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1. Introduction

A common sense dominance argument (1) divides possible outcomes into two or more exhaus-
tive, exclusive cases, (2) points out that in each of these alternatives it is better to perform
some action than not to perform it, and (3) concludes that this action is best unconditionally.

Although such arguments are often used, and are convincing when they are used, they
are invalid. A classic illustration of the invalidity is the argument for cold-war disarmament.!

The informal argument: Either there will be a nuclear war or there won’t. If there
won’t be a nuclear war, it is better for us to disarm because armament would
be expensive and pointless. If there will be a nuclear war, we will be dead
whether or not we arm, so we are better off saving money in the short term
by disarming. So we should disarm.

The argument can be formalized using a payoff matrix like the following one.

Disarm Arm
The payoff matrix: War -50 -100
Peace 50 0

The fallacy, of course, depends on the assumption that the action of choosing whether
to arm or disarm will have no effect on whether there is war or not. As Jeffrey goes on to
show, if the probability matrix is

then arming has the greater expected utility.
In the context of a qualitative approach to decision theory, dominance arguments will play
a central role, since we can no longer rely on numerical assignments of utilities to actions.

!'We have taken the example, and the payoff matrix, from [Jeffrey 1983, pp. 8-12].



It therefore becomes crucial to distinguish valid from invalid dominance arguments without
resorting to numerical probabilities.

A form of independence that depends on counterfactual conditionals can be used here:
in this qualitative sense, a condition B is independent of an action « that is performed if
either (1) B is true, and the conditional ‘B (even) if a were not performed’ is true, or (2) B
is false, and the conditional ‘=B (even) if @ were not performed’ is true.

Thus, the task of developing a qualitative theory that does justice to dominance seems
to require an account of temporal counterfactuals. In the following paper, we show how
to develop such an account within a generalization of the sTRIPS formalism for determin-
istic, single-agent planning, and explain how it can be used to provide a formalization of
dominance.

2. Motivation and background

We begin with the classic STRIPS approach to actions and reasoning about time.? This
approach assumes from the very start that outcomes are entirely determined by a single
agent’s actions. Thus, though there may be a role for plan evaluation in which the outcomes
of different plans are compared according to the utility of the direct consequences of actions,
there is really no role here for the reasoning about risk that is the core of decision theory.
However, the need for true decision-theoretic reasoning becomes essential as soon as actions
are allowed to have nondeterministic consequences—and, of course, the need for such a
generalization has often been noted in the planning literature.®> As soon as this generalization
is made, a simple single-agent strategy (i.e., a STRIPS-like plan consisting of a series of
actions) corresponds to a set of fully specified outcome states, or, equivalently, of sets of
histories in branching time. So this generalization of STRIPS has to be unified with an
account of how the utility of sets of histories can be compared.

Assuming that we know the utilities of histories, the problem then becomes how to
extend these point utilities to utilities on sets. Classical decision theory provides a way to do
this through the definition of expected utility—which, of course, assumes that a probability
distribution over histories is available. A decision-theoretic formalism for planning could
simply import these probabilities: either directly, or in a modified form using “orders of
magnitude,” as in [Tan & Pearl 1994] and [Goldszmidt & Pearl forthcoming]. This alternative
is being explored by Judea Pearl and others.

Here, we follow a more radically qualitative approach, which assumes that we are given
only a linear preference ordering on histories, and seeks to extend this ordering to a partial
ordering over sets of histories. This “utilities lifting” problem is discussed or alluded to,
for instance, in [van Fraassen 1972], [Jennings 1974], [Jennings 1985], [Wellman 1988], and
[Horty 1994]. But, as far as we can tell, there has never been a systematic attempt to develop
a solution to the problem that does justice to the very robust common-sense intuitions that
people have for assessing judgments of preference over sets of outcomes—intuitions that
seem in many cases to be largely independent of any precise estimate of the probabilities
of outcomes. The literature based on classical decision theory occasionally alludes to these
arguments, as in [McClennen 1990] and [Luce & Raiffa 1957, Chapter 13], but the arguments
do not seem to have been examined extensively in that literature.

2See [Fikes & Nilsson 1971], [Lifschitz 1990].
3See, for instance, [Allen 1990].



On the other hand, Wellman’s study of dominance-driven planning in [Wellman 1988]
shows that dominance relations can be very useful in uncertain domains where exact probabil-
ities are not readily available. And the more theoretical approaches to qualitative preference
that have been developed in the recent Al literature are also very relevant to our project.?

Two simple approaches emerge from the discussions of the problem; the most common is
to say that set P is preferred to () in case for all A € P there is a better 2’ € (). The other,
which goes back at least to [Friedman & Savage 1948], says that P is preferred to () in case
for all h € P and h' € @), h is at least as good as A’ and some h € P is better than some
h e Q.

Both of these accounts suffer from flaws that are pretty glaring. The first implies that
a lottery with a large prize is better than one with a smaller prize, regardless of the odds.
The second fails to imply that accepting an outright gift of a large prize is better than
not accepting it, as long as there is an independent chance on any given day that I might
suffer from heart failure. (The history in which I accept the gift and have heart failure is,
presumably, worse than the one in which I do not accept the gift and do not have heart
failure.)

Motivated by these flaws, our project attempts to create a more adequate account of
dominance that (1) in reaction to the first problem, introduces abnormalities over outcomes
(and therefore appeals to ideas from nonmonotonic logic), and (2) in reaction to the second
problem, seeks to provide a definition of dominance that takes into account the relevant
causal relations of histories. In this paper, we concentrate on the second of these tasks. This
study contains no discussion of abnormalities or nonmonotonicity, but is intended to provide
a monotonic theory of dominance from which a more adequate nonmonotonic theory can
then be developed.

Probably the chief insight of our paper (which as far as we know is entirely new) is that
the notion of action that is so important in the STRIPS approach provides a very useful basis
for providing the necessary causal structure for an adequate dominance definition. The main
goal of the material that follows is to present this insight and to articulate it in the form
of a formal theory. In the course of developing that theory, we also present a formalism
for planning and action that takes into account concurrent and nondeterministic actions.
In keeping with our policy of developing the monotonic theory first, this account does not
seek to deal with the frame problem or to introduce nonmonotonicity in any way. In this
way, it differs from other generalizations of the STRIPS approach, such as [Lin & Shoham
1992] and [McCarthy 1995]. Our account introduces into the formalism the notion of the
possible outcomes of an indeterministic action, and generalizes the dynamic assumptions of
STRIPS by assuming that a successor state is uniquely determined by the actions that are
performed in the initial state and their outcomes. This idea seems to provide a very natural
and useful generalization of sSTRIPS. We then show how causal notions that can be added to
the action-driven temporal models of this theory can yield a conditional distance relation.

4These include [Doyle, Shoham, & Wellman 1991], [Doyle & Wellman 1991], [Doyle & Wellman 1994],
[Boutilier 1994b] and [Boutilier 1994a]. This work is less relevant to the focus of the initial project that is
presented below (which, as we explain below, concentrates on causal aspects of preference), than it is to the
subsequent part of the project that takes into account nonmonotonicity.



3. Motivating the treatment of action and time

We start with the idea, which is now current in many other approaches to action, that time
branches. A moment m is a node in branching time. A history is a maximal linearly ordered
set of moments.

There is a set S of states. We associate a state state(m) € S with each moment m. We
have in mind a language of “fluents” that keeps track of the changing phenomena that bear
on action and decision. Fach formula of this language is assigned a truth value in each state,
relative to a model. For planning and decision purposes, moments that are associated with
the same state are equivalent; but we do not rule out the possibility that different moments
may have the same associated state. Such moments may differ in ways that don’t bear
directly on planning and action; for instance, the histories that lead to these moments may
differ.’

There is a set Agents of agents. Agents are unanalyzed primitives; we do not need to
inquire into the nature of agents. Unlike some other theories that deal with branching time
and action, we treat actions as primitive: there is a set Actions of (fully specified) actions.
The nature of actions is vital to our project. Starting with the notion of action that is incor-
porated in the STRIPS model of planning, we will generalize the model to take concurrency
and indeterminism into account, while attempting to preserve some of the desirable causal
properties that STRIPS actions enjoy.

Intuitively, the actions in Actions correspond to the result of appropriately binding all
variables of the action types of some reasoning domain. These actions differ if and only if
their action types differ, or their action types are the same and they have different variable
bindings (considered as tuples of individuals). We assume in this paper that the relevant
variable bindings affect argument positions for the agent of the actions, and for other objects
that may be involved in the action. Actions have no “localizing” argument positions like
time and place. Thus, we should think of the members of Actions as action types that are
relatively specific. They are not individual occurrences, but types of occurrences that can be
multiply instantiated; for instance, the action of unstacking b; by Agent; may be performed
many times.

Consider a blocks microworld World;, where as usual there is only a single agent. (So we
can suppress reference to the agent.) In this world there might be only three action types,
Pickup, PutOnBlock, and PutOnTable. Instantiating the variables associated with these
action types yields a fully specified action; when we refer without qualification to an action,
a fully specified action is intended. In World,, Pickup(b) and PutOnTable(b) will be actions
for each block b in the domain. And for every pair of blocks by and by, PutOnBlock(by, bs)
will be an action. Then Actionsw,na, would be the set in which all of these actions are
collected together.

In most planning formalisms (but see, for instance, [Grosz & Kraus 1993]) there is only
one agent. We now generalize the theory to take multiple agents into account.

In models with multiple agents, each action type has an argument position that has to be
instantiated with an agent in obtaining fully specified actions. In each model M there will
be a function agent,; that takes actions of the model to their agents in the model.® When

®We assume that aspects of histories that bear on planning and action are recorded in the states.
5Though actions can have groups as agents, we have not yet begun to reckon with group agency; in this
paper, we assume that all actions have exactly one agent.



reference to a model is clear, we sometimes drop subscripts: e.g., we may write ‘agent(a)’
when ‘agent ;(a)’ is clearly intended.

In the sTRIPS model of action, an agent can only perform one action at a moment, and
the repertoire of feasible actions is determined by the state associated with the moment and
the preconditions of the available fully specified actions.

We will relax the assumptions of STRIPS in two ways: (1) we will allow many actions
to occur at the same moment,” and (2) we will allow multiple possible results even when
the same actions are performed at a moment. However, in doing this we wish to maintain
an important insight of sSTRIPS: that the global outcome when actions aq,...,a, are con-
currently performed at m-——that is, the state associated with the moment that results when
the actions are performed concurrently in m-—is determined by the local outcomes of the
separate actions. As we will see, this decomposition of global causality into the local results
of actions can be useful in formulating decision theory.

To provide the indeterminacy required by (2), we associate a set A-Outcomesys(a, s) of
possible outcomes with each action ¢ and state s in a model M. These “action-outcomes”
should be thought of as imposing constraints on global states; more vividly, they could
be thought of as parts of global states.® To keep the terminology clear, we refer to local
outcomes (outcomes of of actions) as “a-outcomes”, and to global outcomes (the resulting
outcome states) as “s-outcomes”. The fact that an action a is performed in state s (and, let’s
say, no other actions) no longer suffices to determine a unique global state, or s-outcome.
But we assume that, given the a-outcome of @, a unique s-outcome will be forthcoming. In
general, when a set A of actions is performed concurrently, we need to take action-outcome
patterns for the action A into account. Such a pattern, for an initial state s, is a set of pairs
of the form AO = {(a,0) : a € A}, where A is a jointly feasible set of actions at s, and
o € A-Outcomes(a, s).

In effect, we are preserving the STRIPS assumption that the only changes that occur are
induced by actions. In sTRIPS and the action formalisms derived from it, this assumption
is enforced by “frame axioms” (or “inertial axioms”), which can either be formalized using
some nonmonotonic logic (as in, for instance, [Shanahan 1995]), or by monotonic conditions
on actions (as in, for instance, [Schubert 1990]). Here, we do not care how this is done; we
simply assume that there is a function s-outcome that takes action-outcome patterns into a
global state.? And in our examples we assume that this function does not violate the usual
frame constraints.'”

We will illustrate the nondeterministic case with a domain in which the actions are coin
tosses. Here, the a-outcome of an action is a coin’s position after it is tossed; so each action

“In the general case, some of these actions may be performed by the same agent; but we also allow
concurrent actions by different agents.

8The idea of a-outcomes is similar in some ways to the “hidden variables” technique that is used in [Lin
1996] to make indeterministic actions deterministic. Though Lin’s approach is deterministic while ours is
nondeterministic, we conjeture that the two are equivalent with respect to a language that does not mention
the hidden variables or outcomes.

90Our treatment of multi-agent domains is similar to the accounts that have appeared in the planning
literature; for instance, [Georgeff 1987] and [Lansky 1987]. The treatment of concurrency is especially
similar to that of [Reiter 1996]. We had not seen Reiter’s paper until a near-final draft of this paper had
been written.

10This principle of “outcome determinism” is related to the notion of “epistemic completeness” of of [Lin
& Shoham 1992]. But (1) it is model-theoretic, not proof-theoretic, and (2) it provides for indeterminism.



has two a-outcomes. The s-outcome of performing an action, or set of concurrent actions (in
a world in which the positions of coins are the only fluents) is the configuration of all the
coin positions after the action or actions have been performed.

Let Worlds be a microworld in which there is only one agent, and the objects consist of
two coins, coinl and coin2. Each coin can have either of two polarities: heads up or tails
up. Here, the possible states, or s-outcomes, could be represented as sets of the form

(1) {z,y}, where x € {H;, T,} and y € {Hy, T5}."

Let’s assume that there are two actions in Worldy, toss(coinl) and toss(coin2). The
a-outcomes of these actions are as follows.

(2) a-outcomes of toss(coinl): {Hy, Tq}
a-outcomes of toss(coin2): {Hy, Ty}

This rendition of a-outcomes and s-outcomes has the advantage of representating s-outcomes
as supersets of a-outcomes, so that a-outcomes are, in a sense, literally parts of states. Here,
the a-outcomes determine the s-outcomes by invoking the frame constraint that coins that
are not tossed remain in their previous positions, while tossed coins receive their a-outcome
positions.

Note that a branching-time model can easily be recovered from a model like World,, if
we retain the STRIPS assumption that the only transitions between moments are determined
by the performance of actions, and that a frame principle of minimal change applies to these
transitions. For instance, if a moment is in the state

{Hi, T2},
then two s-outcomes are possible if toss(coinl) is performed:

— One s-outcome of toss(coinl): {Hy, Ts}

— Another s-outcome of toss(coinl): {Ty, T2}

Obviously, all four states of World, should be possible if both coin-tossing actions are
performed concurrently; but we can’t accommodate this possibility until we provide for
concurrent actions. We are now in a position to remedy this limitation. At the same
time, we will take another feature of STRIPS into account—the assumption that actions have
preconditions. We do this by associating with each model M a function that determines a set
Joint-actsy;(s) of sets of actions; each set of actions in joint-actsy;(s) represents a combination
of actions that could be performed in s. In sSTRIPS, joint-actsy,(s) would consist only of unit
sets (unless doing nothing counts as a transition, in which case the empty set would also be
allowed). These would be the unit sets {a} such that the preconditions of a are satisfied
in s. When concurrent actions are allowed, it may happen that there is never interference
between different actions: all sets of actions actions are jointly feasible. In this case,

Joint-actsy(s) = {A : A C Actionsp and the preconditions of a are
satisfied in s for all « € A.}

UThink of (1) as a scheme that generates sets of objects, which we call constraints, rather than as a set
of formulas denoting truth values.



But in general, we can expect more complicated patterns of concurrent actions and their
outcomes. This is illustated by the following example.
Worlds 1s a blocks microworld. Associated with this world are:

e Two robot arms armq and arms;
e Four blocks by, by, b3, and by;
e Actions PickUpAndPutOn(x,y, z), where x,y € {b1, bz, b3, by} and

z € {army, armsy};

o The fifty-four states consisting of all possible stacking configurations of the
four blocks. Of these states, let s; be the one in which b, b, b3, and b, are
OnTable, and let s, be the one in which by is on b,, and b3 and b, are

OnTable.

The preconditions of PickUpAndPutOn(x,y,z) are that x is clear and y is clear. The unit
concurrent action sets are determined as follows.

{PickUpAndPutOn(x,y, z)} € joint-actswona, () if and only if s satisfies Clear(x)
and Clear(y) in Worlds, where @ # y.

Thus, for instance,
{PickUpAndPutOn(bs, by, army)} € joint-actswords (1),
but
{PickUpAndPutOn(by, bs, armq)} & joint-actsworid, ($1)-

Since there are only two arms, if two actions are performed concurrently in Worlds then
they must be performed by different arms. Moreover, there is a possibility of interference
when an attempt is made to perform two actions; this could occur if arm; attempts to put
by on by in sy while at the same time army attempts to do the same thing.

Notice that this limitation cannot be expressed as a precondition on the actions. We
are not speaking here of a case in which one arm moves before the other, but are supposing
that the actions are genuinely concurrent. A condition about what the other arm is doing
simultaneously is not a pre-condition.

It is very natural to speak in such cases, as we have just done, in terms of “attempting”
to perform an action. But in using such language, we are speaking in a way that can’t be
modeled by STRIPS, or even by the extension that we are developing. In STRIPS, to attempt
an action is to achieve its results. Even when action is rendered nondeterministic, as in
STIT,' the consequences associated with the action are those that occur in every alternative
in which the action is performed. As we ordinarily speak of action, the goals or postconditions
are expressed as defaults which may not always be achieved. Crossing the street is an action,
which if initiated may sometimes fail to achieve the goal. We believe that a nonmonotonic
extension of the present theory will capture this aspect of action, and provide a bridge to the
theories of agency in the literature of linguistic semantics, as in [Dowty 1979]. But this is a
task for a later paper. The alternative treatment, which we will adopt here, is to only allow

1241177 stands for “Seeing to it that”; see [Nuel D. Belnap & Perloff 1988]. In a later paper we will

provide a more detailed comparison of the theory we develop here and the sTIT approach to action.



feasibility sets of noninterfering concurrent actions. The formalization is imperfect; because
if the control systems for the arms are independent, it may well happen that interferences
occur, with unpredictable results. But, as we say, we cannot model this in the present
framework without cutting the connection between actions and their postconditions.

The two-member a-outcome sets in Worlds are then determined as follows.

{PickUpAndPutOn (a1, 31, 21), PickUpAndPutOn (x4, y2, z2)} € joint-actsword, ()
if and only if 21 # 25 and {21 # 22} C {armq, arms} and s satisfies clear(xy),
clear(y1), clear(xy), and clear(ys) in Worlds, where a1 # y1, x2 # yo,
T 7A T2, T1 7A Y2, 7A r9, and y, 7A Ya2.

In Worlds, this condition has the consequence that a pair of actions can only occur
concurrently if they are performed by different arms on disjoint pairs of blocks in s;1. As we
have modeled it, Worlds is a deterministic world; there is only one a-outcome per action, as
in STRIPS.

Putting together together concurrency and indeterminism, imagine a coin microworld
World, with two agents, Fred and Jane, two coins, coinl and coin2, and three action types:
TurnUp (this action results in a coin being heads up), TurnDown (this action results in a
coin being tails up), and Toss. There are then twelve actions:

TurnUp(coinl, Fred), TurnUp(coin2, Fred), TurnUp(coinl, Jane),
TurnUp(coin2, Jane), TurnDown(coinl, Fred), TurnDown(coin2, Fred),
TurnDown (coinl, Jane), TurnDown(coin2, Jane), toss(coinl, Fred),
toss(coin2, Fred), toss(coinl, Jane), and toss(coin2, Jane).

We will assume that Fred has control over coinl and Jane has control over coin2; the
preconditions of six of these actions are then never met. The remaining Toss actions have
no preconditions. The remaining TurnUp actions presuppose that the coin is tails up, and
the remaining TurnDown actions presuppose that the coin is heads up. Any set A of actions
is jointly feasible in s as long as long as the preconditions of each action are satisfied in s,
and A does not contain more than one action by the any one agent. The a-outcomes of the
actions are as expected.

a-outcomes of TurnUp(coinl, Fred): {Hy}
a-outcomes of TurnUp(coin2, Jane): {Hs}
a-outcomes of TurnDown(coinl, Fred): {T1}
a-outcomes of TurnDown(coin2, Jane): {Tz}
a-outcomes of toss(coinl, Fred): {Hy,T1}

a-outcomes of toss(coin2, Jane): {Hy, Ty}

It should be clear how a world like World, generates a branching time model. There are,
of course, four possible states:

so = {Hy, Ha}, s1 = {Hy, Ta}, sy = {Ty, Ha}, s3 = {T1, Ty}

Suppose that we start at a moment mg with associated state sqg. If we allow any jointly
feasible combination of concurrent actions, and count the empty set as such a set, there are
sixteen action-outcome patterns for sg. These patterns and their associated s-outcomes for sq
are as follows. (Remember, in constructing these models, we are applying frame constraints.)
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AO; = 0, s-outcome(AO1, s0) = So;

AOy = {{TurnDown(coinl, Fred),T1)}, s-outcome(AO4, so) = $3;
AOs = {{(TurnDown(coin2, Jane), T3)}, s-outcome(AQOs, s9) = s1;
AO, = {(toss(coinl, Fred),Hq)}, s-outcome(AQOy, so) = $1;

AOs = {(toss(coinl, Fred), T1)}, s-outcome(AOs, s0) = $2;

AOg = {(toss(coin2, Jane),Hy)}, s-outcome(AOq, s0) = So;

AO; = {(toss(coin2, Jane), T2)}, s-outcome(AO7, sg) = s1;

AOs = {{(TurnDown(coinl, Fred), T1)(TurnDown (coin2, Jane), Ts)},
s-outcome(AQsg, sg) = $3;

AOqg = {{TurnDown(coinl, Fred), T1), (toss(coin2, Jane), Hs)},
s-outcome(AQyg, sg) = $9;

AO19 = {(TurnDown(coinl, Fred), Ty), (toss(coin2, Jane), Ts)},

s-outcome(A O, $0) = $3;

AO11 = {(toss(coinl, Fred),Hy), ( TurnDown(coin2, Jane), T3)},

s-outcome(AO11, $9) = $1

AO12 = {(toss(coinl, Fred), Ty), (TurnDown(coin2, Jane), Ts)},

s-outcome(AO12, $0) = 83

AO13 = {(toss(coinl, Fred),Hy), (toss(coin2, Jane), Hy) },

s-outcome(AOs, $0) = So.

AO14 = {(toss(coinl, Fred),Hy), (toss(coin2, Jane), T3)},
s-outcome(AO14, $0) = $1.
AO15 = {(toss(coinl, Fred), Ty), (toss(coin2, Jane), Ha)},
s-outcome(A O, ) = 2.
AO16 = {(toss(coinl, Fred), Ty), (toss(coin2, Jane), T2)},
s-outcome(A O, S0) = 3.

We then generate the immediate successors of mg by creating a new moment for each
action-outcome pattern AQ, and assigning this new moment the s-outcome for AO. In
diagramming these models, it is natural to display the tree as a graph, and to label each
edge with the action-outcome pattern that produces it.

Applying this process to mg, we obtain sixteen successor moments. Part of this first level
of the construction will look like this.

4. Models

Here we summarize in more formal terms the account of models that has emerged from the
previous discussion.

A model M consists of the following components. (The relatively large number of com-
ponents is due to the treatment of actions, states, moments, and outcomes as primitives.)

1. A nonempty set Dys. Frplanation: the domain of individuals.
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2. A set Myy. Frplanation: the moments of the model. (Moments aren’t clock
times; they are nodes in a branching time tree, to which states are assigned.)

3. A member m)! of Mys. Ezplanation: the root moment for the temporal
structure of the model.

4. A function successorsy; from My; to subsets of My, Erxplanation. This
function returns the immediate successors of a moment.

5. A set Sys. Explanation: the states of the model.

6. A function statep; from Mys to Sy. Erplanation: the state assignment
function of the model.

7. A set Actionsy;. Frplanation: the actions of the model. See Section 3 for
explanation of what is meant intuitively by an action.

8. A nonempty subset Agents,,; of Dys. Explanation: the agents of the model.

9. A nonempty set Qutcomesys. Explanation: the possible a-outcomes of the
model.

10. A function agent,; from Actionsy to Agents,;. Explanation: This function
returns the agent associated with each action.

11. A function A-Qutcomesy; from Actionsy X Syy to the power set of Qutcomesy;.
Explanation: This function returns the set of outcomes associated with an
action in a state.

12. A function joint-acts,; from Sys to the power set of Actionsyr. Frplanation:
This function returns the sets of actions that can be concurrently performed
in a state.

Definition 1. (Action-outcome patterns.)
An action-outcome pattern for M is a set AO of pairs (a, o), where a € Actionsy and
0 € Outcomesy.
Actions(AO) = {a : (a,0) € AO}. A-Outcomes(AO) ={o : (a,0) € AO}.
Actionspr,(AO) = {a € Actionsy : agent,, (a) = p}.
A pattern AO is feasible in s, where s € Sy, if (1)
outcome({a,0)) € A-Outcomesy(action((a,o)),s) whenever (a,0) € AO, and (2)
Actions(AO) € joint-actsy(s).
AO-Patternsy(s) is the set of all feasible outcome patterns for M in state s.
AO-Patternsyy = U{AO-Patternsy(s) : s € Su}.

Ezxplanation: An action-outcome pattern is an association of outcomes with a set of
actions. The pattern is feasible in s if the outcomes are appropriate for the actions in s, and
the set of actions is jointly feasible in s.

13. A function s-outcomeps from states and action-outcome patterns appropri-
ate for the state to states. l.e., if AO is an appropriate action-outcome
pattern for s, then s-outcomen(s, AO) € Sn.

Explanation: This function returns the outcome state that results when
action-outcome pattern occurs in an initial state.

14. A valuation Vjs, providing appropriate values Vi (X, s) for individual con-
stants and predicates X, for each state s in Syy.

10



Explanation: This is a familiar first-order interpretation, parameterized for
states.

We impose two requirements on the models of the theory. The purpose of these conditions
is to guarantee that the successor relation on instants is uniquely determined by the s-
outcomes of jointly feasible actions, that histories in the model are constructed by applying
the successor relation iteratively to the root moment mg, and that the depth of branches is
uniform.

Condition 1. For all m € My, either (1) successorsy(m) = 0, or (2) there is
a one-to-one function F'M from AO-Patternsy(s) to successorsyr(m), such
that for all m’ € successorsy(m), and AO € AO-Patternsyy, statepy(FM(AO)) =
s-outcome pr(statepr(m), AO).

Definition 2. (The result function.)
result yy(AO,m) = FM(AO).

Definition 3. (Histories.)
A history on M is a maximal chain over the tree with root m}! and successor function
successorsyy. Historiesys is the set of histories of M.

Definition 4. (Depth of moments.)
depth,; is a function from Mys to w, such that: depth,;(mo) = 0 and for all m’ &
successorsyr(m) we have depth,, (m') = depth,,(m) + 1.

Definition 5. (Depth of histories.)
If h is a finite history of M, let end-moment(h) be the last moment in %, and let
depthy,(h) = depthy,(end-moment(h)). If h is an infinite history, let depth,;(h) = w.

Condition 2. The histories of a model M are of uniform depth. Le., there is an
vai < w such that for all histories h of the model, depth(h) = v. In that
case, we say that depth(M) = vj.

Definition 6. (Action-outcome sequences.)
Let AO-Sequences); consist of all sequences <AOi>i<d€pth(M), where
AO; € AO-Patternsy;. Where a € AO-Sequences’y, let statepy(a,0) = statepr(md!) and
statenr(a, 0 + 1) = s-outcomeps(statepr(a, 1), o), where ¢ + 1 < depth(M) and
s-outcomepy(statepr(a, i), o;) is defined. Let AO-Sequences,; be the set of all members «
of AO-Sequencesy; such that state(o, 1) is defined for all ¢+ < depth(M), and
a; € AO-Patternsp(statenr(a, ).

Conditions 1 and 2 ensure that any model can be generated from a root moment and
its associated state, by iterating the process of generating successor moments to some fixed,
uniform depth (which may be infinite). Moreover, each successor moment is uniquely de-
termined by a feasible action-outcome pattern. They also ensure that the histories of a
model are in one-to-one corresponence with AO-Sequences,;. We use this fact to establish
an action-based notation for histories.
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Definition 7. (Notation for histories.)
Where o € AO-Sequences yr, let history,;(a) be the unique history of M corresponding
to a. And let ao-sequence,;(h) be the unique AO-sequence in M that corresponds to h,
where h € Historiesyy.

Definition 8. (Strategies.)
A strategy for p € Agents), is any sequence (a;)i<gepen(ary Of actions, where
agent y(a;) = p for all ¢ < depth(M). Strategies,, is the set of all strategies of M.
agent(o) = p iff o is a strategy for p. Where o is finite, with length n, last(o) = o,,.
Strategies;(p) is the set of strategies M for agent p.

Definition 9. (Set of outcome histories for a strategy.)
Where o € Strategies,; and agent(c) = p, let Historiesy (o) = {history,,o0 : o, = a},
where (a,0) € o; and agent(a) = p.

Definition 10. (Restriction of M to n)
Where M is a model with depth(M) = v and n < v, the restriction of M to n is the
model whose histories are obtained by truncating the histories of M to depth n.

Definition 11. (Notation for action-outcome sequences.)

Where o € AO-Sequences ;, and depth,; = n, let a (AO) be the sequence o such that

o = o for 1 <nand o, = AO.

To simplify our account of the conditional, we will impose the further condition that
at each moment, each agent performs one and only one action. In models in which the
action types include a null action, and are closed under conjunction, this assumption does
not impose any real restrictions.

Condition 3. Let AO € AO-Patternsy;. For each p € Agents,,, there is a unique
AO(p) € Actionsys such that agent,;(a) = p, where AO(p) = (a,0) for

some o.

5. Conditionals and causality

The general semantic formalisms for conditionals!® imposed abstract constraints on con-
ditional selection functions, or on closeness relations among worlds. The difficulty these
formalisms have had in showing how selection functions can be constructed in realistic cases
has been a chronic source of philosophical criticism of these formalisms.'* And in the AT lit-
erature, the task of specifying a selection has also proved to be highly intractable in domains
with interacting joint constraints; see [Ginsburg 1985].

It is usetul to look at conditional constructions as presenting a problem in nonmono-
tonic reasoning that is similar to the frame problem in temporal reasoning. By default,
[ArC] O— B holds if A O— B holds. Exceptions to this default are provided by specific
“counterfactual causal” rules. The problem is how to provide these rules.!®

13Gee [Stalnaker & Thomason 1970] and [Lewis 1973].

1 These complaints have often been relatively unfocused. But the contrast between the relative lack of
constraint on general selection functions and the complexity and detail of conditional reasoning has disturbed
even the developers of these logics.

15Guch an approach has been suggested in various places. See, for instance, [Horty & Thomason 1991] and

[Asher & Morreau 1991].
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In most current action formalisms, a causal predicate is used to relate actions to their
direct effects. But there is no agreement on the extent to which a general theory of causal-
ity is needed in such formalisms. The need for causal information is much greater when
conditionals are at stake.

To see this, notice that the World, of Section 3 we lack information about conditionals,
because we lack causal information. Suppose, for instance, that in the first turn, Jane tosses
her coin and it comes heads up; Fred tosses his coin and it comes up tails. In the second
turn, Jane tosses her coin and it comes up heads; Fred turns his coin tails up. Now we ask:
would Fred have turned his coin tails up in the second turn even if Jane’s coin had come up
heads in the first turn? We don’t really know. If Fred and Jane are acting without reference
to each other (they are in different places, with no communication), Fred would have turned
his coin tails up even if Jane’s coin had come up differently. If they are able to observe each
other, and Fred is imitating the results of Jane’s previous toss, then Fred would have turned
his coin heads up if Jane’s coin had come up heads. If Fred is influenced in his planning by
Jane’s previous toss, then Fred may have turned his coin heads up if Jane’s coin had come
up heads.

For this reason, we will add causal information to our causal model. This information
takes the form of a set of relations having any of the following three forms:

Action, Actions a-outcome Action a-outcome  , Action

we could think of the causal model then, as a directed graph whose nodes are either actions
or outcomes, and with three sorts of edges.

The relation Action Actiony means that whether Actions is performed can depend
on Actiony’s having just been performed. The relation a-outcome Action means that
whether Action is performed can depend on aoutcome’s having just come about. The relation
a-outcome , Action means that the a-outcomes of Action can depend on aoutcome’s having
just come about.

This representation of causal information incorporates several simplifying assumptions.
For instance, it involves a qualitative form of the Markov condition: there can be no delayed
influences. But we believe it provides a basis for formulating many decision problems.

We can illustrate the role of causal relations by returning to the coin world. Suppose
that we think Fred’s action depends in some complex, perhaps poorly understood way, on
Jane’s previous action. Then the model should contain the following causal relations. (Call
the world with these causal relations World,.)

a(coinl, Jane)  b(coin2, Fred),
where a € { TurnUp(coin2, Jane), TurnDown(coin2, Jane), toss(coin2, Jane)}
and b € {toss(coinl, Fred), TurnUp(coinl, Fred), TurnDown(coinl, Fred)}.

We want TurnUp(coin2, Jane) — TurnUp(coinl, Fred), for instance, among the causal rela-
tions to indicate how certain conditionals will be affected by the hypothesis that Fred takes
Jane’s actions into account in deciding what to do. For example, suppose that Jane turned
up coin?2 and then Fred turned up coini. The dependence between Jane’s actions and Fred’s
subsequent actions means that if Jane had flipped coin2, then Fred might not then have
turned coinl down. (Contrast this with the case in which the actions are independent; they
take place in different places, with no transfer of information. In this case, Fred would still
have turned coinl down, even if Jane had flipped coin2.)
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Suppose now that Jane takes the position of coinl into account in deciding what action
to take. (In fact, she has some formula for deciding what action to take, though we may not
know what this formula is.) Then we want the following additional causal relations.

Hy  TurnUp(coin2, Jane) Hi  TurnDown(coin2, Jane)
Hy  toss(coin2, Jane) Ty TurnUp(coin2, Jane)
Ty TurnDown(coin2, Jane) Ty toss(coin2, Jane)

H, TurnUp(coin2, Jane), for instance, is among the causal relations because if Jane
turned coin2 up after coinl came up heads, then she might have done something else if
coinl had come up tails.

Finally, suppose that when coins are tossed, they are put on a coin flipping device in
their current postion (e.g., they are put on the device heads up if they landed heads up on
the previous toss). Then the outcome of a toss of a coin depends on its initial position; this
is represented by the following causal relations.

Hy , toss(coinl, Fred) Ty , toss(coinl, Fred)
Hy , toss(coin2, Fred) Ty , toss(coin2, Fred)

In this case, Hy , toss(coinl, Fred) is among the causal relations because under our causal
hypothesis the fact that coinl came up heads can influence the result of the next toss. (The
sort of counterfactual influence that we have in mind here is perfectly compatible with the
hypothesis that coinl is statistically fair.)

Definition 12. (Causal-Relsyy.)
Causal-Rels s 1s the set of causal relations of the model M.

6. Causal independence and conditional selection

We now show how a conditional selection function can be defined on action models. Like
the conditional function of [Thomason & Gupta 1980], this function respects the structure
of branching time; details of the two constructions differ.

The following definitions are relativized to a fixed model M, which we assume meets the
conditions of Section 4. Also, we will not try to define a conditional for arbitrary antecedents.
Instead, we will confine ourselves to antecedents concerning alternative actions that might
have been performed; such antecedents are adequate for the decision theoretic applications
that we envisage.

We begin by defining the set closesty(p, h*,0) for models M of depth 1, where p €
Agentsy, h* € Historiesy, and o € Strategies;(p).

Definition 13. (AOy ~np AO3.)
Where A0y, AO; € AO-Palterns and p € Agents, let AO; ~y, AO; if and only if for all
a € Actionsyy, if agent ;(a) # p then (a,0) € AO; iff (a,0) € AO,

Explanation: Two AO-patterns are similar with respect to p if they differ (if at all) only
with respect to p’s action and its outcomes.

Definition 14. (closestr(p, h*,0): Basis Case.)
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Given a model M with depth(M) = 1, as characterized in Section 4, let so = state(my),
o = (a), where agent(a) = p, AO™ € AO-Patternsy(so), h* = history({AO™)),
p € Agents, and (a) € Strategies,;(p). Then:

(1) If a € Actions(AO™) then closestp(p, h*, {a)) = {h*}; and

(2) Otherwise,
closestyr(p, h*, (a)) = {history,;((A0)) : a € Actions(AO) and AO ~, AO™}.

Explanation: The closest histories to h* with respect to strategy « for agent p are the
histories that involve minimal changes to the actions that led to ~2*: the actions of agents
other than p are unchanged, and the action recommended by « is substituted for p’s action
in h*. All outcomes of p’s alternative actions are allowed. Clause (1) ensures that in case «
actually yields h* then h* is the unique closest history.'®

We now show how to define closest(p, h*, o) for models M of depth n + 1.

Definition 15. (AO11I-Precedesyr s, a0.40',40"AO03. )
AO1I-Precedesyr s 40,407,40nAO3 if and only if for some ¢ € Agents,;, ¢ # p, we have
AOq ~, AO; and, where (a,0) € AO and agent(a) = ¢, either:

(1) (i) There is no relation @’ @ in Causal-Relsyr, where o' € Actions(AO') and
a' & Actions(AO"), and (ii) there is no relation o' @ in Causal-Relsys, where
o' € A-Outcomes(AQ") and o' & A-Outcomes(AQ"), and (iii) a € Actions(AOy)
but a & Actions(AO,), or

(2) (i) There is no relation @’ @ in Causal-Relsyr, where o' € Actions(AO') and
a' & Actions(AO"), and (ii) there is no relation o' @ in Causal-Relsy;, where
o' € A-Outcomes(AQ") and o’ & A-Outcomes(AQ"), and (iii) there is no relation
o', ain Causal-Relsy;, where o/ € A-Outcomes(AQ') and
o' & A-Outcomes(AO"), and (iv) a € Actions(AO4) and a € Actions(AO;), but
(v) {a,0) € AO; and (a,0) € AO,.

Definition 16. (AOl <M,s,p,A0,A0', 40" AQO,. )
<M.sp.A0,40' 40 15 the transitive closure of I-Precedesys s, 40,4040

FExplanation: Imagine that AO-pattern AO” produces a state s, where both AQ; and
AQO, are feasible, and that AOQ" produces a moment at which AQ is then applied. Let p be an
agent. Then AO; is closer to AO than AQ,, with respect to s, p, AO, AO’, and AOQ" if AO,
can be produced from AO by fewer changes of action-outcome pairs, where these changes
respect respect the applicable causal relations for the preceding actions of outcomes.

Definition 17. (closestpr(p, h*,0): Inductive Case.)

16This clause, and a similar clause in the inductive step, will ensure a general property of conditionals
known as “centering”; see [Lewis 1973].
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Given a model M, 1 with depth(M, 1) =n + 1, where n > 0, let M,, be M, 1 restricted
to n. Let hy., = historyy , (o), where o) = a;_, " (AO0;_;) (A0;), and let A}, =
history(al_y). Let p € Agents and o, = 0,1 (a) € Strategies;(p). Let strategy(al) be
the strategy 7 for p such that 7, = ¢, where Actions,(of) = {c} whenever o is defined,
and such that 7; is undefined whenever «; is undefined.
Then either (1) strategy,(ay) = o, and closestay, ., (p, by, 00) = {h} 4}, or
(2) strategy,(a}) # 0, and where o, = 0,1 (a), we have:
closest, , (p, b1, 00) = {historyy, , (ao-sequencey , (hn-1) (AO0,-1)(AO0,)) :
hy = historyy, (hn—1 (AOn_1)) € closesty, (p, b, 0,-1) and, where
o = state(end-moment(h,,)), we have (2.1) AO,, € AO-Patternsy(s) and (2.2)
there is no AO € AO-Patternsy(s) such that AO <arspa0*40%_ 40, AOn}.

Explanation: The closest histories to h* with respect to strategy « for agent p are obtained
by recursively finding closest histories to the subhistories of 2*, at each stage making changes
that are forced by a and retaining any actions and outcomes that are not influenced by the
causal conditions.

The utility of the formalism that has been presented so far consists in its applicability
to a variety of examples of conditional reasoning about action. The theory is to be tested
according to how successful it is in formalizing and explaining a variety of examples in this
domain.

Also, an important part of understanding the theory is seeing how it applies to examples.
The intricacy of the definitions that we have just rehearsed was induced by a process of
reviewing examples, and modifying versions of the theory when they were unable to deal
with these. Without a systematic review of these case studies, it may be hard to see why the
theory was constructed as it was, although anyone who is familiar with the counterfactual
reasoning in any of its guises is likely to realize that the problem is intrinsically complex.

For these reasons, a reasonably self-contained presentation of the theory should contain
a long section dealing with examples. But space limitations make it impossible to do that
in this version. Here, we will only sketch a few cases.!”

Examples illustrating the theory can be constructed by seeing how conditionals would
be treated in the microworlds that were presented in Section 3. (Of course, these models
need to be supplemented with appropriate sets of causal information.) The following cases
illustrate how this can be done.

We will confine ourselves to the World, model of depth 2. (See Section 3.) We will need
the following action-outcome patterns, histories, and strategies.

AO; = {(TurnUp(coinl, Fred),Hy), (toss(coin2, Jane), Hs) }.
AO5 = {(TurnUp(coinl, Fred),Hy), (toss(coin2, Jane), Hs) }.
A0, = {(TurnDown(coinl, Fred), Ty), (toss(coin2, Jane), Hy)}.
sy = result(AO1, myg).

A0} = {{TurnDown(coinl, Fred), Ty), (a,0){:
where a € { TurnUp(coin2, Jane), TurnDown(coin2, Jane), toss(coin2, Jane)}
and o € A-Outcomes(s},a)}.

1"We hope to develop and maintain a version of the paper that will contain appropriate case studies.
Consult http://www.pitt.edu/ thomason/thomason.html for progress on this project.
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h* = historyAO4, AOs.
o1 = (TurnUp(coinl, Fred), TurnDown(coinl, Fred)).
oy = (TurnDown(coinl, Fred), TurnDown(coinl, Fred)).

Example 1. Whatever causal relations are in the model,
closest(Fred, h*, o) = {history(AO7, AO})}.

That is, if Fred had turned his coin down on the second turn, Jane would
still have tossed her coin, and it would still have come up heads.

Example 2. Assume that there are no causal relations in the model. In this case,
closest(Fred, h*,oy) = {history(AO7, AOY)}.

That is, if Fred had turned his coin down on both turns, Jane would still
have tossed her coin in both turns, and it would still have come up heads
in both turns.

Frample 3. Assume the causal relations of World,,; here, Jane’s actions can
depend on Fred’s. Here,

closest(Fred, h*, o) = {history(AO7, AO})}.

As before, it Fred had turned his coin down on the second turn, Jane would
still have tossed her coin on that turn, and it would still have come up heads.
But

closest(Fred, h*,cy) = {history(AO7, AO})}.

That is, if Fred had turned his coin down on both turns, Jane might have
done anything on the second turn. (Opinions may differ on whether the
outcomes of toss(coin2, Jane) should be resricted in this case. Our definition
of closeness is conservative, in allowing all possibilities.)

7. Utilities of histories and dominance
7.1. Two ways to introduce utilities

Classical decision theory assigns a numerical value, or utility, to each fully specified result of
a course of action. In our branching-time models, this corresponds to assigning a numerical
utility to each history. If we wish to complete the decision-theoretic picture, we can also
assign a probability to each history. A qualitative assignment, as we will treat it, is much
more modest—there are no probabilities at all, and there is only a “no worse” relation >
that compares the relative utility of any two histories. The most natural extension of our
concurrent action models to quantitative utilities turns out to yield an account of expected
utility that resembles that of [Gibbard & Harper 1978].

We will define a relation of dominance between strategies on each of these approaches,
and will state and prove a theorem showing that qualitiative dominance is sound with respect
to quantitative dominance.
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7.1.1. Quantitative dominance

We obtain a quantitative utility model by adding the following two items to the model
components described in Section 4.

1. A function ut from the set Historiesy; of M to the reals.

2. A probability measure pr over Historiesyy.

Gibbard and Harper begin ([Gibbard & Harper 1978, p. 153]) with the idea that the
value of an act is the sum over the set of outcomes of the act of the product of the utility of
the outcome with the probability of the conditional stating that this outcome would occur
if the act were performed. This conditional is interpreted (as in Stalnaker’s general logic of
conditionals) by a function that takes certain antecedent conditions (conditions of the form
‘I do action a’) and outcomes into outcomes.

In opting for a function that returns a single outcome, rather than a set of closest out-
comes, Gibbard and Harper seem to take a stand on the controversial issue of “conditional
excluded middle” in conditional logic. With respect to this issue, they say'® in effect that
they find the single-valued assumption implausible, but assume it for the sake of simplicity
in the initial statement of causal decision theory.

We will work with this single-valued version of causal decision theory.'® We also assume
a version of causal decision theory in which the outcomes are histories, and the conditionals
have the form

Do(o, hq,p) O— hs.

Intuitively, this means that assuming that hy will occur, if agent p were to adopt plan o then
hs would ensue. So the conditional selection quantitative decision model M will take a plan
o, an agent p, and a history hy into a history condita (o, p, hy).

The formula for the quantitative causal utility of ¢ then sums over histories h the product
of the utility of h with the probability of the conditional that says if o were adopted then A
would ensue.

Definition 18. (utgn(o,p).)
UtGH(O-v p) = ZhEHistoriesM Ut(h)p?“({h// COTLdit(O’,p, h) = hl})? where p= agent(a)‘
Quantitative dominance is obtained by comparing utilities.

Definition 19. (GH-Dominance.)
o > 7 iff ut gu(o, Histories) > ut qu(T, Histories).

This is a weak, or “no-worse” notion of dominance. Strong dominance can be defined as
follows.

Definition 20. (Strong GH-Dominance.)
o > 7 iff ut (o, Histories) > ut qu(t, Histories).

8In the discussion of their Axiom 2, [Gibbard & Harper 1978, p. 156]

19Tn fact, we do not know if there has been a generalization of the theory to conditionals that do not
obey conditional excluded middle. We suspect that such a generalization might not only have to be more
complex, but ad hoc in certain ways.
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7.1.2. Qualitative dominance

A qualitative model, as well as the components listed in Section 4, has the following additional
ingredient.

1. A reflexive, transitive ordering >.

The relation A = A’ means that h is no worse than 2. We do not exclude the possibility that
the relation = is inferred through a process of reasoning, as in [Boutilier 1994b] and [Tan &
Pearl 1994]. But we do not discuss such reasoning processes here. We let h = h' iff h = b’
and h' % h.

Intuitively, a strategy o qualitatively dominates another strategy 7 if given any history
h, any history A" that would ensue if o were adopted provided that otherwise h occur is
no worse than any history that would ensue if 7 were adopted. This leads to the following
definition.

Definition 21. (Qualitative Dominance for Plans.)
o =, 7 iff for all h € Histories, all hy € closest(p, h,o), and all hy € closest(p, h,T), we
have hy > hs.

Again, we can define a notion of strong dominance.

Definition 22. (Strong Qualitative Dominance for Plans.)
o =, 7 iff ¢ =, 7 and for some h € Histories(c), we have hy = hy for some hy €
closest(p, h,o) and hy € closest(p, h, 7).

7.2. Soundness

Three things need to be added to a qualitative model to extend it to a quantitative one:
a probability measure, an assignment Ut of numerical utilities, and a choice function that
selects a member of closest(p, h, o). (The third ingredient is needed to secure a single-valued
conditional selection function.) We will say that the extension is consistent if Ut is consistent
with the qualitative utility ordering given in M; i.e.,if Ut(h) > Ut(h') if h >y b’

Soundness amounts to this: when a qualitative model is consistently extended to a quanti-
tative one in this way, its dominance relation is consistent with the corresponding qualitative
dominance relation. More precisely:

Theorem 1. Let M be a qualitative utility model. Let pr be a probability measure over
Historiesys, and let s(o,p, h) € closest(p, h,o). Let M(pr, s, Ut) be the quantitative model
that is obtained by adding pr to the ingredients in M, letting conditar(,, s, vy = s, and by
letting Utm(pr, s, Ut) be consistent with Ut. Then: if o =y 7 then o >ar, 5,04 7. Similarly,
if o =y 7 then o >pr(pr s, 01y T

Proof. Suppose that ¢ = 7. This means that for all h, hy, hy € Histories, If hy €
closest(p, h,o) and hy € closest(p, h,7) then hy >ps ho.

Now,
ul (0. p) = XheHistoriesy, Wt(h)pr({h' [ condit(o,p, h) = h'}) (by definition)
= D heHistories s 2 E{h" | condit(o,p, ") =h} pr({h'})ut(h) (pr is a probability measure)
= Y heHistoriesy, PT({1})ut(condit(a, p, h)) (condit is a function)
> Y heHistoriesy, PT({RY)ut(condit(t,p, h)) (from qualitative dominance)
= Yo heHistorics sy 2oh'e{h" | condit(rpi)=h} PT({R'})ut(h) (condit is a function)
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= D heHistoriesy, W(h)pr({h' [ condit(t,p,h) = h'}) (pr is a probability measure)
= ut gu(7,p) (by definition)

Gibbard and Harper show?® that under certain conditions, their account of expected
utility gives the same results as that of classical decision theory. Their two conditions
presuppose a language with an explicit conditional, and so we cannot verify them directly.
However, the crucial condition (their “Condition 1”) would be validated if we adopted an
object language with an explicit conditional, and the other condition is one that one can be
expected to hold widely in decision-making examples.

Thus, our soundness result shows (1) that whenever a dominance relation holds in the
qualitative theory it will correspond to the recommendations of a generalization of one
quantitative account, and (2) that in many cases it will correspond to the recommendations
of classical decision theory.

7.3. Examples

If there is space, we need to put in some examples.

8. Some lines of development

Much work remains in developing the technical part of the theory and relating it to the
formalization of common sense practical reasoning. Here are some considerations. (1) In
the current version, we have not considered what would happen if an explicit conditional
were added to the language. This would facilitate a comparison to the general conditional
formalisms, as well to Gibbard and Harper’s causal decision theory. (2) The definitions of
this paper were simplified in a number of ways; for instance, the only allowable conditional
antecedents were simple strategies. Thus, they need to be generalized in a number of ways.
(3) Unfortunately, the simplifications did not prevent the definitions from becoming unpleas-
antly complex. It would be good to have a more modular and readily intelligible presentation
of the theory, along with some diagramming conventions. (4) The properties of interesting
special cases of the theory need to be developed; for instance, the deterministic case has
many interesting features. (5) It is clear that a causal theory of some sort is required by
our conditional, but it is less clear what form this theory should take. The version that we
have provided here is rather crude, and certainly does not permit the expression of causal
dependencies that are at all complex. The utility of the causal theory needs to be tested
by formalizing some representing domains. (6) More generally, the entire theory needs to
be tested in this way. We have in mind not only domains borrowed from decision theory,
but cases from “cognitive robotics,” such as those described in [Reiter 1996]; and [Lansky
1987] also provides complex, realistic examples. (7) The branching time formalism here
needs to be compared with the matrix formalisms of decision theory, and with the “sTiT”
formalisms deriving from [Nuel D. Belnap & Perloff 1988]. A detailed comparison with the
“utilities lifting” literature mentioned in Section 2 would also be useful. (8) The current
theory does not provide even for qualitative differences in the likelihood of branches. As
we intimated in Section 2, we have in mind an account of these differences using ideas from
nonmonotonic logic.?* (9) We know (for instance, from Wellman’s work) that dominance

20Gee [Gibbard & Harper 1978, p. 157].

2n particular, we have in mind a normalcy relation over histories.
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reasoning is implementable. But the extent to which the theory that we have presented here
can guide implementations is unclear; this question raises an entire research program, which
we have not even begun to think about. (10) Finally, the addition of an epistemic dimension
is obviously desirable, and would help us to make contact with many of the most exciting
issues in contemporary decision theory.
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