempty set of 
moments and < is an ordering on Tree that is transitive, irreflexive, and 
that satisfies the treelike property according to which, for any m l, m2, and 
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Figure 1. Branching time: moments and histories. 

rn3 in Tree, i f  ml  < m3 and rn2 < m3, then either ml = m2 o r m l  < m2 
or rn2 < ml .  A maximal set of  linearly ordered moments from Tree is a 
history, representing some complete temporal evolution of  the world. If m 
is a moment and h is a history, then the statement that rn E h can be taken 
to mean that m occurs at some point in the course of  the history h, or that h 
passes through m. Of course, because of indeterminism, a single moment 
might be contained in several distinct histories: we let Hm = {h : m E h} 
represent the set of  histories passing through m, those histories in which 
?Tb Occurs. 

These ideas can be illustrated as in Figure 1, where the upward direction 
represents the forward direction of time. This diagram depicts a branching 
temporal frame containing five histories, hi through hs. The moments 
ml  through m4 are highlighted; and we have, for example, m2 E h3 and 
H m  4 ~- {ha, hs}. 

In evaluating formulas against the background of  these branching tem- 
poral frames, it is a straightforward matter to define a notion of truth at 
a moment adequate for the truth functional connectives, and even for the 
operator P representing simple past tense: the definitions from standard 
(linear) tense logic suffice. Since these frames allow alternative possible 
futures, however, it is not so easy to understand the operator F, representing 
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future tense. Returning again to Figure 1, suppose that, as depicted, the 
formula A is true at m3 and at m4, but nowhere else. In that case, what 
truth value should be assigned to FA at the moment ml?  

On the approach advocated by Prior and Thomason, there is just no way 
to answer this question. Evidently, FA is true at ml - A really does lie in 
the future - if one of  the histories h2, h4 or h5 is realized; but it is false 
on the histories hi and h3. And since, at ml ,  each of  these histories is still 
open as a possibility, that is simply all we can say about the situation. In 
general, in the context of  branching time, a moment alone does not seem to 
provide enough information for evaluating a statement about the future; and 
what Prior and Thomason suggest instead is that a future tensed statement 
must be evaluated w-ith respect to a more complicated index consisting 
of  a moment together with a history through that moment. We let rn/h 
represent such an index: a pair consisting of  a moment m and a history h 
from Hm. 

Since future tensed statements are to be evaluated at moments and 
histories together, semantic uniformity suggests that other formulas must 
be evaluated at these more complicated indices as well. We therefore define 
branching temporal models as structures of  the form 34 = ( ? ,  v), in which 
.T is a branching temporal frame and v is a valuation function mapping 
each propositional constant from the background language into the set of  
m/h pairs at which, intuitively, it is thought of  as true. Where ~ represents, 
as usual, the relation between an index belonging to some model and 
the formulas true at that index, the base case of  the truth definition for 
branching temporal models tells us simply that propositional constants are 
true where v says they are: 

• A4, m/h  ~ A if and only if  m/h E v (A) for A a propositional 
constant. 

And the definition extends to truth functions, past, and future as follows: 

• 34, ra/h ~ AABifandonlyi fM, m/h ~ Aand34, m/h ~ B, 

• 34, m/h ~ --,A if and only if 34, m/h ~¢ A, 

• .M, m/h  ~ PA if  and only if  there is an m I C h such that 
m I < m and 34, m~/h ~ A, 

• 34, m/h  ~ FA if  and only if there is an m ~ E h such that 
m < rn I and 34, m~/h ~ A. 

As usual, we say that a formula is valid in some class of  models if  it is true 
at each index - in this case, each m/h p a i r -  of  every model belonging to 
that class. 
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It is easy to see that, as long as we confine ourselves to P, F, and truth 
functional connectives, the validities generated by this definition in branch- 
ing temporal models coincide with those of ordinary linear tense logic, for 
the evaluation rules associated with these operators never look outside the 
(linear) history of evaluation. However, the framework of branching time 
allows us to supplement the usual temporal operators with an additional 
concept of  settledness, or historical necessity, along with its dual concept 
of  historical possibility. Here, DA is taken to mean that A is settled, or 
historically necessary; OA, that A is still open as a possibility. The intuitive 
idea is that []A should be true at some moment i rA  is true at that moment  
no matter how the future turns out, and that 0A should be true if there is 
still some way the future might evolve that would lead to the truth of A. 
The evaluation rule for historical necessity is straightforward: 

• .M,m/h  ~ [3Aifandonlyi f .M,m/h ~ ~ A for all h ~ E Hm; 

and 0A can then be defined in the usual way, as ~[:]--~A. 
It is convenient to incorporate this concept of settledness also into the 

metalanguage: we will say that A is settled true at a moment m in a model 
M just in case .M, m/h  b A for each h in Hm, and that A is settled false 
at m just in case ./Vl, m/h  ~¢ A for each h in Hm. 

Once the standard temporal operators are augmented with these con- 
cepts of  historical necessity and possibility, the framework of branching 
time poses some technical challenges not associated with standard tense 
logics, but it is also directly applicable to a number of  the philosophical 
presented by indeterminism. Details concerning both the technical issues 
surrounding branching time and its philosophical applications can be found 
in Thomason (1984); a more recent discussion of  indeterminism occurs in 
Belnap and Green (1993). 

3. AGENCY 

We now turn to the treatment of  agency within this framework of  branch- 
ing time. Although we follow Belnap and Perloff (1988) in its general 
approach, the particular account set out here differs in detail, resulting in 
a stit operator that is simpler than that of Belnap and Pefloff and for cer- 
tain purposes more natural. The present account derives most immediately 
from Horty and Belnap (1995). 

3.1. Agents and Choices 

The idea that an agent a sees to it that A is taken to mean that the truth 
of  the proposition A is guaranteed by an action or choice of a.  In order to 
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represent this idea, then, we must be able to speak of  individual agents, and 
also of  their actions or choices; and so the basic framework of  branching 
time is supplemented with two additional primitives, both drawn from 
Belnap and Perloff (1988). 

The first is simply a set Agent of  agents, individuals thought of  as 
making choices, or acting, in time. 

Now what is it for one of  these agents to act, or choose, in this way? We 
idealize by ignoring any intentional components involved in the concept 
of  action, by ignoring vagueness and probability, and also by treating 
actions as instantaneous. In this rarefied environment, the idea of  acting 
or choosing can be thought of  simply as constraining the course of  events 
to lie within some definite subset of  the possible histories still available. 
When Jones butters the toast, for example, the nature of his action, on this 
view, is to constrain the history to be realized so that it must lie among 
those in which the toast is buttered. Of course, such an action still leaves 
room for a good deal of  variation in the future course of  events, and so 
cannot determine a unique history; but it does rule out all those histories 
in which the toast is not buttered. 

Our second additional primitive, then, is a device for representing the 
constraints that an agent is able to exercise upon the course of  history 
at a given moment, the actions or choices open to him at that moment. 
Formally, these constraints are encoded through a choice function, mapping 
each agent a and moment m into a partition Choice m of  the histories Hm 
through m; and the idea is that, by acting at m, the agent a is able to 
determine a particular one of  the equivalence classes from Choicema within 
which the future course of  history must then lie, but that this is the extent 
of  his influence. Of  course, in order for this choice information to make 
any sense, we must require that any two histories in I-Ira that have not yet 
divided at m must lie within the same choice partition; the choices available 
to an agent at m should not allow a distinction between two histories that 
do not divide until some later moment. 

If  K is an equivalence class belonging to Choice m, we speak of  K as 
one of  the actions, or choices, available to a at m; and we let Choicem~(h) 
(defined only when h CHm) represent the particular action or choice from 
Choice'~ that contains the history h. If  K is one of  the actions available 
to a at m, we say that that a performs the action K at the index m/h just 
in case h is a history belonging to K. It is important to notice that, as in 
the evaluation of  the future tense, all of  the information provided by a full 
index is required in determining whether an agent performs an action: it 
makes no sense to say that an agent performs an action at a moment, but 
only at a moment/history pair. Finally, we speak of  the histories belonging 
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hi h2 h3 h4 h5 h6 

m3 

m l  ChoiceSt 

Figure 2. An  agent's choices. 

to an action K as the possible outcomes that might result from performing 
this action. 

These concepts relating to choice functions can be illustrated as in 
Figure 2, which depicts a frame containing six histories, and in which 
the actions available to the agent a at three moments are highlighted. 
The ceils at the highlighted moments represent the actions available to a 
at those moments. For example, there are three actions available to a at 
m l  - -  C h o i c e  ml  : {K1, K2~ K3), with K1 --- {hl~ h2}, K2 = {h3}, and 
K3 = {h4, h5, h6}. Because hi and h2 are still undivided at m l, these two 
histories must fall within the same partition there, and likewise for h4 and 
hs. The particular choice partition containing hs, for example, is K3, and 
so we have Choice ml (hs) : K3.  

The agent o~ faces two choices at m2, but at m3 he effectively has no 
choice: histories divide, but there is nothing a can do to constrain the 
outcome. (It may be that the outcome can be influenced by some other 
agent whose choices are not depicted here; or perhaps it is something that 
just happens, one of  nature's choices.) At such a moment, it would be 



A 

h~ h~ 

A 

h4 h5 

-~A 
A 

JOHN F. HORTY 

h3 

276 

~A 

m 

Figure 3. [a cstit: A] true at m/hl. 

possible to treat the choice function as undefined for a; but it is easier to 
treat it as defined but vacuous, placing the entire set of  histories through 
the moment in a single equivalence class. 

Returning to the moment ml ,  we can say that oe performs the action K1 
at the index ml/h2, for example, that he performs the action K2 at ml/h3, 
and that he performs the action K3 at ml/h6. Again: since the agent 
performs different actions along different histories through the moment 
ml ,  it makes no sense to ask what action he performs at that moment. 
Finally, we can speak of  h4, h5, and h6 as the outcomes that might result 
from performing the action K3, for example. 

When the basic framework of  branching time is supplemented with 
these additional primitives, the result is a stitframe of  the form 

(Tree, <,Agent, Choice), 

with Tree and < as before; and we can define a stit model as a structure of 
the form .M = (b e, v), in which ~ is a stit frame and v a valuation mapping 
each propositional constant, as before, into a set of  ra/h pairs. It is these 
structures that provide the backdrop for the current treatment of  agency; 
the claim is that the structures are not just mathematical curiosities, but 
describe - up to a legitimate idealization - the world in which agents act. 
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3.2. The Chellas stit 

The particular stit operator to be employed in this paper is described in 
Horty and Belnap (1995) as the "Chellas stit" - and represented there as 
cstit - because it is an analog in the present framework of the agency 
operator first studied in Brian Chellas's (1969). 

The idea behind this cstit operator is simple: the statement [a cstit: A] 
is to hold at an index m / h  just in case a performs an action at m / h  that 
guarantees the truth of A; the action might result in a variety of possible 
outcomes, but the statement A must be true in each of them. This idea 
leads to a particularly straightforward evaluation rule: 

* M ,  m / h  ~ [a cstit: A] if and only if M ,  ra/h' ~ A for all 
h' e Choicem(h). 

The rule is illustrated in Figure 3.1 Here, the statement [a cstit: A] 
is true at re~hi, because the truth of A is guaranteed by the action that 

performs at that index: A holds at each m / h  t for each h ~ belonging 
to Choicem(hl). But [a cstit: A] is not true at m/h4,  for example. Even 
though the statement A itself happens to hold at this index, the action that 

performs at m/h4  does not guarantee the truth of A. 
In fact, this cstit operator is not the primary focus of Horty and Bel- 

• nap (1995). Instead, that paper concentrates on another operator known 
as the "deliberative stit;' represented as dstit, and definable through the 
equivalence 

[a dstit : A] =_ [a cstit : A] A -~[]A. 

The dstit operator has certain advantages over the cstit operator in the 
treatment of agency; for example, as shown in Horty and Belnap (1995), it 
allows for an attractive analysis of the notion of refraining from an action. 
Nevertheless, the estit operator is simpler and more transparent, and it will 
be best to concentrate on this operator in the present paper. To illustrate its 
simplicity, we note that the cstit operator supports the principles 

R E .  

N. 

M.  

C. 

T. 

5. 

A =- B / [a  cstit: A] =- [a cstit: B], 

[a cstit : T], 

[a cstit : A A B] D [a cstit : A] A [~ cstit : B], 

[a cstit : A] A [a estit : B] D [a cstit : A A B], 

[a stit : A] D A, 

-,[a cstit : -,A] D [a cstit : -~[a estit : --,A]]; 
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and is thus an $5 modal operator. 2 By contrast, the dstit operator does not 
even satisfy the analogue to M,  let alone 5. 

3.3. Ability 

One benefit of  employing either the estit or the dstit operator in the analysis 
of  agency is that, in either case, a natural treatment of  ability lies close at 
hand. We can assume in either case that an agent's ability (personal can- 
do) can be represented through a simple combination of  ordinary historical 
possibility (impersonal can) together with the appropriate stit operator 
(personal to-do). In the present context, the result is an analysis according 
to which the formula 

<)[a cstit : A] 

can be taken to express the claim that a is able to see to it that A. 
This style o f  analysis runs contrary to a well-known thesis of  Anthony 

Kenny's, who argues in his (1975) and (1976) that the logic of  ability 
cannot be formalized using the techniques of  modal logic. Kenny follows 
G. H. von Wright in describing the 'can' of  ability as a dynamic modality, 
and puts the point as follows: "ability is not any kind of  possibility; . . .  
dynamic modality is not a modality" (Kenny 1976, p. 226). 

The central thrust of  Kenny's argument is directed against attempts to 
represent the 'can'  of  ability as a possibility operator in a modal system with 
the usual style of  possible worlds semantics. Kenny claims that attempts 
along these lines are doomed to failure: any natural possibility operator, he 
says, must satisfy the two schemata 

TO. A D OA. 

CO. (>(A V B) ~ .OA V OB; 

and he argues persuasively that the 'can' of  ability does not satisfy either of  
these. As a counterexample to the first, Kenny considers the case in which 
a poor darts player throws a dart and actually happens, by chance, to hit 
the bull's eye; although this shows that it is possible for the darts player 
to hit the bull's eye, it does not seem to establish his ability to do so. As a 
eounterexample to the second, Kenny imagines a card player who, because 
he is able simply to draw a card, and all the cards are red or black, is able 
to draw either a red or a black card; it does not follow that he is able to 
draw a red card, or that he is able to draw a black card. 

Our present analysis of  ability escapes from this objection of  Kenny's. 
The notion of  historical possibility involved in our analysis, as an $5 
operator, does satisfy both TO and CO. However, it is not this possibility 
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Figure 4. A without 0[c~ cstit: A]. 

operator alone that is taken to represent ability, but rather a combination 
of historical possibility and a stit operator; and the combination fails to 
satisfy the analogous schemata: both 

A D O[a cstit : A], 

(~[~ cstit : A V B] ~ .O[a cstit : A] V ~[a cstit : B], 

are invalid. We provide a countermodel only to the first, based on Kenny's 
darts example, and depicted in Figure 4. Here, m is the moment at which 
a throws the dart; the cells belonging to Choicema represent the possible 
actions or choices available to a at m; and the formula A means that the 
dart will hit the bull's eye. Evidently, if the player throws the dart and 
things evolve along the history hl ,  then the dart will hit the bull's eye, but 
this is not a proposition whose truth the player has the ability to guarantee: 
although A is true at m/h1,  the formula 0[a  cstit : A] is not. 3 
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4. OUGHTS IN BRANCHING TIME 

4.1. Standard Deontic Frames 

We begin our treatment of  deontic logic by considering a standard way 
of  incorporating the deontic operator ©, representing 'It ought to be that 
. . .  ', into the framework of  branching time. 4 Typically in deontic logic, 
this ought operator is interpreted against a background set of  possibilities, 
usually possible worlds. A number of  these possibilities are classified as 
ideal, those in which things turn out as they ought to; and a sentence 
© A is then thought of  as true just in case A holds in each of  these ideal 
possibilities-just in case A is a necessary condition for things turning out 
as they ought to. In the context of  branching time, the set of  possibilities 
at a moment m is identified with Hm, the set of  histories still available at 
m; and a nonempty subset of  these is taken to represent the ideal histories. 
A sentence of  the form O A is then defined as true at an index m/h just 
in case A is true at m/h ~ for each history h t from Hm that is classified as 
ideal. 

This picture can be captured formally by supplementing the stit frames 
described earlier with a function Ought mapping each moment m into a 
nonempty subset Ought(m) of  Hm; the result is a standard deontic stit 
frame, a structure of  the form 

(Tree, <, Agent, Choice, Ought), 

with Tree, <, Agent, and Choice as before. Where A,4 is a standard deontic 
stit model - a model that results from interpreting our background lan- 
guage against a standard deontic stit frame - the evaluation rule for ought 
statements can be set out as follows: 

• Ad, m/h  ~ 0 A if  and only if .At, m/h I ~ A for each h t C 
Ought(m). 

Several logical features of  the ought operator developed in this standard 
way are immediately apparent from the structure of  its evaluation rule. First, 
it is clear that this ought is a normal modal opera tor-  that is, an operator 
satisfying the principles 

REO. A =- B / O A  = OB, 

N O .  O T ,  

M O .  O ( A A B )  D . O A A O B ,  

CO. OA A OB D O(A A B). 
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Second, because the set Ought(m) is nonempty, it is easy to see that the 
formula o A D 0A is valid; this formula expresses one version of  the 
characteristic deontic idea that ought implies c a n -  in this case: if it ought 
to be that A, then it can be that A. Finally, statements of the form OA, like 
statements of  the form DA, are always either settled true or settled false. 

4.2. General Deontic Frames 

Although the study of deontic logics has led the clarification of a number of 
problems involved in normative reasoning, the topic is often viewed with 
indifference by researchers interested in ethical theory more generally. 
Part of  the reason for this, I believe, is the impression that these logics 
are able to model only very crude normative theories - theories that can 
do no more than classify situations, simply, as either ideal or non-ideal. 
However, while it is true that standard deontic logics have concentrated 
on this simple classification of  situations, it turns out that the underlying 
semantic framework can be generalized in a natural way to accommodate 
a much broader range of  normative theories. 

In order to arrive at this generalization, in the present context of  branch- 
ing time, let us now imagine that each history through a moment, rather 
than being classified simply as ideal or non-ideal, is assigned a particular 
value at that moment. These values, chosen from some general space of 
values, are to represent the worth or desirability of the histories. 

This change in perspective can be effected formally by replacing the 
primitive Ought in the frames described above with a function Value that 
associates each moment m with a mapping of  the histories belonging to Hm 
into the set of  values. Depending on the nature of  the particular normative 
theory that is being modeled, the values themselves can be conceived of 
in different ways, and subjected to different ordering relations; but we will 
assume that the space of values is always at least partially ordered by <,  so 
that Valuem(h) <_ Valuem(h ~) means that h ~ has a value at m greater than 
or equal to that of  h. The result can be characterized as a general deontic 
stit frame, a structure of  the form 

(Tree, <, Agent, Choice, Value}. 

In the environment of  these new frames, the evaluation rule set out above 
for ought statements must be abandoned, of  course. But it is possible to 
define a coherent ought operator in this new environment by requiring that 
a statement of  the form O A  should be true at the index m/h whenever A 
is true along some history through m, and then true also at every history 
through m of  equal or greater value. Where Ad is a general deontic stit rood- 
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el, resulting from the interpretation of  our background language against a 
general deontic stit frame, this idea leads to the following evaluation rule: 

• ,h/l, m/h  ~ 0 A if  and only if there is some history h ~ E Hm 
such that (1) .M, m/h ~ ~ A, and (2) .M, m/h" ~ A for all 
histories h" E Hm such that Valuem(h ~) <_ Valuem(h"). 

The new rule is similar in spirit to the previous version. In the new envi- 
ronment, we can no longer think of  o A  as true whenever A is a necessary 
condition for achieving an ideal history, since we are no longer presented 
with a set of  histories classified as ideal; instead, we think of O A as true 
whenever A is a necessary condition for achieving a history whose value 
is at least as great as some particular value. 

It is easy to see that the general deontic framework presented here is, 
in fact, a conservative generalization of  the standard deontic framework 
set out earlier: any standard deontic stit model can be coded into a general 
deontic stit model in such a way that the same set of  ought statements is 
supported. Suppose that we allow only the two values 0 and 1, ordered 
so that 0 _< 1. We can then map each standard deontic stit model into a 
general deontic stit model just like the standard model, except that at each 
moment it assign the value 1 to those histories that the standard model 
classifies as ideal, and the value 0 to those histories that the standard model 
classifies as non-ideal. More exactly, where .h//is a standard deontic silt 
model, we let .M ~ be a model just like .A/t, except that Valuem(h) = 1 in 
.M ~ just in case h c Ought(m) in AA, and Valuem(h) = 0 otherwise. It is 
then a simple matter to verify that a statement O A will hold in the general 
deontic model .M ~ at an index m/h according to our new evaluation rule 
just in case OA holds in the standard model .M at the same index m/h 
according to the previous evaluation rule. 

In addition to encoding the information provided by the standard deontic 
case, however, general deontic stit frames can be used also to represent 
normative theories that allow for more than two values, and in which the 
ordering among values is more complex. The most prominent of  these, of  
course, are utilitarian theories, which take as their space of  values a set 
of  utilities usually thought of  as isomorphic to the real numbers. In the 
present context, these theories can be represented through general deontic 
stit frames in which the function Value associates with each history passing 
through a moment, as its value, a real number representing the utility of  the 
history at that moment, and in which the space of  values, or real numbers, 
is subject to its usual ordering. Let us define structures of  this k i n d -  
general deontic stir frames in which the values are real numbers under 
their usual ordering - as utilitarian stir frames, and the models based on 
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these as utilitarian stit models. We will concentrate on utilitarian models 
throughout the remainder of the paper. 

In depicting these utilitarian stit models, we mark each history through 
a moment with a number corresponding to its utility at that moment. Thus, 
Figure 5, for instance, represents a situation in which, at the moment m, 
the histories hi, h2, h3, and h4 are taken to possess the utilities 5, 0, 7, 
and 10, respectively. As a result, we can see that the formula o A  is settled 
true at m in this situation, since A holds in h3 and at each history at least 
as valuable as h3. The formula OB,  however, is settled false, since for 
each history in which B is true, there is a history of  equal or greater value 
in which it is false. A more complicated situation is depicted in Figure 6. 
Here, we are faced with an infinite number of  histories (hi, h2, h3 , . . . )  of  
ever increasing value (1, 2, 3, . . .  ); the formula A is true at the history hi 
when i is odd, and false when i is even; and the formula B is true at hi 
when i is greater than 3, and otherwise false. As a result, we can see that 
o A  is settled false at m, since for each history in which A is true there is 
a history of  equal or greater value in which it is false; but O B  is settled 
true, since B is true at all histories at least as valuable as h4. 
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Although we concentrate in this paper on utilitarian models, I do wish 
simply to mention that the general deontic framework developed here is 
able to accommodate even more radical departures from standard deontic 
logic. In the utilitarian case, although there are a variety of  different values, 
these values still stand in a linear ordering; but our general framework 
would allow us to represent theories in which even the assumption of  a 
linear ordering among values is dropped. As an example, consider the 
approach to deontic logic described by Bas van Fraassen in (1973). Rather 
than defining oughts against a background set of  ideal situations, van 
Fraassen postulates a background set of  imperatives, possibly conflicting; 
an ought statement is then taken as true if it is is entailed by some maximal 
consistent subset of  these imperatives. Of  course, if the background set of  
imperatives does happen to contain conflicting but individually consistent 
statements - say, A and ~A - then it will support the truth of  conflicting 
oughts of  the form O A and O ~A. 

This idea could be incorporated into the present environment by sup- 
posing that each moment ra is associated with a separate set I(ra) of 
imperat ives-  a set of  formulas, possibly conflicting, each of  which is tak- 
en to represent a statement that "ought" to hold at m. Let us now suppose 
that Valuera (h) is defined as the set of  imperatives from I(m) that are 
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true at the index m/h, so that the value assigned to a history at a moment 
represents the subset of those imperatives operative at that moment that 
are fulfilled in that history. Since it is better to satisfy more imperatives 
than fewer, we can take these values as ordered by subset inclusion, so 
that Valuem(h) <_ Valuem(ht) just in case Valuem(h) C_ Valuem(ht). It 
then turns out, as noted in Horty (1993), that the oughts generated by our 
new evaluation rule coincide with those supported by van Fraassen's own 
definition. 

Returning to our new deontic evaluation rule, we can see that the ought 
operator it defines in general deontic stit models shares many of  the log- 
ical properties of the operator defined by the previous evaluation rule in 
standard deontic stit models. It should be apparent, for example, that the 
characteristic deontic formula O A D 0A is valid in the class of general 
deontic stit models, and also that any statement of the form O A is always 
either settled true or settled false. In addition, it is easy. to verify that the 
principles REo,  NO, and M O  listed earlier are valid in general deontic 
models. But if we consider the entire class of general deontic models, then 
it turns out that the ought operator defined by our new evaluation rule is 
not a normal modal operator, for the underlying space of values might be 
ordered in such a way that instances of CO are falsified. An example is 
provided by those general models mentioned above that are designed to 
represent the theory of van Fraassen (1973): the formula 

0 A A o-~A D 0 (A A ~A) 

will be false at any index at which both o A  and o ~ A  are true. 
In the present paper, however, we focus on utilitarian stit models, and 

in these models, the underlying space of values is subject to a linear 
ordering: for any histories h and h ~ from Hm, we have either Valuem(h) <_ 
Valuem(h p) or Valuem(h ~) <_ Valuera(h). It is easy to see that the schema 
CO is valid in any general deontic silt model in which the underlying 
space of  values is subject to a linear ordering; this fact is established as 
Proposition 1 in the Appendix. Thus, as long as our attention is restricted 
to the class of  utilitarian stit models, the ought operator defined by our 
new evaluation rule is a normal modal operator, satisfying CO as well as 
REO, NO, and MO.  

5. OUGHT TO DO: THE MEINONG/CHISHOLM ANALYSIS 

The utilitarian theory of oughts sketched so far is impersonal, an account of 
what ought to be. According to this theory, it makes perfect sense to say, for 
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example, that it ought not to snow tomorrow; this means, simply, that there 
is some history in which it does not snow tomorrow, and that it fails to snow 
also in any history at least as valuable as that one. There is no implication 
that anyone ought to see to it that it does not snow, or that anyone can do 
this. However, just as we analyzed the idea of  an agent's personal ability 
earlier through a combination of  ordinary, impersonal possibility and a stit 
operator, we might hope to arrive at an account of  what an agent ought 
to do in the same way: by combining a stit operator with our impersonal 
account of  what ought to be, we might attempt to analyze what an agent 
ought to do as what it ought to be that he does. 

The idea of  analyzing what an agent ought to do as what it ought 
to be that he does was advanced by a number of  Austrian and German 
writers toward the beginning of  the century, notably Meinong and Nicolai 
Hartmann; and the strategy has been explicitly endorsed by at least one 
contemporary: Roderick Chisholm suggests in (1964, p. 150) that "S  ought 
to bring it about that p" can be defined as "It ought to be that S brings 
it about that p,,.5 In developing this idea, Chisholm relies on his own 
treatment of  what ought to be, in terms of  requirement, and on a simple 
modal analysis of  action that can be found already in the writings of  St. 
Anselm. The same general strategy was studied in some detail in Horty 
and Belnap (1995), which relied on the dstit operator for its treatment 
of  agency, and on the account of  what ought to be provided by standard 
deontic stit models; but in this paper, we will instead employ the cstit 
operator and the more general, utilitarian approach to what ought to be. 
The result is the proposal that a formula of  the form 

0 [c~ cstit : A] 

can be taken to express the claim that a ought to see to it that A. 
This proposal gives us a picture according to which what an agent a 

ought to do at a particular moment ra is determined by the way in which the 
histories of  different value filter through the Choicem~ partition. Consider, 
for example, the situation depicted in Figure 7. Here, O A is settled true at 
m. However, 0[a  cstit : A] is settled false: although A ought to hold, there 
is nothing that oL can do about it. Since, as we have seen, any statement of 
the form O B D ~B is valid in utilitarian models, we know that 

0 [a cstit : A] D <)[ce cstit : A], 

or that obligation implies ability: whenever it is true that a ought to see to 
it that A, he must be able to do so. Because a is unable at m to see to it 
that A, we can thus conclude that 0 [a cstit : A] is settled false there as 
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Figure 7. 0 A without O [a cstit : A]. 

well. By contrast, Figure 8 depicts a situation in which O [a cstit : A] is 
settled true: [oz cstit : A] holds at re~h1, and also at m / h "  for each history 
h" from Hm whose utility is at least as great as that of hi. 

Although, according to this analysis, a statement of the form O [a cstit : 
A] results from appending the generally applicable operator O to the 
formula [a cstit : A], it is still possible to focus on the logically complex 
connective O [o~ cstit : ...], and to investigate its properties. It is then easy 
to see that this complex connective is a normal modal operator, satisfying 
the principles 

A - B / O [ a  cstit: A] = O[a cstit: B], 

0 [~ estit : T], 

O[ol cstit: A A B] D .O[c~ cstit: A] A O[o~ ostit: 13], 

0 [a cstit : A] A 0 [a cstit : B] D 0 [a cstit : A A B]. 

6. OUGHT TO DO: A DIFFERENT ANALYSIS 

We have been considering a general approach, advocated by Meinong and 
Chisholm, according to which what an agent ought to do is determined by 
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what it ought to be that he does. In the present framework, the formula 
0 [a cstit : A] represents the idea that it ought to be that a sees to it that 
A, and so according to the Meinong/Chisholm analysis, it is this formula 
also that represents the idea that a ought to see to it that A. 

In fact, this particular version of the Meinong/Chisholm analysis is 
surprisingly robust: as shown in Horty and Belnap (1995), it is able to 
withstand many of  the objections advanced by Peter Geach in (1982) and 
Gilbert Harman in (1983) and (1986, Appendix B) against the general 
strategy of  identifying what an agent ought to do with what it ought to be 
that he does. Nevertheless, the proposal is vulnerable to another kind of  
objection. I refer to this objection as the gambler's problem, and use it in 
this section to motivate a different account of what an agent ought to do. 

6.1. The Gambler's Problem 

Imagine that an agent a is faced with two options at  the moment  m: to 
gamble the sum of  five dollars, or to refrain from gambling. If  a gambles, 
we suppose that there is a history in which he wins ten dollars, and another 
in which he loses and comes away with nothing; but of  course, a cannot 
determine whether he wins or loses. I f a  does not gamble, we suppose that 
he preserves his original stake of  five dollars no matter how things tum 
out. Finally, we suppose that the utility associated with each history at m 
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Figure 9. O[c~ cstit : A], but not ®[c~ cstit: A]. 

is determined by the sum of money that a possesses in that history. The 
situation can thus be depicted as in Figure 9. Here, K1 represents the option 
of engaging in the gamble, and K2 the choice of refraining; A represents 
the statement that o~ gambles, and hi is the history along which c~ gambles 
and wins. 

It turns out that O [o~ cstit : A] is settled true at ra: the formula [o~ cstit : 
A] is true at re~h1, and also, trivially, at re~h" for each history h" at 
least as valuable as hi. The Meinong/Chisholm analysis of what an agent 
ought to do thus tells us unambiguously that, in this situation, the agent 
ought to gamble: the most valuable history, with a utility of 10, is that in 
which he gambles and wins, and it is a necessary condition for achieving 
this utility that he should gamble. But this is a strange conclusion; for by 
gambling, the agent runs the real risk of achieving an outcome with the 
utility of 0, while he is able to guarantee a utility of 5 by refraining from 
the gamble. From an intuitive point of view, it appears to be impossible to 
say whether the agent should gamble or not, at least without knowing the 
odds of winning; and we should be suspicious of any theory that makes a 
definite recommendation one way or the other. 
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The problem presented by this situation seems to reflect a real difficulty 
with the strategy of  identifying what an agent ought to do with what it 
ought to be that he does. Perhaps it ought to be, in this situation, that the 
agent gambles; after all, this is what he does in the ideal outcome, the 
outcome of  greatest utility. Still, it does not seem to follow that gambling 
is something the agent ought to do, since by doing so he risks attaining an 
outcome of  less utility than he could otherwise guarantee. 

It might appear that this kind of  problem could arise only in a general 
utilitarian setting, with at least three different values, since it seems to rely 
upon the possibility that one choice might lead to outcomes both higher 
and lower in value than the intermediate outcomes resulting from another 
choice. But a related problem can be seen in a pure deontic setting, which 
represents outcomes as ideal or non-ideal through the assignment of only 
two values, 1 and 0. Consider the situation depicted in Figure 10, in which 
a again has two choices. Again, this situation can be thought of  as one in 
which the agent is faced with accepting or refusing a gamble; and again, 
K1 represents the option of engaging in the gamble, and/£2 the choice of 
refusing the gambling; A represents the statement that a gambles. In this 
case, however, the gamble is peculiar. If the agent accepts the gamble, we 
suppose he attains an ideal outcome if he wins, and a non-ideal outcome if 
he loses; what makes the case peculiar is that, here, the agent can guarantee 
an ideal outcome by declining the gamble. 

It should be obvious that the gamble in this situation is not wise: why 
should the agent risk a non-ideal outcome simply for the chance of  achiev- 
ing an outcome no greater in value than one that he can guarantee by not 
gambling at all? Since the gamble is not wise, a correct account of  what 
the agent ought to do should tell us that the agent ought not to gamble in 
this situation. But this is not the result of  the theory that identifies what 
an agent ought to do with what it ought to be that he does: the statement 
(3 [a cstit : -~A] is settled false at m, since for each history in which the 
agent refrains from gambling, there is a history of  equal value in which he 
gambles. 

Let us return to the situation depicted in Figure 9. One natural way 
of  reacting to situations like this is to ask for additional information - in 
particular, probabilistic information concerning the various outcomes that 
might result from the available actions. Suppose that for each action K open 
to the agent o~ at rn - each K belonging to Choice~ - we were provided 
with a probability distribution over the histories belonging to K,  where 
the probability assigned to each history represented its chance of occurring 
should the agent choose K.  We could then define the expected utility of an 
action K in the usual way, as the sum of the values of  the various histories 
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Figure 10. -~O[c~ cstit : -~A], but ®[a cstit : -~A]. 

belonging to K,  with each value weighted by the probability assigned to its 
associated history. This introduction of expected utility would provide us 
with a linear ordering in value, not only of  the histories through a moment, 
but of  the actions themselves that are open to the agent at that moment. 
And it would then be natural to appeal to this new ordering in defining 
what an agent ought to do: we could suppose that in any given situation 
an agent ought to perform some one of those actions open to him whose 
expected utility is maximal. 

The approach just sketched does seem like a promising way to proceed 
when one possesses the necessary probabilistic information concerning 
the various outcomes that might result from an agent's actions; but in 
many situations, this kind ofprobabilistic information is either unavailable 
or meaningless. In the literature on decision theory, a situation in which 
the available actions might lead to their various possible outcomes with 
known probability is characterized as a case of risk; a situation in which 
the probability with which actions might lead to their various possible 
outcomes is either unknown or meaningless is characterized as a case 
of  uncertainty. Is there anything coherent to say about what an agent 
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ought do in these cases of uncertainty, when even probabilistic information 
concerning outcomes is absent? 

6.1.1. Dominance 
In fact, the decision theoretic treatment of  choice under uncertainty 
describes a variety of  ways in which preference orderings can be defined 
on actions as they are set out there; an introduction to this literature can be 
found in Chapter 13 of  Luce and Raiffa (1957). We proceed in the present 
paper by adapting a particular one of  these preference orderings, a domi- 
nance ordering analogous to what Luce and Raiffa call "weak dominance" 
to the current framework of  action. Although the ordering to be defined 
here ignores the complexities involved in a consideration of  independent 
events and the actions of  independent agents-both beyond the scope of  the 
present paper - the simplicity of  this ordering makes it especially attrac- 
tive as a starting point; a refinement designed to accommodate independent 
events and agents can be found in Horty (1996). 

Suppose, then, that K and K '  are actions open to the agent a at m - 
members of  Choice m - and that they are related as follows: each history 
belonging to K '  is at least as valuable as any history belonging to K,  
and some history belonging to K '  is more valuable than some history 
belonging to K.  In these circumstances, a principle sometimes described 
as the "sure-thing" principle tells us that K '  is a better set of  outcomes, 
a better gamble, than K:  by selecting an arbitrary outcome from K' ,  the 
agent is sure to do at least as well as he would by selecting an arbitrary 
outcome from K,  and he might do better. 6 

Let us now introduce the symbol -~ to represent the preference ordering 
on actions given by the sure-thing principle. Where K and K '  are actions 
open to an agent at m, we take 

K -< K' 

to mean that: (1) Valuera(h) <_ Valuem(h') for each history h in K and 
each history h' in K' ,  and (2) Valuem(h) < Valuem(h') for some history 
h in K and some history h' in K' .  When K -~ K' ,  we say that the action 
K'  dominates the action K,  and we note for future reference that this 
dominance relation is transitive and asymmetric: i f K  --< K '  and K '  -< K" ,  
we can conclude that K --< K";  and if K -< K' ,  it is impossible to have 
K' -< K. 

The dominance ordering among actions can be illustrated through our 
gambling examples. In the situation depicted by Figure 9, we have neither 
KI --< K2 nor K2 -< KI; neither of the actions open to the agent is 
preferable to the other. In the case of Figure I0, however, we do have 
Kl -< K2, since in that situation it is better for the agent not to gamble. 
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6.2. A New Deontic Operator 

As with expected utilities, this dominance ordering allows us to compare 
the actions themselves available to an agent at a moment, not merely the 
histories through that moment. 

This new ordering is weaker than the ordering derived from expected 
utilities; for example, it is not linear. Nevertheless, the dominance ordering 
is strong enough to support the definition of a reasonable deontic operator 
representing what an agent ought to do. Let us introduce the new, two-place 
operator ®[.. .  cstit : __], allowing us to construct statements of  the form 

®[a cstit : A], 

with the intuitive meaning that a ought to see to it that A. The evaluation 
rule for this new operator is: 

• .M, m / h  ~ ®[a cstit : A] if and only if there is a history 
h' E Hm such that (1) A/t, m / h '  ~ [o~ cstit : A], and (2) 
Choicem~ (h ") -.< Choice~(h ~) for each history h" C H m  such 
that At ,  m / h "  ~¢ [c~ cstit : A]. 

And the idea underlying this rule is as follows. The formula ® [ol cstit : A] 
is to be true at an index m / h  whenever: there is a history h ~ through m 
along which [o~ cstit" A] is true, hence some action Choice~(h ~) available 
to oL that guarantees the truth of  A, and which is such that, if o~ does not 
guarantee the truth of A, it must be that the action he performs is worse 
than Choicem ( h'). 

Having introduced this new deontic operator directly representing what 
an agent ought to do, we abandon the Meinong/Chisholm strategy of  
attempting to explicate what an agent ought to do as what it ought to 
be that he does. We continue to use the formula O [tx cstit : A] as a 
representation of  the idea that it ought to be that o~ sees to it that A; but 
the distinct idea that oL ought to see to it that A is now carried by the new 
formula ®[a cstit : A]. 

It should be clear that the new analysis gives us the correct results in 
our two gambling examples. In the case of Figure 9, where it appears to 
be impossible to conclude either that the agent should gamble or that he 
should not, both ®[oL cstit : A] and ®[a cstit : -,A] are settled false. In 
the case of  Figure 10, where it seems that the agent should refrain from 
gambling, the statement ®[a cstit : ~A] is settled true, as desired. 

We now turn to some observations concerning the logic of our new 
deontic operator. 

Although perhaps apparent already, it is worth noting explicitly that the 
notion carried by this new operator of  what an agent ought to do is logically 
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neither weaker nor stronger than the notion of  what it ought to be that he 
does, but incomparable: both the formulas 

0 [o~ cstit:  A] D 63[o~. cstit: A], 

63[c~ cstit : A] D 0 [c~ cstit : A] 

are invalid in the class of  utilitarian stit models. A countermodel to the 
first is provided by Figure 9; a countermodel to (an instance of) the second 
is provided by Figure 10. It is interesting to note, however, that if we 
limit our attention to the class of those utilitarian stit models that can be 
taken to represent standard deontic stit models - those utilitarian models 
in which the space of  values is limited to 1 and 0, representing the ideal 
and non-ideal histories - then the first of  these two formulas is valid in 
this more restricted class; the fact is established as Proposition 2 in the 
Appendix. Thus, while the notion of  what it ought to be that an agent does 
is incomparable in a general utilitarian setting to the notion of what an 
agent ought to do, it is a logically stronger notion in a pure deontic setting. 

Even in a general utilitarian setting, however, although the notion of  
what an agent ought to do is incomparable to the notion of  what it ought 
to be that he does, these two notions are at least guaranteed not to conflict: 
we will never come across a situation in which the agent ought to see to it 
that A, although it ought to be that he sees to it that ~A. This guarantee is 
due to the validity of  

=[63[a cstit:  A] A O[a cstit: -~A]], 

which is established as Proposition 3 in the Appendix. 
It is clear from the structure of the evaluation rule for the new operator 

that any statement of the form 63 [a cstit : A] is always either settled true 
or settled false; and also that the characteristic deontic formula 

63 [~ cstit : A] D ~[a cstit : A] 

is valid. The new operator is, moreover, a normal modal operator, satisfying 
the principles 

R E  63. 

N ® .  

M ® .  

C ® .  

A =- B~  63 [o~ cstit : A] = 63[o,. cstit : B], 

®[a cstit : T], 

63[a cstit : A A B] D . ® [o~ cstit : A] A ®[a cstit : B], 

63[o~ cstit : A] A 63[o~ cstit : B] D 63[a cstit : A A B]. 
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Although, it is easy to establish RE®, N®, and M®, the verification of 
C® is surprisingly difficult. The reason for this difficulty may become 
apparent if we recall that the proof of  validity provided in Proposition 1 for 
the analogous formula CO relied crucially on the assumption of linearity 
for the underlying ordering of  values. The dominance ordering on actions 
that figures in the definition of our new deontic operator is not linear; but as 
Proposition 5 of  the Appendix shows, the validity of C® can nevertheless 
be established. 

7. HINTS AT A GENERAL THEORY 

The analysis set out here presents, I believe, a coherent theory of what an 
agent ought to do, and one that improves on the Meinong/Chisholm idea 
of  identifying what an agent ought to do with what it ought to be that he 
does. There are, however, a number of  ways in which the theory as as it 
stands might be refined and generalized: I close simply by mentioning two 
of  these. 

7.1. Strategies 

First, the theory as it stands focuses only on a moment. It specifies what an 
agent ought to do at a moment entirely on the basis of the actions available 
to the agent at that very moment, ignoring any actions that might be 
available later on. Of  course, agents do not usually confine their attention 
to momentary actions; more often, they work out plans of  action over 
intervals of  time. Nevertheless, although a full account of  what an agent 
ought to do over some period of  time would ultimately have to be richer 
than the momentary theory presented here, it might seem that we could 
safely ignore the problems involved in developing such a full account if we 
were willing to settle, at first, only for an accurate momentary account of 
what an agent ought to do. Unfortunately, this is not so: there are situations 
in which, by concentrating only on a moment, ignoring the later actions 
available to an agent, we are left with a distorted picture of  what the agent 
ought to do even at that very moment. 

An example is provided by Figure 11, which depicts the options open 
to the agent ce at the moment  ml ,  and then also at the later moment  ra2. At 
m l ,  the agent faces a choice between KI = {hi,  h2} and K2 = {h3~ ha}, 
and then at m2 a choice between/£3 = {hi } and K4 = {h2}. The histories 
hi through h4 possess the values indicated, relative to both ml  and m2; and 
the statement A is true at the indices rnl/hl, ral/h2, m2/hl, and m2/h2. 

Now what should the agent do at the moment m l ?  Well, if we look at 
ml  alone, the situation appears to be identical to that depicted in Figure 9, 
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Figure 11. ®[a cstit : A] settled false. 

our first gambling example. Neither of the actions K1 or K2 dominates the 
other, and so the theory as it stands cannot recommend either action over 
the other. As a result, both ®[a cstit : A] and ®[a estit : ~A] are settled 
false at ml .  

From an intuitive point of  view, however, this result is incorrect. The 
current situation is not like the earlier gambling example. In the present 
case, it is as if the agent could first gamble, and then later on choose 
whether or not he is to win. If the agent selects the action K1 at ml ,  he 
then faces at m2 the further choice between/£3 and K4. By adopting the 
strategy of  first selecting K1 and then selecting/(3, he can guarantee an 
outcome of  value 10, the highest value that he can guarantee through any 
available strategy. Since K1 is the action that a performs at ml in the best 
strategy available, it appears - from this more general perspective, which 
involves looking at later moments - tha t  K1 should be classified as a better 
action than K2 even at ml ,  and therefore, that at ml  a ought to see to it 
that A. 

Of course, generalizing the notion of  what an agent ought to do in this 
way - evaluating present actions partly on the basis of  later possibilities 
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- would involve formulating precisely the notion of a strategy gestured at 
in the previous paragraph, and then working this notion into the semantics 
of a new deontic operator. An appropriate notion of  strategy can be found 
in Belnap (1994), but the detailed work involved in adapting this notion to 
the present deontic setting has not yet been carried out. 

7.2. Alternative Preference Criteria 

The account set out here of  what an agent ought to do exploits the analogy 
between the present theory of  action in an indeterministic setting and the 
decision theoretic treatment of choice under uncertainty. The account is 
based on one particular-preference criterion studied in decision theory, a 
dominance criterion: it adapts this criterion to define a preference ordering 
for the present theory of  action, and then appeals to the resulting preference 
ordering in the definition of a new deontic operator. 

Although the particular preference criterion relied upon here - the 
dominance cr i te r ion-  seems to be especially attractive, it is not the only 
preference criterion studied within the theory of  decision under uncertainty, 
and others have their merits. A second way of  generalizing the present 
theory of  what an agent ought to do, then, is to explore the results of  
developing an account like that set out here against the background of  
some of  the other preference criteria found in the theory of decision under 
uncertainty. Simply to illustrate the kind of generalization involved, we 
now consider how the theory might be developed against the background 
of  the well-known maximin preference criterion. 

A decision problem under uncertainty can be formulated as follows. An 
individual must choose from among a finite number of  actions 
K1, K2, .  •., Kin. One of  a finite number of states of nature Sl, s2, • •., sn 
obtains, but the individual does not know which, and has no information 
either about relative probabilities. The outcome of  his action depends not 
only on the particular action he performs, but on the state of  nature that 
obtains; thus, an outcome can be defined as a pair (Ki, 8j), with Ai an 
action and sj a state of nature. With each such outcome there is associated 
a real number u[(Ki, sj )], representing its utility. Given this informat ion-  
the actions, the states of  nature, and the utilities of ou t comes -  the goal of 
a preference criterion is the definition of an intuitively plausible ranking 
of the available actions. 

The maximin criterion is a particularly conservative preference crite- 
rion, which ranks each action in accord with the least favorable outcome 
that might result from that action. Formally, an action Ki is assigned 
as its security level sl[Ki] the minimum of  the numbers u[(Ki, sl)], 
u[(Ki, s2)] , . . . ,  u[(Ki, Sn)], representing the utilities of  the various out- 
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comes that might result from that action. The available actions can then 
be ranked in accord with their security levels; and according to maximin 
theory, an agent should choose some action whose security level is maxi- 
mum. 

The picture found in the study of  decision under uncertainty is less 
general than the picture provided by our present framework of  utilitarian 
stit models, for a number of reasons. One important difference is this: each 
action in decision under uncertainty is associated with a finite number of  
possible outcomes, determined by the finite number of  possible states of  
affairs; but the set of  possible outcomes associated with an action in the 
present framework - the set of  histories contained in that action - may be 
infinite. 

Because an action in the present framework may allow for an infinite 
set of  possible outcomes, its security level cannot be defined simply as the 
minimum of  the values of  its outcomes, for there may be no such minimum. 
Instead, we define the notion by cases. If  K is an action available at the 
moment m, then either there is a lower bound to the set of  values of  histories 
contained in K or not. If  so, then sl[K] - the security level of  K - can be 
defined as the greatest lower bound of these values: 

sl[K] = glb{Valuem(h) : h E K } ,  

where glb is a function mapping a set of  numbers into its greatest lower 
bound. If  not, then we take 

s l [ K ]  = 

where - c o  is a special value introduced into our utilitarian system of  
values, and ordered so that it is strictly less than every real number. 

The assignment to each action of  a security level allows us to rank the 
actions in accord with the maximin theory; and this new ranking can then 
be used in the definition of  a new deontic operator, representing what an 
agent ought to do according to the maximin theory. We let the formula 
@[ce cstit : A] represent the idea that o~ ought according to the maximin 
theory to see to it that A, with an evaluation rule as follows: 

• Ad, m / h  ~ ®[a cstit : A] if and only if there is a history 
h t E Hm such that (1) Ad, m / h '  ~ [acstit : A], and (2) 
sl[Choicem(h")] < sl[Choice~(h')] for each history h" E Hm 
such that M ,  ra/h" g [a cstit : A]. 

The idea, of  course, is that q3 [c~ cstit : A] should hold at m whenever there 
is an action K available to a at m that guarantees the truth of  A, and which 
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Figure 12. ®[a cstit : A], butnot @[a cstit : A]. 

is such that, if a does not guarantee the truth of A, the action he performs 
has a security level lower than that of K. 

In order to illustrate this new operator, let us return again to our first 
gambling example, depicted in Figure 9. Here, sl[K1] is 0 while sl[K2] is 
5; the option of declining the gamble has a higher security level than that 
of gambling. Because of this, it is easy to see that a ought to refrain from 
gambling according to the maximin theory: the formula @[a cstit : ~A] is 
settled true at ra. 

Turning now to the logic of this maximin operator, it is again obvious 
that the formula @[a cstit : A] is either settled true or settled false at any 
moment, and that the characteristic deontic formula 

®[a cstit : A] D O[a cstit : A] 

is valid. Furthermore, we note without proof that this new operator is a 
normal modal operator, validating RE@, N@, and M@, and C@ (the 
@-analogs to RE®, N®, and M®, and C®). In fact, since the rank- 
ing according to security level leads to a linear ordering of actions, the 
verification of C ~  is considerably more straightforward than that of C®. 

The maximin conception of what an agent ought to do differs both from 
our previous analysis of what an agent ought to do, based on the dominance 
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ordering, and also from the notion of  what it ought to be that an agent does. 
Compared to the dominance notion, the maximin conception is logically 
neither weaker nor stronger: both the schemata 

• [a cstit : A] D ®[a cstit : A], 

®[a cstit : A] D O[a cstit : A] 

are invalid. As we have seen, a counterexample to (an instance of) the first 
is provided by Figure 9. A counterexample to the second is found in Figure 
12, where ®[a cstit : A] is settled true but @[a cstit : A] is settled false. 
Still, although these two notions differ, there can be no conflict between 
them: the validity of  

~[®[a cstit : A] A ~3[a cstit : -~A]]. 

is easily established. 
Compared to the notion of what it ought to be that an agent does, the 

maximin conception of  what the agent ought to do is, again, neither weaker 
nor stronger; and in fact, here, we do have a real conflict. As we can see 
from Figure 9, the formula 

0 [a cstit : A] A ®[a cstit : ~A] 

is satisfiable: although it ought to be that a sees to it that A, what he 
ought to do according to the maximin conception is to see to it that ~A. 
This direct conflict between what it ought to be that an agent does and 
the maximin conception of what the agent ought to do is perhaps not too 
surprising. For the maximin conception ranks actions entirely on the basis 
of  their worst possible outcomes, completely ignoring any better results 
to which those actions might lead; the notion of  what it ought to be that 
an agent does, on the other hand, focuses only on the best outcomes that 
might result from a given action, giving no weight to any risks the agent 
might have to run in an attempt to achieve those best outcomes. 

APPENDIX. PROOFS OF PROPOSITIONS 

PROPOSITION 1. Let .M be a general deontic stit model in which the 
underlying space of  values is subject to a linear ordering. Then CO is true 
at every index ra/h from M .  
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Proof Where A4 is a general deontic stit model with a linear ordering 
of values, suppose A4, m / h ~ © A A © B. We know from the evaluation 
rule that there exist histories hi, h2 E Hm such that 

(*) ./~, re~hi ~ A, and .M, m/h"  ~ A for all histories h" E Hm 
such that Valuem (hi) < Valuem (h"); 

and 

(**) A4, m/h2 ~ B, and M ,  m/h"  ~ B for all histories h" E Hm 
such that Valuem(h2) <_ Valuem(h"). 

In order to show that.M, m/h  ~ 0 (AAB), we must show that there is some 
history h ~ E Hm suchthat (1) .M, rn/h ~ ~ AAB,  and (2) At,  re~h" ~ AAB  
for all histories h" E Hm such that Valuera(h t) < Valuem(h"). Since the 
underlying space of values is subject to a linear ordering, we have either 
Valuem(hl) < Valuem(h2) or Valuem(h2) <_ Valuem(hl). We can thus 
reason by cases. 

Suppose Valuem(hl) < Valuem(h2). In this case, we identify h ~ with 
h2. Then (**) tells us that .M, m/h  ~ ~ B, and we can conclude from 
(*), since Valuem(hi) <_ Valuem(h'), that A4, m/h '  ~ A. Thus we have 
(1) .M, m / h  r ~ A A B. Now consider a history h" E Hm such that 
Valuem(h ~) <__ Valuem(h"). From (**), we know that .M, m/h"  ~ B. And 
since Valuem(hl) <_ Valuem(h~), we can conclude that Valuem(hl) <_ 
Valuem(h"); and so (*) tells us also that A4, re~h" ~ A. Therefore, Ad, 
re~h" ~ A A B; and so we have established that (2) Ad, re~h" ~ A A B 
for all histories h" E Hm such that Valuem(h ~) <_ Valuem(h"). 

The argument is symmetric in the case in which Valuem(h2) < 
Valuem ( h l ) . [] 

PROPOSITION 2. Let .M be a utilitarian stit model in which the values 
assigned to histories are limited to 0 and 1, with 0 < 1. Then the formula 
0 cstit : A] cstit : A] is true at every index m/h  from jk4. 

Proof Let .M be a utilitarian silt model in which the values assigned to 
histories are limited to 0 and 1, and suppose .M, m/h  ~ 0 [~ cstit : A]. 
Then there is some history h l E Hm such that (1) A4, m / h l ~ [~ cstit : A ], 
and (2) .~¢[, re~h2 ~ [c~ cstit : A] for all histories h2 E Hm such that 
Valuem(hl) <_ Valuem(h2). Now either Valuem(h') = 0 for each history 
h ~ E Hm or not. If so, then it follows from (2) that [~ cstit : A] holds at 
m / h  t for each h ~ E Hm; and so it is easy to see that ®[a cstit : .4] must be 
settled true at m. So suppose not - that there is some h ~ E Hm such that 
Valuem(h') = 1. 
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Then by (2) again, we have [a cstit : A] true at m/hl; and so the 
first clause is satisfied for the truth of  .M, m/h ~ ®[a cstit : A]. 
Suppose the second clause is not. Then there must be some h" E Hm 
such that (i) .A//, re~h" ~¢ [~ cstit : A] and (ii) it is not the case that  
Choicem(h ") -< Choicem(h'). Now either Valuem(h3) = 0 for each his- 
tory h3 E Choice~(h") or not. If so, then since h' E Choice'~(h ~) and 
Value~(h ~) = 1, it follows from the definition of  the -< relation that 
Choice m (h") ~ Choice~ (h~), contrary to (ii). But if n o t -  if  there is some 
history h3 E Choice m (h") such that Valuem (h3) = 1 - then we know from 
(2) yet again that .All, m/h3 ~ [a cstit : A]. But then it is easy to see, since 
h3 E Choicem(h"), that A4, m/h" ~ [~ cstit : A] as well, contrary to (i). 
Hence, the second clause for the truth of.A//, m/h ~ ®[~ cstit : A] must 
be satisfied. [] 

PROPOSITION 3. The formula ~[®[a cstit : A] A 0 [a cstit : ~A]] is 
valid in utilitarian models. 

Proof Suppose the contrary, that there is an index m/h in a utili- 
tarian model .M such that .M, m/h ~ ®[a cstit : A] and .M, m/h 
0 [a cstit : ~A]. Because .A/l, m/h ~ ®[~ cstit : A], the evaluation rule 
for this connective tells us that there is a history hi E Hm such that 
(1) .A4, rr~/hl ~ [oL cstit : A], and (2) Choice,(h") -< Choicem~ (hl) for 
each history h" E Hm such that A4, re~h" • [a cstit : A]. Because .A//, 
m/h ~ 0 [a cstit : -~A], we can conclude from the evaluation rule for O 
that there is a history h2 E Hm such that (3) A4, re~h2 ~ [a cstit : -~A], 
and (4) Valuem(h") < Valuem(h2) for each history h" E Hm such 
that .AA, re~h" ~ [~ cstit : ~A]. From (1) we can conclude that .M, 
re~h1 ~ [~ cstit : ~A], and so from (4) that Valuem(hl) < Valuem(h2). 
From (3) we can conclude that .A//, m/h2 ~¢ [~ cstit : A], and so from (2) 
that Choice~ ( h2 ) -< Choice~ (hi). But now we have both Choice~ ( h2 ) --< 
Choice~ (hi) and Valuem (hi) < Valuem (h2); and that is impossible, since 
the definition of  the -< relation tell us that Choice~ (h2) -< Choice~(hl) 
entails Valuem (h2) _< Valuem (hi). [] 

PROPOSITION 4. Let K and K ~ be two actions belonging to Choice~, and 
suppose that neither dominates the other; that is, both K --< K ~ and K ~ --< K 
fail. Then either: (A) Valuem(h) = Valuem(h') for all h E K and h I E K ~, 
or 03) there exist h E K and h ~ E K t such that Valuem(h) < Valuem(hl), 
and there exist h E K and h t E K t such that Valuem(h') < Valuem(h). 

Proof Suppose both (A) and 03) are false. The falsity of  (A) tells us 
that Valuem(h) ~ Valuem(h ~) for some h E K and h' E K ~. The falsity 
of  03) tells us that either (1) Valuem(h ~) <_ Valuem(h) for all h E K and 
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h' E K '  or (2) Valuem(h) <_ Valuem(h') for all h E K and h' E K ' .  So 
suppose, first, that (1). Together with the falsity of(A), however, this yields 
the result that (3) Valuem(h t) < Valuem(h) for some h E K and h ~ E K~; 
but (1) and (3) tell us that K t --< K, contrary to hypothesis. Likewise, 
if we suppose that (2), the falsity of (A) yields the result that K -4 K t, 
again contrary to hypothesis. Therefore neither (1) not (2) can be assumed 
along with the falsity of (A); but since either (1) or (2) must hold if (B) 
is false, the falsity of (B) cannot be assumed along with the falsity of (A). [] 

PROPOSITION 5. The formula C® is valid in the class of utilitarian stit 
models. 

Proof Where .M is a utilitarian stit model, suppose that 34, rn/h 
®[a cstit : A] A ®[a cstit : B]. Then we know that there exist histories 
hi, h2 E Hrn such that 

(*) .M, re~h1 ~ [acstit : A] and Choice~n(h ") -~ Choicer~(hl) for 
each history h" E Hm such that 3,4, re~h" ~/ [a cstit : A], 

and 

(**) .A/t, re~h2 ~ [a cstit • B] and Choicem(h ") -~ Choicem(h2) 
for each history h" E Hm such that .M, m/h  a ~[a cstit : B]. 

In order to show that 34, m /h  ~ ®[a cstit : A A B], we must show that 
there exists a history h' E Hm such that (1) M ,  m/h'  ~ [a cstit : A A B], 
and (2) and Choicem(h ") -< Choicem(h ') for each history h" E Hm such 
that M ,  m/h"  V [a cstit : A A B]. We proceed by cases, with our primary 
case structure organized around the relation between Choicem(hl) and 
Choice~(h2). 

Case I: Choice'S(hi) -< Choicerf(h2). Here, we identify h' with h2. We 
know already from (**) that 34, m/h2 ~ [a cstit : B]. So suppose it were 
the case that M ,  re~h2 ~ [a cstit : A]. We could then conclude from (*) 
that Choice m (h2) ~ Choice'~ (hi); but since the ~ relation is asymmetric, 
this would contradict the Case I hypothesis. Thus A4, re~h2 ~ [acstit : .4]. 
Combining these observations, we have 34, re~h2 ~ [a cstit : A A B]; and 
so the first clause is satisfied for the truth of.M, m/h2 ~ ®[acstit : A A B]. 

In order to see that the second clause is satisfied, we must see that, for 
each h" E Hm, if .M, m/W t ~" [a cstit : A A B], then Choice~(h") 
Choicer~(h2). So suppose Ad, re~h" V [a cstit : A/x B]. We must then 
have either (i) .M, rn/h"  ~' [oe cstit : A] or (ii) .M, rn/h" ~¢ [0~ cstit : B]. If 
(ii), then it follows at once from (**) that Choicem(h ") -~ Choicer~(h2). 
So suppose (i). In that case, it follows from (*) that Choicema(h ") 
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Choice m (hi); but then we can conclude that Choice m ( h " ) -4 Choice m (h2) 
from the transitivity of  -4 and the Case I hypothesis. 

Thus, both clauses are satisfied, and we can conclude in this case that 
34, m / h  ~ ®[a cstit : A A B]. 

Case II: Choicem(h2) -4 Choieem(hl). The argument in this case is 
analogous to that of  Case I, with h ~ chosen as hi. 

Case III: Neither Choicem(hl) -4 Choice~(ha) nor Choicem~(ha) -< 
Choice m (hi). We then consider three subcases. 

Case III.l: There exists a history h3 E Choicem(hl) such that for all 
histories h4 E Choicem(h2) we have Valuem(h3) <_ Valuem(h4); that is, 
Choicem(hl ) contains a history whose value is a lower bound of  the values 
of  the histories belol~ging to Choice~ (h2). 

Here, we identify h t with h2. We know from (**) that 34, re~h2 
[a cstit : B]. Now suppose it were the case that 34, m/h2 ~ [oL cstit : A]. 
We could then conclude from (*) that Choicem~ (h2) -4 Choice~ (hi); but 
this would contradict the Case III hypothesis. Thus 34, rn/h2 ~ [~ cstit : 
A]. Combining these observations, we have 34, re~h2 ~ [a estit : A A B]; 
and so, as in Case I, the first clause is satisfied for the truth 0 f34 ,  m/h2 
®[a cstit : A A B]. 

In order to see that the second clause is satisfied, we must see that, for 
each h" ff Hm, if  34, m/h"  ~ [o~ cstit • A A B], then Choicem~(h ") -4 
Choieem(ha). So suppose again that 34, re~h" ~¢ [o~ cstit" A A B]. Then 
as before, we must have must have either (i) 34, m/h"  ~¢ [o~ cstit : A] or 
(ii) 34, m/h"  ~ [o~ cstit : B]. Again, it follows at once from (ii) and (**) 
that Choicem(h ") -4 Choice~(ha). And it follows from (i) and (*) that 
Choicem(h ") -4 Choice~(hl), but here we cannot rely, as in Case I, on 
transitivity and the case hypothesis to yield Choice"a ~ (h n) -4 Choicem~ (ha). 

Instead, we must note that, according to Proposition 4, the Case nI  
hypothesis can hold under only two conditions: either (A) Valuem(h) = 
Valuem(h') for each h E Choicem(hl) and each h' C Choice~(ha); or 
(B) there exists an h C Choice,(hi) and an h t E Choicem(ha) such that 
Valuem(h) < Valuem(ht), and there exists an h E Choicem~ (hl) and an 
h t E Choicer~(ha) such that Valuem(h') < Valuem(h). Of course, under 
the condition (A), we can conclude that Choice~(h") -4 Choicem~ (ha) at 
once from the fact that Choiee~(h") -4 Choicer~(h~ ). 

So suppose condition (B) holds. Then we can conclude as follows 
that Choice~(h") -4 Choieem(ha) from the fact that Choice~(h") -4 
Choice,(hi) together with the additional information provided by the 
Case Ill. 1 hypothesis. By this hypothesis, we know that each history from 
Choice2 (ha) has a value greater than or equal to that of  h3 E Choiee~ (h 1 ); 
and since Choicer~(h 't) -< Choicer~(hl ), we know that each history from 
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Choicem(h ") has a value less than or equal that of  h3. Therefore each 
history from Choicem(h2) has a value greater than or equal to the value 
of  any history from Choice~(h"). From condition 03), we know that 
some history from Choice~(h2) has a value properly greater than that of  
some history from Choicerf(hl ), which must again have a value greater 
than or equal to that of  any history from Choice~(h"). So we know that 
some history from Choicer~(h2) must have a value properly greater than 
that of  some history from Choice~n(h"). Hence we have Choicerf(h ") 
Choicema (h2). 

So both clauses are satisfied, and we can again conclude in this case 
that A4, m / h  ~ ®[a cstit : A A B]. 

Case III.2: There exists a history h4 E Choicem(h2) such that for all 
histories h3 E Choicem(hl) we have Valuem(h4) < Valuem(h3); that is, 
Choice m (h2) contains a history whose value is a lower bound of  the values 
of  the histories belonging to Choice m (hi). The argument in this case is 
similar to that of  Case III.1, with h ~ chosen as hi. 

Case III.3: For each history h3 E Choicem(hl) there is a history 
h4 E Choicem(h2) such that Valuem(h4) < Valuem(h3), and for each 
history h4 e Choicem(h2) there is a history h3 e Choicem(hj) such that 
Valuem ( h 3 ) < Valuem ( h l ); that is, neither Choicema ( h l ) nor Choicema ( h 2 ) 
contains a history whose value is lower bound of  the values of the histories 
contained in the other. (To guide imagination, note that this case would 
be satisfied if each of Choice m (hi) and Choicerf (h2) contained a history 
having the value of  every real number greater than, say, 4). 

Here we can choose h t as either hi or h2; so let us pick h2. Then 
just as in Case III.1, we can show that 34, re~h2 ~ [a cstit : A A B], 
satisfying the first clause for the truth of .M,  m/h  ~ ®[a cstit : A A B]. 
We can continue following the argument of Case III.1 in the treatment 
of the second clause until it arrives at the intermediate conclusion that 
Choice m ( h") -.< Choice TM (hi) in case .A/l, m/h2 ~ ®[c~ cstit : A]. It is then 
necessary to conclude from this only that Choicem(h ") --< Choicem(h2). 
But this follows by elementary reasoning from the Case III.3 hypothesis 
and the definition of  the -~ relation. 

So both clauses are again satisfied, and we can conclude in this final 
case that AA, m / h  ~ ®[c~ cstit : A A B]. [] 
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NOTES 

I A convention for interpreting figures: when a formula is written next to some history 
emanating from a moment, the formula should be taken as true at that moment/history pair. 
Thus, A should be taken as true at m/hi in Figure 3, for example, and -~A as true at re~h3. 
2 The labels for these principles are drawn from Chellas (1980). 
3 Another response to Kenny's argument from the point of view of modal logic is found in 
Brown (1988); the relation between the present proposal and Brown's is discussed in Horty 
and Belnap (1995). 
4 Our presentation follows the approach of Thomason (198 i). Work along similar lines, but 
against the background of a slightly different framework had previously been carried out 
by Chellas (1969), Montague (1968), and Scott (1967); historical details can be found in 
Thomason (I 984). 
5 Chisholm's paper contains a reference to Hartmann's work; a recent discussion of 
Meinong's proposal can be found in Garcia (1986). 
6 A discussion of  the sure-thing principle from a different perspective can be found in 
Savage (1972), Section 2.7. 
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