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1 Introduction

1.1 Background

Inheritance systems were originally developed within artificial intelligence
in response to the practical need for an efficient way of representing and
accessing taxonomic information. These systems, along with network rep-
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resentations more generally, were first presented without any semantic anal-
ysis at all, or else only with a procedural semantics, according to which the
meaning of the representations was supposed to be specified implicitly by
the programs operating on them. However, in large part due to the crit-
icisms of [Woods, 1975], a good deal of attention was soon drawn to the
problem of supplying an implementation independent account of the mean-
ing of these network formalisms. Most of the work on this problem, and
notably that of [Hayes, 1979], followed a translational or indirect strategy,
specifying the meaning of a network formalism through a mapping into
an ordinary logical language, usually classical first order logic. Because
of these mappings, it was generally concluded that the networks could be
regarded simply as notational variants of syntactically restricted first or-
der theories—distinguished, perhaps, by supporting specialized inference
algorithms, or perhaps, as [Hayes, 1977] suggests, only by their attractive
appearance on the printed page.

With the attempt to incorporate defeasible information into inheritance
hierarchies—in systems such as FRL [Roberts and Goldstein, 1977], KRL
[Bobrow and Winograd, 1977], and NETL [Fahlman, 1979]—questions con-
cerning the precise meaning of these network representations arose once
again, and with a new urgency, since it had been shown in [Fahlman et
al., 1981], for example, that the naive inference algorithms built into these
systems could lead to bizarre and unintuitive results. Because their infor-
mal interpretation required a nonmonotonic consequence relation, it was
plain that that these representational formalisms could not naturally be
translated into classical logic. Nevertheless, it seemed to many that the
indirect approach could be extended also to this case by translating the
networks into one or another of the nonmonotonic logics. The first project
along these lines was the interpretation in [Etherington and Reiter, 1983]
of simplified NETL-style networks in terms of default logic. In analogy
with the earlier work of Hayes and others, this research was taken to sup-
port the conclusion that defeasible inheritance networks could be viewed
as syntactically restricted default theories.

At approximately the same time, however, a very different kind of tech-
nique for analyzing the meaning of defeasible inheritance networks was
being developed—initially, in a 1984 dissertation by Touretzky, published
two years later as [Touretzky, 1986]. The point of providing a semantic
theory for some representational formalism is to allow us to delineate the
consequences of a set of facts expressed in that formalism, to explore the
characteristics of these consequence sets, and to test the original facts for
properties such as consistency. One way to do this, of course, is by mapping
the representational formalism into some logical language for which ideas
like consequence and consistency have already been defined. But as Touret-
zky noticed, a theory that achieves the same ends can also be developed, at
least in the case of inheritance networks, entirely in terms of the network
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language itself, without going through the intermediate step of translation
into a separate logic. By analyzing a number of examples, it is possible
to develop detailed intuitions about the kind of conclusions that should be
derivable from inheritance networks. These intuitions can be codified into
a general and mathematically rigorous “inheritance definition,” which can
itself be tested against further examples, and used as a basis for establish-
ing semantic metatheorems. In contrast to the translational approach, an
account of the meaning of inheritance networks that proceeds along these
lines can be described as non-translational or direct.

These direct theories of inheritance occupy a somewhat ambiguous posi-
tion with regard to the usual contrast between declarative and procedural
methods. For theories of this kind, the paths through a network often form
the main focus of attention (because of this, direct theories are sometimes
described as path-based). These paths, which are analogous to proofs in or-
dinary logic, are supposed to represent arguments or inference procedures;
and they do tend to correspond in a loose way to the procedures actu-
ally carried out in implementations of inheritance systems. To that extent,
then, the approach is explicitly procedural. In contrast to the usual concep-
tion of procedural semantics, however, the direct theories of inheritance are
not dependent upon any particular implementation. Instead, they aim to
achieve the declarative goal of providing an independent standard against
which implementations are to be judged.

Another way in which these direct theories differ from the standard
declarative paradigm is that they tend not to rely on model theoretic no-
tions, which were taken by some researchers [Hayes, 1977; McDermott,
1978] to form the core of any rigorous semantics for a representational for-
malism. The account of meaning provided in these direct theories for a
statement belonging to the network language tells us what can be derived
from a network containing that statement, as well as the conditions under
which that statement itself can be derived from some network. The treat-
ment of derivability is purely syntactic (or proof theoretic); it does not rely
on a prior notion of truth in a structure for items belonging to the network
language. In fact, there is no attempt at all to define truth conditions for
defeasible links occurring in inheritance networks—and the direct approach
has sometimes been criticized for this reason.

This kind of criticism seems to be misguided; or at least, it relies on
standards very different from those at work in other areas of logic, where
proof theory and model theory stand on a more even footing. Historically,
at least, proof theory came first. The proof theory for both classical and
intuitionistic logic was already well understood by the time formal model
theoretic techniques were introduced. Many of the fundamental metathe-
oretic results for intuitionistic logic in particular were first established by
proof theoretic means. As shown by the articles of [Barwise, 1977, Part
D], for example, proof theory remains an active area of research, especially
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for those concerned with constructivity. And there are logicians, such as
Prawitz [Prawitz, 1971; Prawitz, 1972], who feel for broadly philosophical
reasons that a proof theoretic analysis of logical concepts is actually to be
preferred to a model theoretic approach.

A more balanced view would take proof theoretic and model theoretic
approaches as providing different but largely complementary kinds of in-
sights into logical notions. In many cases, such as first order classical logic
and most of the familiar nonstandard logics, the two approaches are linked
through completeness results. However, there are situations in which the
approaches fall apart, and one or the other seems to be more fruitful.
Often, for example, we are faced with logics for which the semantic conse-
quence relation is not axiomatizable, and of course, standard proof theory
is of little use here. On the other hand, proof theoretic techniques seem
to be especially illuminating for the study of logics in which the meanings
assigned to connectives are closely intertwined with the structure of ar-
gumentation. The family of relevance logics [Anderson and Belnap, 1975]
provides a good example: although many of these logics were eventually
supplied with a model theory of the possible worlds variety, most people do
not find this to be as useful or illuminating for understanding these systems
as their original proof theoretic presentation.

The direct theories of inheritance described here are best thought of as
analogous to proof theoretic work in ordinary logic; they aim to provide a
precise account of correct reasoning in defeasible inheritance networks that
does not appeal to model theoretic techniques. Of course, the resulting ac-
count is significantly different from what is found in ordinary proof theory,
particularly because it is forced to deal with interactions among arguments,
rather than single arguments in isolation. But this should not be too sur-
prising: nonmonotonic logic is significantly different from ordinary logic,
and at least the fixed point approaches to nonmonotonicity concentrate on
statement sets rather than single statements.

It would be nice if this proof theoretic approach to defeasible inher-
itance could be supplemented with a model theoretic treatment, and a
careful study of the proof theory may suggest ways in which classical model
theory could be adapted to the new situation. In fact, this sort of thing
has already happened in the case of inheritance networks without defea-
sible information, where the direct analysis has suggested that a certain
nonstandard model theory should be employed (see Section 3.1 below).
But the introduction of defeasible information changes matters. Just as
with relevance logic, the direct theories of defeasible inheritance are closely
bound up with the structure of argumentation. They rely on the kind of
detailed syntactic concerns that are difficult to work into a model theory;
and even if this could be done, it is hard to tell whether the resulting ac-
count would yield a perspective significantly different from that already
provided by the proof theoretic approach.
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1.2 Overview

The past few years have seen intense activity in the semantic analysis of
nonmonotonic inheritance systems. A number of different accounts, both
direct and translational, have been developed within a variety of theoret-
ical frameworks, and it would be impossible to treat them all with any
care. Instead, although we try to relate the work described here to other
research in the vicinity, this chapter concentrates only on a few theories
developed within a single framework—roughly, those based on Touretzky’s
original ideas or their close relatives. This is the work that has been most
influential in shaping subsequent research. Most of the theories described
here have appeared elsewhere in the literature, or are easily assembled from
ideas appearing elsewhere. The goal of the chapter, however, is to present
this work—which is scattered throughout a number of publications—in a
uniform notation and from a uniform point of view; and this has forced
a certain amount of reformulation and restructuring of ideas. The entire
chapter should be accessible to a reader new to the area, but even someone
already familiar with the work may find the uniform presentation helpful.

The chapter is organized as follows. Section 2 presents some direct
theories of inheritance for purely defeasible networks; Section 3 shows how
these theories can be generalized to apply also to networks containing strict
and defeasible links mixed together; Section 4 describes some variations on
these basic theories and explores some of the problems they suggest; and
an appendix proves some sample theorems.

Because the volume in which this chapter appears is devoted to non-
monotonic reasoning in general, rather than the development of knowledge
representation technologies, inheritance theories are presented here with a
particular bias: conceptual issues regarding correctness and intuitive moti-
vation are emphasized at the expense of algorithmic and implementational
considerations. A more balanced survey, which places more emphasis on the
applications of inheritance in knowledge representation is found in [Thoma-
son, 1992].

From the general standpoint of nonmonotonic reasoning, the direct the-
ories of inheritance described here seem to be of interest primarily for two
reasons. First, because defeasible inheritance networks provide such an
easy way of visualizing complicated patterns of interaction among defaults,
they form a good problem domain for testing ideas formulated in more
general nonmonotonic logics; and they are often used for this purpose. For
people testing their ideas in this way, by formalizing inheritance networks,
the direct, nontranslational approaches can provide a sort of “pretheoretic”
indication of the results they might wish to achieve. These theories can then
be thought of as a bridge discipline standing between the applications of
inheritance networks in knowledge representation and their formalization
in more generally applicable nonmonotonic logics.
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Second, although the matter is contentious, it can be argued that the
direct theories described here have, to date, actually been more successful
at capturing the intuitive meaning of defeasible inheritance networks than
their translational counterparts. The reason for this seems to be that the
explicit representation of arguments in these direct theories allows for a
very fine-grained analysis of the structure of defeasible reasoning, which it
is often difficult to achieve using more general nonmonotonic logics. For
this reason also, because of their sensitivity to the detailed structure of
argument, the techniques of path-based inheritance allow a good deal of
versatility in the definition of particular theories, enabling us to articulate
a variety of different intuitions about defeasible reasoning. At times, the
contrasts among these different theories can suggest, in a very simple en-
vironment, both options and problems that may not have been apparent
from a more general point of view.

1.3 Basic concepts

1.3.1 Links and paths

The kind of inheritance networks considered here, as in most of the theoret-
ical literature, are simple collections of positive and negative 1s-A links—
very broad idealizations of the systems actually used in knowledge repre-
sentation. In our description of these networks, letters from the beginning
of the alphabet (a through d) refer to objects or individuals; letters from
the middle of the alphabet (m through ¢) refer to properties or kinds; and
letters from the end of the alphabet (u through z) range over both objects
and properties.

The link types = p and & <5 p represent positive and negative strict
statements. If z is a property, these positive and negative strict links are
equivalent to quantified conditionals: the link ¢ = p represents a statement
of the form ‘Every @ is a P’; the link ¢ <& p represents a statement of the
form ‘No @ is a P’. If z is an object, these strict links are equivalent to
ordinary literals: a = p and a <% p represent the statements Pa and —Pa.
The link types z — p and 2 4~ p represent positive and negative defeasible
statements. If z is a property, these defeasible links correspond to generic
statements: ¢ — p and r 4 p, for example, might stand for the statements
‘Birds fly’ and ‘Mammals don’t fly’. There is nothing in classical logic very
close in meaning to statements like these. For example, ‘Birds fly’ does not
mean that all birds fly, since it is true even in the presence of exceptions.
Instead, it seems to mean that “typical birds” fly—or that, for any given
bird a, it is most natural to suppose that a flies. If x is an object, it is
more difficult to find a simple reading for these defeasible links; but we will
assume that ¢ — p and a 4 p mean something along the lines of ‘It is most
natural to suppose that Pa’ and ‘It is most natural to suppose that =Pa’.
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Lower case Greek letters range over paths, to be defined as special se-
quences of links. Often, it is convenient to refer to an arbitrary path in
a way that displays some of the nodes it passes through without display-
ing the particular link types connecting those nodes. For this purpose,
we adopt a notation according to which n(z, o, y) represents an arbitrary
positive path, and 7(z, ¢, y) likewise to an arbitrary negative path, from z
through ¢ to y. As a convention governing this #-notation, we assume that
adjacency of node symbols entails adjacency of nodes on the paths symbol-
ized. Thus, for example, T(z, u, o, y) represents a negative path beginning
with a direct link of any type from z to u, and then moving through o to
Y.

Paths are classified as simple or compound, strict or defeasible, positive
or negative. The simple paths are just the direct links—classified as strict
or defeasible, positive or negative, along with the links themselves. The
compound paths are defined inductively, as follows:

1. If @(z,0,p) is a strict positive path, then: #(z,0,p) = ¢ is a strict
positive compound path, w(z,0,p) <& ¢ is a strict negative com-
pound path, m(z,0,p) — ¢ is a defeasible positive compound path,
and w(z,0,p) /4 ¢ is a defeasible negative compound path;

2. If @(x, 0, p) is a strict negative path, then: w(z,0,p) < ¢ is a strict
negative compound path;

3. If w(x, 0, p) is a defeasible positive path, then: #(z,0,p) = ¢ is a de-
feasible positive compound path, 7(z, o, p) <& ¢ is a defeasible nega-
tive compound path, 7(z, o, p) — ¢ is a defeasible positive compound
path, and 7(z, o, p) /> ¢ is a defeasible negative compound path;

4. If 7(x,0,p) is a defeasible negative path, then: n(z,0,p) < ¢ is a
defeasible negative compound path.

Intuitively, paths represent arguments, which support certain statements
as their conclusions. A positive path of the form #(z,o,y) supports the
statement z = y if it is strict and the statement & — y if it is defeasible;
likewise, a negative path of the form 7(z, o, y) supports <5 y if it is strict
and z /4 y if it is defeasible.

1.3.2 Nets, theories, and extensions

Capital Greek letters from the beginning of the alphabet (T', A, ©, .. ) stand
for networks (or simply: nets), which are finite sets of links. A network is
defeasible if 1t contains only defeasible links, strict if it contains only strict
links, and maized if it contains both strict and defeasible links. Capital
Greek letters from the end of the alphabet (®,Z,W,...) stand for sets
of paths in general. Intuitively, the statements belonging to a network
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are supposed to represent the information provided as hypotheses to some
agent or reasoning mechanism; the members of a path set are supposed to
represent those patterns of reasoning that have been explicitly carried out
and accepted. The relation of support already defined between paths and
statements can be extended in the obvious way to a relation between path
sets and statements sets: a path set ® will be said to support a statement
set A just in case A is the set of statements supported by the paths in ®.

The primary goal of the semantic account of inheritance networks is to
specify the theories associated with each network—the statement sets that
an ideal reasoner could arrive at, given the information in that network
as hypotheses, or initial information. Rather than attempting to define
this relation between nets and their theories directly, however, we follow a
roundabout route. We first specify a relation between networks and certain
path sets, known as their eztensions. Intuitively, an extension of a net
represents some total set of argument paths that an ideal reasoner might
accept, based on the initial information in that net. Once this relation has
been defined, it is then a simple matter to specify the theories associated
with a network: A is a theory of the network I' just in case there is an
extension ® of I' such that ® supports A.

1.3.3 Contexts and inheritability

If T' is a network and ® is some set of paths, we will describe the pair
(T, ®) as an epistemic context. Although, formally, any such pairing of a
net and a path set counts as an context, it is part of the intuitive picture
that the path set should arise out of the net: we imagine that an agent is
provided with I' as his initial information, and that after a certain amount
of reasoning based on this information, he has been led to accept the set ®
of arguments.

In any given context, certain arguments or paths can be classified as
inheritable—forcible or persuasive, in that context. We will use the symbol
~ to represent this relation of inheritability, so that (T', ®) )~ o means that
the path o is inheritable in the context (T', ®). This notion of inheritability
is the central concept in our treatment of semantic networks; it plays a
crucial role in our characterization of extensions.

2 Theories of defeasible inheritance

This section develops three theories of inheritance for defeasible networks—
a theory modeled on Touretzky’s original credulous approach, a skeptical
theory, and then a flexible theory that slips between the other two. The
development takes place in two stages: after setting out a notion of inher-
itability appropriate for defeasible nets, we use this notion to define the
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different kinds of extensions characteristic of the three theories.

Although these theories yield different results as the appropriate con-
clusions of a network, it is not necessary to view them as competitors, in
the sense that one is right and the others are wrong. It is possible instead
to imagine that the different theories are appropriate in different kinds of
reasoning situations.

2.1 Defeasible inheritability

The notion of inheritability presented here is modeled on that of [Touretzky,
1986); it relies on three preliminary concepts, which we turn to first—
constructibility, conflict, and preemption.

The paths constructible in an epistemic context are those that can be
assembled by chaining together, in a certain way, the paths and links al-
ready present in that context.

Definition 2.1.1 (Constructibility). A positive path =(z,0,u) — y
is consiructible in the context (T, ®) iff #(z,0,u) € ® and u — y € T.
A negative path w(z,0,u) 4 y is constructible in the context (T, ®) iff
m(z,oc,u) € P and u L yeT.

Each path represents an argument, and it is useful to think of the final
link in a constructible path as a reason for accepting that argument. For
example, suppose an agent is provided with the simple network T = {a —
p,p — q,q — 7} as his initial information, where a = Tweety, p = canaries,
q = birds, and r = flying things; and suppose also that he has not yet drawn
any inferences from this information, so that his epistemic context is just
(T, T). In this context, the argument path a — p — ¢ is constructible: the
agent is provided with the statement that Tweety is a canary as part of his
initial information, and so the statement that canaries are birds provides
him with a reason for accepting the argument that Tweety is a bird. Now
imagine that the agent actually does accept this argument, so that he moves
to the new context (I', @), where & = TU{a — p — q¢}. In this new context,
the path @ — p — ¢ — r will be constructible as well: since he has already
accepted the argument that Tweety is a bird, the information that birds
fly gives him a reason to accept the further argument that Tweety flies.

Constructibility is a necessary condition that a compound path must
satisfy in order to be classified as inheritable, but it is not sufficient. Even if
a context provides some reason for accepting an argument, that argument
might not, all things considered, count as forcible or persuasive. Two
further aspects of the context could interfere.

First, an argument will not be classified as inheritable in a context if it
is conflicted, where this notion is defined as follows.

Definition 2.1.2 (Defeasible conflict). A path of the form =n(z,0,y)
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conflicts with any path of the form 7(z, 7, ).

Definition 2.1.3 (Conflicted paths). A path o is conflicted in the con-
text (T, ®) iff ® contains a path that conflicts (in T') with ¢.!

The intuitive force of this restriction is that the agent should check for
consistency before accepting arguments: a defeasible argument cannot be
classified as forcible, even if there is some reason for accepting it, whenever
its adoption would introduce a conflict into an epistemic context. The kind
of situation in which this restriction comes into play is best illustrated by
a standard example. Suppose, then, that the agent is provided with the
net T'; (Figure 1, known as the Nixon Diamond) as initial information,
where a = Nixon, ¢ = Quakers, r = republicans, and p = pacifists; and
again, that he has not yet drawn any additional conclusions, so that his
epistemic context is simply (T'y, T'1). In that case, both of the constructible
paths ¢ — ¢ — p and @ — r - p should be classified as inheritable.
Although these arguments conflict with each other, neither is conflicted in
the context; both represent forcible arguments, and so the agent has to find
a way of dealing with the conflicting implications of his current epistemic
state. Now let us imagine that, out of some motive, the agent actually
adopts one of these two arguments—say, the argument ¢ — r 4 p—so
that he moves to the new context (I'y, ®), where ® =T, U {a — r 4 p}.
In this new context, the path @ — ¢ — p 1s conflicted and so no longer
inheritable; the argument loses its force for the agent, since he has already
decided to accept an argument to the contrary.

The second restriction governing inheritability is that a constructible
path cannot be classified as inheritable in a context if it is preempted.
This restriction 1s supposed to reflect the idea that an agent should not
view an argument as persuasive, even if he has some reason for accepting
it, whenever his epistemic context provides a better reason for accepting a
conflicting argument. Again, it is best to illustrate this idea with a familiar
example; so suppose that T's (Figure 2, known as the Tweety Triangle)
represents the agent’s initial information, where a = Tweety r = penguins,
q = birds, and p = flying things. Let us assume that the agent has already
concluded that Tweety is a bird—that he has reasoned his way to the
epistemic context (I'y, ®), where ® = To U {a — r — ¢}. In this context,
the paths ¢ — r — ¢ — p and @ — r 4 p are both constructible: the link
q — p provides a reason for the conclusion that Tweety flies; the link r £ p
provides a reason for the conclusion that Tweety does not fly. As in the
case of ['s, these paths conflict with each other, though neither is conflicted
in the context. Nevertheless, it does not seem on intuitive grounds that

1In the following section on mixed networks, the notion of conflict between paths is
replaced by a notion of conflict between paths relative to a network; the parenthetical
clause in this definition anticipates the development.
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the agent should be free, as before, to adopt whichever one of these two
paths he chooses; here the first seems to be, in some sense, undermined or
preempted by the second.

Tt is important to see exactly what it is about the context (T's, ®),
that leads us to view ¢ — r — ¢ — p as a preempted path—what it is
that makes us dismiss the link ¢ — p as a persuasive reason for accepting
this argument. There seem to be two components to the notion. First, ®
contains a path from a through r to q, so that conclusions about a based on
r can be thought of as “more specific,” or in some other way better, than
conclusions about @ based on ¢; and second, the direct link » & p belongs
to 'y, so that 7 can be thought of as providing “immediate” information
contrary to that provided by ¢q. Generalizing these observations leads to
the following definition.

Definition 2.1.4 (Defeasible preemption). A positive path #(z, 0, u) —
y is preempted in the context (I, ®) iff there is a node v such that (i) ei-
ther v = z or there is a path of the form w(z, 7 ,v,79,u) € ®, and (ii)
v £ y € T'. A negative path n(z,0,u) /4 y is preempted in the context
(T, ®) iff there is a node v such that (i) either v = z or there is a path of
the form #(z, 7, v, 7, u) € ®, and (i) v — y € T.

When a positive path of the form n(z, o, u) — yis preempted in accord with
this definition (and similarly for negative paths), we say that it is preempted
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by the path w(z, 7, v) — y, and we refer to this path as a preemptor. The
path w(z, 1, v, 72, u) is referred to as a situator, since it situates the node
v appropriately between x and u; and the node v itself, which acts as the
fulcrum for preemption, is referred to as the preempting node. In the case
of I'y, for example, @ — r + p is the preemptor, a — r — ¢ is the situator,
and r is the preempting node.

At this point, we can assemble our preliminary concepts into a formal
definition of inheritability for defeasible networks.

Definition 2.1.5 (Defeasible inheritability).
Case I: o is a direct link. Then (T',®) o iff 0 € T.
Case IT: ¢ is a compound path. Then (T, ®) |~ o iff

1. o is constructible in (T', @),
2. o is not conflicted in (T, ®),
3. o is not preempted in (T, ®).

This definition differs from that of [Touretzky, 1986] only in the following
details: first, the present definition allows direct links to be classified as
inheritable; second, it relies on an alternative notion of constructibility for
compound inheritable paths; and third, it relies on an alternative notion of
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preemption. The first of these differences is inessential, simply allowing a
more straightforward definition of the extensions. The other two differences
will be discussed later, in Sections 4.1 and 4.2.

2.2 Constructing extensions

Now that we have defined a relation of defeasible inheritability, we use can
this notion to characterize the different kinds of extensions.

2.2.1 Credulous extensions

Perhaps the most natural class of extensions, and certainly the simplest
to motivate, are the credulous extensions, due to Touretzky. Intuitively,
an extension is supposed to represent some total set of arguments that an
ideal reasoner would be able to accept, based on the initial information in
a network. To motivate the credulous extensions, then, we need only ask:
what could prevent some path set ® from representing such an ideal set of
arguments determined by the net I'? There are two obvious possibilities.
First, ® might contain too few arguments; there might be some argument
inheritable in the context (T', ®) that does not actually belong to ®. Second,
® might contain too many arguments; some argument actually belonging
to ® might turn out not to be inheritable in the context. The credulous
extensions of a net I' can be defined as those path sets exhibiting neither
of these defects.

Definition 2.2.1. The path set @ is a credulous extension of the net T iff
= {o:(I'D) |~ o}.

Again, this notion is essentially that of [Touretzky, 1986]; the present for-
mulation simply reorganizes the component ideas a bit, so that the credu-
lous extensions can be characterized explicitly as fixed points based on the
inheritability relation.?

Of course, a given semantic net may possess more than one credulous
extension; for example, the path sets 'y U{a — ¢ — p} and Ty U {a —
r 4+ p} are both credulous extensions of the net T';. In such a case, when
a net possesses more than one credulous extension, it is not clear exactly
how to characterize the set of conclusions that an ideal reasoner should
draw from the information contained in that net. One option is to suppose
that the reasoner could endorse the set of conclusions supported by any

2The credulous extensions defined here correspond, not to the expansions of [Touret-
zky, 1986], but to the grounded expansion (Definition 2.9, page 44). Although the
concept of groundedness no longer plays any explicit role in the definition, it turns out
that our extensions are grounded in the sense defined there.
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one of the net’s several extensions. According to this option, the reasoner
will have arrived at suitable state of mind based on the information in I'y,
for example, if he concludes that Nixon is a pacifist, or if he concludes
that Nixon is not a pacifist; he cannot draw both of these conclusions, but
he must draw one or the other. This option seems to be appropriate for
situations in which the value of drawing conclusions is high relative to the
costs involved if some of those conclusions turn out not to be correct.

A more conservative option—appropriate when the cost of error rises—
is to suppose that an ideal reasoner’s conclusion set based on a net with
multiple credulous extensions should be determined, somehow, by the in-
tersection of these extensions. There are two natural ways of develop-
ing this idea. We might suppose, first, that the reasoner should endorse
an argument just in case it is contained in each of the network’s exten-
sions, and that he should then endorse the set of statements supported
by the arguments he endorses. Or second, we might suppose that the
reasoner should endorse a statement just in case it is itself supported by
each of the network’s extensions. As it turns out, these two approaches
yield different results, since a statement may be supported in each ex-
tension, but only by different arguments. The network T's (Figure 3),
for example, allows two credulous extensions, one containing the path
a — q — p — t, and the other containing the path a — v — v — ¢.
Each of these extensions supports the conclusion a — ¢; so according to
the second approach, the reasoner should endorse this statement. How-
ever, there is no argument in the intersection of these two extensions that
supports a — t; so the reasoner should not endorse this statement ac-
cording to the first approach. This ambiguity in the idea of intersect-
ing multiple credulous extensions was first pointed out in [Stein, 1989;
Stein, 1990], and in [Makinson and Schlechta, 1991], where the state-
ments supported in different extensions by different arguments are nicely
described as “floating conclusions.” Stein provides a polynomial-time al-
gorithm for computing the set of statements supported in each credulous
extension (although she relies on a notion of credulous extension slightly
different from that given here).

Before moving on to define alternative extension concepts, we consider
some fundamental results characterizing the credulous extensions.

Let us define the generalized paths as link sequences like paths, except
that they can contain negative links anywhere, and perhaps more than one.
Formally, each link is a generalized path, and if 7 is a generalized path,
then so are 7 — p and 7 4 p. We will say that a net is acyclic just in case
it contains no generalized path whose initial node is identical with its end
node. Now, it is natural to think of a network as “coherent” just in case
it has an extension. Our first result, due to [Touretzky, 1986], provides
sufficient conditions for network coherence.
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Theorem 2.2.2. Every acyclic network possesses a credulous extension.

This result will follow here as a corollary to Theorem 2.2.8, presented in
Section 2.2.3.

It was left as an open question in [Touretzky, 1986] whether all networks
possess credulous extensions; but we can see now, at least for the current
variant of the credulous theory, that the answer to this question is No. The
cyclic net Ty (Figure 4) provides a counterexample. Suppose this net had
an extension—say, ®. Of course, ® either would or would not contain the
path (x) p — ¢ — r. If ® did contain (x), it would also have to contain
the path (x¢) p — ¢ — r — s — t — ¢; so (*) would be preempted in
the context (T4, ®), and therefore not inheritable. On the other hand, if ®
did not contain (%), it could not contain (*x) either; so (*) would not be
preempted, and so it would be inheritable in the context (T4, ®).

The next two results are analogs of those established for skeptical ex-
tensions in [Horty et al., 1990]; the proofs provided there adapt easily to
the credulous case.

Theorem 2.2.3. An extension ® of a net I' supports both the statements
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4

z — y and z 4+ y iff both © — y and  +~ y belong to T.

Theorem 2.2.4. If ® is an extension of a network I' and ® supports an
atomic statement w(a,p) [7(a,p)], then there is an extension ® of T' U
{m(a,p)} [T U{T(a,p)}] such that & supports A iff & supports A, for any
statement A.

The first of these (in the interesting direction) is a form of soundness,
guaranteeing that an extension of a network will not generate any new
conflicts; it will support only those conflicting statements already present
in the original network. The second result assures the property of atomic
stability—t isolates a sense in which the semantic properties of a network
are unaffected when that network 1s supplemented with its own conclusions.
This stability property is closely related to the property of cumulative
monotony originally explored in [Gabbay, 1985] and [Makinson, 1989], and
more recently in [Kraus et al., 1990] (where stability is equivalent to a
combination of the rules described as Cut and Cautious Monotonicity).
Although the property was not defined formally for inheritance networks
until [Horty et al., 1990, it was actually the failure of atomic stability
in shortest-path inheritance reasoners that provided much of the original
motivation behind [Touretzky, 1986); see, for example, the discussion of
level-skips in Section 1.8 of that work.

The matter of stability is examined in greater detail in Section 5.3 of
[Horty et al., 1990]. An example is provided to show that generic stability
fails for the inheritance reasoner defined there (supplementing a network
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with its own generic statements as conclusions may indeed affect the se-
mantics of the net), and the same example shows that generic stability fails
also for the present notion of credulous inheritance. It is suggested that
it may be reasonable to require an inheritance system to exhibit atomic
but not generic stability. However, the matter is still unresolved, and this
middle position has been challenged from both sides: [Geffner and Verma,
1989] advocates a theory of inheritance that does not exhibit even atomic
stability, while [Boutilier, 1989a] criticizes theories of the sort described
in the present chapter on the grounds that they do not exhibit generic
stability as well.

2.2.2 Skeptical extensions

The skeptical extensions, first defined in [Horty et al., 1990], are somewhat
more complicated than the credulous extensions to motivate. While the
credulous extensions can be characterized directly through a fixed point
equation, the skeptical extensions must be defined instead through an it-
erative process of moving, in a rational way, from one epistemic context to
another. Beginning with a net [', and then at each succeeding stage in the
reasoning process, we suppose that the agent repeatedly supplements his
current epistemic context with the set of arguments which he is justified in
accepting, but which he has not yet explicitly endorsed. This process con-
tinues until it reaches a limit—the skeptical extension of '—at which point
the agent has explicitly endorsed all the arguments he is justified in accept-
ing, and he can be seen also as justified in accepting all the arguments he
has explicitly endorsed.

In order to flesh out this picture, we need to understand the conditions
under which an agent can be said to be justified in accepting an argu-
ment. According to the theory of [Horty et al., 1990], there are two such
conditions.

The first represents a global constraint on the overall reasoning process:
at any given stage, an agent can be justified in accepting an argument o
only if he has previously evaluated, or is currently evaluating, every other
argument 7 that might possibly have a bearing on the acceptability of o
(either conflicting with o, or else figuring as a situator or preemptor in the
preemption of ¢). This constraint is captured by appeal to the notion of
degree. Using the concept of a generalized path set out in Section 2.2.1, we
can define the degree of a path o in a net T—written, degp(o)—to be 1 if
o is a link, and otherwise, if ¢ is a compound path, to be the length of the
longest generalized path in T from the initial node of ¢ to its end node. (Of
course, this definition makes sense only for acyclic networks; the definition
of skeptical inheritance applies only to these.) It is argued in [Horty et al.,
1990], and it should be clear anyway, that a path 7 can have a bearing
on the acceptability of ¢ only if degr(7) < degp(o). Therefore, we can



18 John F. Horty

enforce our global constraint on the reasoning process simply by requiring
that the agent consider, and then either accept or reject, argument paths
in the order of their degree: at the n-th stage of the reasoning process, the
agent can consider only those arguments of degree n.

The second condition that an argument must satisfy in order to count
as justified at some stage is local; the condition can be framed in terms of
the epistemic context reached at that stage alone, without reference to the
place of this context in the overall process of reasoning. Basically, we want
to require that a skeptical reasoner can accept an argument in a context
if that argument is both forcible for the reasoner, and it does not conflict
with any other argument that is also forcible. We will say that an argument
path meeting this condition is permiited, and use the symbol p to stand
for the relation of permission between a context and an argument.

Definition 2.2.5 (Permission).

Case I: o is a direct link. Then (T, ®) - ¢ iff o € T
Case IT: ¢ is a compound path. Then (T, ®) b o iff

1. (T, ®) o,
2. there is no path 7 such that (I', ®) v 7 and 7 conflicts (in T')
with o.

Now that we have described the two conditions that a path must meet
in order to count as justified, it is a straightforward matter to formalize
our notion of the skeptical extension of a network as the result of repeat-
edly supplementing the network with justified arguments—the permitted
arguments of appropriate degree.

Definition 2.2.6. Where the sequence of path sets @1, &5, &3, ... is given
by

(I>1 F1
D, = P, U {o :degr(c)=n+1and (T'®,) 0o},

the path set | J,_, ®, is the skeptical extension of T.

Although it is based on the same motivating intuitions, the notion defined
here of a skeptical extension does not quite agree with that of [Horty et al.,
1990]; the differences will be discussed in Section 4.3.

It should be clear that any acyclic net has a skeptical extension, that
this skeptical extension is unique, and that the iterative process through
which it is defined quickly reaches a limit (if £ is the largest degree of
any path in T', then ®; is the skeptical extension of T'). Of course, the



Nonmonotonic Inheritance 19

q
L
t
[
Do e *s
[ ]
a

analogs of Theorems 2.2.3 and 2.2.4—soundness and atomic stability—
hold for skeptical extensions as well as credulous extensions. In addition,
it is easy to see (and it will follow as a corollary to Theorem 2.2.9) that
® = {0 : (T,®) ) 0} whenever ® is a skeptical extension of the net T.
Just as the credulous extensions are fixed points, or equlibrium states,
determined by the inheritability relation, the skeptical extensions are fixed
points determined by the relation of permission.?

Now, what is the relation between the skeptical extension of a net and
its credulous extensions? If a net possesses only one credulous extension,
this will coincide with its skeptical extension as defined here. However, if
a net possesses more than one credulous extension, its skeptical extension
may not coincide with the intersection of these credulous extensions. This
situation can occur in the case of nested diamonds, such as I's (Figure 5).
Although the skeptical extension of this net contains the path a — p 4 ¢,
the net allows a credulous extension that does not contain this path, but
contains ¢ — s — t — ¢ instead.

The example of T'5 is drawn from [Horty et al., 1990]. To the authors

3Note, however, that the skeptical extensions cannot be defined as the fixed points of
the permission relation, since not all fixed points of the permission relation are skeptical
extensions. The matter will be treated in the following Section 2.2.3, and also later in
Section 4.3.
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of that paper, this kind of example suggested that the skeptical theory
presented there offered a genuinely new and alternative notion of extension,
not one readily definable in terms of concepts already familiar from the
credulous theory. Oddly, however, the authors of [Touretzky et al., 1987]
saw the matter in a somewhat different light: the gap between the skeptical
extension and the intersection of credulous extensions led these authors to
suspect that there might be a conceptual problem with this approach to
skepticism.

It is easy to understand the reasons for this suspicion. In the case of I's,
for example, it is tempting to suppose, since the argument ¢ — s — ¢t — ¢
appears in some credulous extension of the net, that this argument should
be considered explicitly as one that might be correct; and therefore, that
a truly skeptical reasoner should recognize this fact by refusing to endorse
the conflicting argument a — p & ¢. This line of thought leads eventually
to the view that the intersection of credulous extensions should provide the
ideal for skeptical reasoning—a view that has been suggested or explicitly
endorsed by a number of people, including [Boutilier, 1989a), [Geffner and
Verma, 1989], [Makinson and Schlechta, 1991], and [Stein, 1989; Stein,
1990; Stein, forthcoming].

What makes it seem so natural that the intersection of credulous ex-
tensions should be thought to provide the ideal for skeptical reasoning
is a particular interpretation of these extensions, as well as a particu-
lar interpretation of the relation between skepticism and credulity. The
interpretation—which is most explicit in Stein’s work—is that the credu-
lous extensions of a network are to represent the possible states of the world
consistent with that network, and that the goal of skeptical reasoning is to
draw only those conclusions guaranteed to hold no matter which of these
possible states 1s actual. Given this way of viewing things, of course, it
does follow at once that the goal of any skeptical reasoner should be to
arrive at the intersection of credulous extensions.

But this interpretation of extensions, as possible states of the world, is
not the only way of understanding them. The credulous extensions could
just as easily be taken to represent the ideal or equlibrium mental states of
an agent for whom a credulous reasoning strategy is appropriate, an agent
for whom the value of drawing conclusions suggested by a network out-
weighs the cost of error.* It is likewise possible to interpret the skeptical
extensions simply as equilibrium states of an agent for whom the tradeoff
between drawing conclusions and avoiding error is less heavily weighted in
favor of conclusions. And given this way of understanding the extensions,
as states of mind rather than states of the world, there no longer seems to
be any inevitable connection between the skeptical extension of a net and

4This interpretation of the credulous extensions is due to Doyle [Doyle, 1985; Doyle,
1988]; a related interpretation is developed in [Horty, forthcoming].
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the intersection of its credulous extensions. Why should a reasoner pursu-
ing some skeptical strategy reject an argument just because some credulous
reasoner, pursuing an entirely different strategy, accepts a conflicting ar-
gument?

In some ways, it seems best to regard these two approaches to skepti-
cal reasoning—the intersection of extensions approach advocated by Stein
and others, and the alternative approach described in the present section—
simply as different and equally coherent ways of developing a shared un-
derlying conception of skepticism.

The central feature of any skeptical reasoning strategy—what makes
it skeptical—is the idea that an agent should refrain from accepting an
argument in the face of a plausible counterargument; but this underlying
idea can lead to different particular theories depending upon the manner in
which the “plausible” counterarguments to a given argument are identified.
One way of developing the idea is to imagine that any argument falling
in a credulous extension (any argument that could be endorsed by some
credulous reasoner) should count as plausible, so that a skeptical reasoner
cannot endorse an argument if it conflicts with one of these. This is the
option that leads to the intersection of extensions view; it is, of course,
coherent and intuitively appealing, although it does force the agent, at
times, to regard as plausible certain counterarguments that he himself has
no reason to accept.® Such arguments are characterized by [Makinson and
Schlechta, 1991] as “zombies”—paths that are themselves dead, though still
able to kill others. It seems equally coherent, however, to develop the basic
skeptical idea in a way that avoids zombies, by identifying as plausible
only those arguments that actually have some force for the reasoner, in
his current epistemic context; and these are the inheritable paths. The
approach to skepticism described in [Horty et al., 1990], and in the present
section, is based on this point of view.

2.2.3 Flexible extensions

So far, we have considered only extensions that treat each of the conflicts
engendered by a net uniformly, in either a credulous or a skeptical manner
(regardless of the precise way in which skepticism is achieved). We have
supposed that a reasoner might adopt different reasoning strategies in dif-
ferent situations—employing a credulous strategy when it is most impor-
tant to arrive at definite conclusions, and some form of skeptical strategy
when 1t is more important to avoid error. However, the theories considered
so far do not allow the reasoner to adopt, in a single situation, a credulous

5This is to be understood in the sense described earlier, according to which an agent
has a reason to accept an argument in a context only if that argument is constructible;
in this sense, an agent in the context (I's,I's) has no reason to accept the patha — s —
t—q.
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attitude toward one conflict and a skeptical attitude toward another.

The insistence on this kind of uniformity in any given situation seems
in some cases to rule out extensions containing the appropriate set of con-
clusions. For example, consider the two diamonds I's (Figure 6) and T';
(Figure 7); and suppose that the nature of the information represented by
T's makes it appropriate to adopt a credulous strategy in drawing conclu-
sions from this net, but that the nature of the information in I'; makes
a skeptical strategy appropriate there. Now imagine that the reasoner is
given as his initial data the net I's U I'7, rather than the individual nets
I's and I'7 in isolation. What conclusions should he draw? If he adopts a
credulous strategy in order to accommodate the information from I'g, he
will be forced, inappropriately, either either to conclude that a is a py or
to conclude that a is not a ps. But if he adopts a skeptical strategy in
order to handle the information from I'z properly, he will not be able, as
he should, either to conclude that a is a p; or to conclude that a is not a
pP1-

As long as we insist that an ideal reasoner should arrive at some exten-
sion, and extensions exhibit a uniform treatment of conflicts, then it seems
that we cannot allow the reasoner to arrive at the proper set of conclusions
in situations such as these, where a more flexible treatment of conflicts
is called for. This problem suggests that a new extension concept—the
concept of a flexible extension—should be introduced to characterize the
appropriate conclusions in situations like this, just as the credulous and
skeptical extensions characterize the appropriate conclusions in situations
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requiring uniformly credulous or skeptical reasoning. Extensions of this
kind can be defined quite simply, by taking fixed points of the permission
relation.

Definition 2.2.7. The path set ® is a flexible extension of the net T' iff
®={c:(I,®) 0}

Both of the intuitively appropriate sets I's UT'7 U {a — ¢1 — p1} and
T UT7U{a — r1 4 p1} then turn out to be flexible extensions of the
I's U F7.6

Although the flexible extensions include path sets that are neither cred-
ulous nor skeptical extensions, it turns out that they generalize the previous
extension concepts: each credulous or skeptical extension is also a flexible

6This simple example may give the impression that it is possible to arrive at each
flexible extension of any net, as it is in this case, by partitioning the net into skeptical
and credulous regions, and then joining the skeptical extension of the first region with
some credulous extension of the other. However, the impression is misleading. For
instance, the net I's described earlier allows the path set I's U{a — s — t} as a
flexible extension, resulting from a credulous approach toward the conflict at ¢, and
then skeptical approach toward the conflict at g. But this flexible extension cannot be
arrived at by partitioning the net into credulous and skeptical regions; the extension
depends on the path ¢ — s — ¢ — ¢, which moves through a conflict toward which
a credulous attitude is adopted in order to reach a conflict toward which a skeptical
attitude is adopted.
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extension. In fact, the flexible extensions can be thought of as those fixed
points arrived at by following a range of reasoning strategies, with the
skeptical and credulous extensions falling at the extremes of this range.

This can be seen most easily by focusing on the iterative constructions
naturally associated with each of the three extension concepts. Suppose,
just as in the previous Section 2.2.2, that an agent is constructing an ex-
tension of an acyclic network ' by considering, and then either accepting
or rejecting, the potential arguments in the net stage by stage, in order of
degree; however, this time, suppose that the target extension can be of any
sort—credulous, skeptical, or flexible. Just as before, we will assume that
in reasoning his way to the extension the agent moves through a monotone
sequence @1, Py, P3... of approximations, where the extension is the limit
of this sequence. As before, we take ®; = I'. At each successive stage of
the reasoning process, we will assume that the agent supplements the set
of arguments he has currently endorsed with some subset of the arguments
of appropriate degree inheritable in his current epistemic context. Let us
define

I,(T,®) = {0 : (T, ®) )~ 0 and degp(c) = n},

so that, at the stage of augmenting ®,, to form ®,41, the argument set
from which the agent chooses is given by I,41(T,®,). Of course, the
agent cannot simply endorse all the arguments contained in this set, since
in general, it may contain conflicts. If the agent’s initial information is
given by 'y (the Nixon diamond), for example, then the argument set from
which he will have to choose at the second stage of the reasoning process
1s IQ(Fl,Fl)I {a—>q —>p,a—>r74>p}.

In considering how, at the (n + 1)-th stage of his reasoning process,
the agent might choose from among the paths in I, 1(T, ®,), it is use-
ful to separate out explicitly the conflicting paths belonging to this set.
Therefore, let us define Cp(®) = {0 : ¢ € ® and o is conflicted in (T, D)}
and Sp(®) = ® — Cp(®), so that, intuitively, Cp[l,4+1(T, ®,)] represents
the set of conflicts among inheritable paths that must be resolved by the
agent, while Sp[l,4+1(T,®,)] represents the set of inheritable paths that
are unconflicted, or safe. In addition, we will say that a subset = of ¥ is
statement uniform just in case, whenever = contains any argument from ¥
supporting a particular statement, it must contain every argument from ¥
supporting that statement.

Using these ideas, the different iterative rules for moving from ®, to
®, 1 appropriate to each of the three extension concepts can be cast in
the same general form; each requires that

(¥)  Pny1 =P, UST[I41(T,®,)]U T,

with ¥ specified as some conflict free and statement uniform subset of
Cr[l4+1(T, ®,)]. Where these three versions of the rule () differ, of course,
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is in the further restrictions they place on ¥. According to the skeptical
theory, ¥ is required to be the empty set; according to the credulous theory,
¥ is required to be some mazimal conflict free subset of Cr[l,4+1(T, ®,)].
The flexible theory, lying between these two extremes, places no further
restrictions on ¥—allowing it to be the empty set, a maximal conflict free
subset of Cr[l,4+1(T, ®,)], or any other subset that is both conflict free and

statement uniform.”
Let us say that ®;,®,, ®3... is a reasoning sequence based on T' if
®;, =T and each ®,4; is formed from ®, through some version of the

iterative rule (*); and depending on the particular version of the iterative
rule adopted, let us say that the reasoning sequence is credulous, skeptical,
or flexzible. A moment’s thought shows that the skeptical extension of any
net coincides with the limit of the skeptical reasoning sequence based on
that net, since the skeptical reasoning sequence defined here will contain
exactly the same path sets as the sequence presented in Definition 2.2.6,
through which the skeptical extension of a net is defined. It is less obvious,
but true nonetheless, that the credulous and flexible reasoning sequences
correspond in the same way to the credulous and flexible extensions.

Theorem 2.2.8. ® is a credulous extension of an acyclic net I' iff ® is the
limit of a credulous reasoning sequence based on I'.

Theorem 2.2.9. & is a flexible extension of an acyclic net I iff ® is the
limit of a flexible reasoning sequence based on I'.

In addition to establishing the existence of credulous and flexible exten-
sions for acyclic nets, these results show that the iterative characterization
of those extensions coincides with the fixed point characterization.®

TOf course, the empty set and any maximal conflict free subset of Cr[In41(T, ®x)]
are automatically statement uniform, but the requirement does need to be imposed
separately in the case of flexible reasoning. To see the need for this, take ' = T'; U {a —
s,s — p}, so that L(I',T) = {a — ¢ — p,a — s — p,a — r # p}. Without the
requirement of statement uniformity, there would be nothing to prevent the agent from
selecting at this stage the argument ¢ — ¢ — p, but not the argument ¢« — s — p as
well. However, the set I' U {a — ¢ — p} is not a flexible extension of T'.

8Theorem 2.2.8 should be compared to Theorem 2.11 of [Touretzky, 1986], which
shows in the same way (through the construction of a reasoning sequence) that any
net whose 1S-A subgraph is acyclic has a credulous extension. Touretzky’s theorem has
broader scope, since nets that are cyclic by the present standards might still be 15-a
acyclic. On the other hand, Touretzky’s theorem shows only that some extension can be
reached as the limit of a reasoning sequence; and not all of the credulous extensions can
be approximated through reasoning sequences of the sort he defines. The present result
shows that the credulous extensions coincide with the limits of reasoning sequences of
the sort defined here.
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3 Theories of mixed inheritance

The theories developed in Section 2 apply only to purely defeasible net-
works, a severe expressive limitation, as pointed out in [Brachman, 1985].
The present section shows how these theories can be extended to apply also
to networks containing both strict and defeasible links mixed together. In
a sense, the real point of this section is that no new ideas are involved
in extending the theories of defeasible inheritance to this broader range of
networks; it is simply a matter of generalizing the previous ideas to the
new environment. Still, the generalization is complicated, and it is worth
working through it in detail.

This section follows an expository track similar to that of Section 2,
first setting out a notion of inheritability appropriate for mixed networks,
and then using this new notion to define the extensions. The notion of
inheritability presented here for mixed nets is itself a mixture, combining
the treatment of defeasible inheritability from Section 2.1 with the theory
of strict inheritance developed in [Thomason et al., 1986]. We begin, then,
by reviewing briefly this approach to strict inheritance.

3.1 Strict inheritability

According to this theory, strict inheritance is really very simple: each strict
network I' has a unique extension ®, which contains exactly those paths
that can be constructed from the links in I', and so a unique theory, con-
taining exactly those statements supported by ®. The unique extension of
the network T's (Figure 8), for example, contains the paths ¢ = s = r and
p = q <& r < s. Suppose we interpret the nodes in this net so that p =
starlings, ¢ = birds, r = mammals, s = dogs, and @ = Rover. Then the first
of these paths show that the unique theory of I's contains the conclusion
that Rover is a mammal (a = r); the second shows that it contains the
conclusion that no starlings are dogs (p <& s).

It is important to note that this analysis of strict inheritance, although
straightforward, is not the standard view. Strict networks contain only
strict links, each of which can be represented, as explained in Section 1.3,
by a formula of classical logic. It may seem natural, then, to use classical
logic itself to provide a semantics for such a network—by identifying the
network with the set of formulas that translate its links, and then defining
a statement as supported by the network just in case it belongs to the
deductive closure of that set. This idea, which seems to be the standard
view, is due originally to [Hayes, 1979]. To see that it differs from the
analysis proposed here, consider, for example, the net T'y (Figure 9). This
net would be translated into the set {Pa,—Pa,—Qa}. Since the set is
inconsistent, any statement at all belongs to its classical deductive closure;
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so according to the standard view, the theory of 'y should be taken to
contain every statement—including, say, Qa. According to the analysis of
[Thomason et al., 1986], however, the theory of T's does not contain Qa;
the extension of this net contains no positive path from a to ¢, and in fact
provides uncontested evidence that =Qa.

It is, in some ways, a delicate matter to decide between the present anal-
ysis and the traditional analysis of [Hayes, 1979]. One is always free to re-
gard a strict network simply as a notational variant of some classical theory,
so that the traditional analysis would be appropriate. Still, there seems to
be some value in taking seriously the graph-based nature of inheritance rea-
soners, which derive conclusions corresponding only to actual paths. The
problem then is to see how we can make logical sense of such a reasoner—by
designing an appropriate logic, rather than forcing the reasoner to conform
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to the standards of an already-existing logic. This task is carried out for
strict networks in [Thomason et al., 1986], which provides both a proof
theory for path-based inheritance reasoning and an interpretation of the re-
sulting logic in a four-valued model based on that of Belnap [Belnap, 1977a;
Belnap, 1977b).

The proof theory is a calculus in the style of [Gentzen, 1934] for proving
sequents of the form T'F A, where T is a set of statements (a net) and A
a statement (a link). Informally, such a sequent is supposed to mean that
A is derivable from I'. The sequent calculus contains as its only structural
rule the schema

AF A,

where A is a literal—that is, a link of the form a = p or a <~ p. This
gives us our axioms. In addition, we have the following logical rules, for
introducing both = and <&, on the right and on the left of the turnstile.

Ma=>pka=yq

F=
M‘rp=gq
F'ra=p Aa=qt A F'traskbq AasspkA
=k =+
Ap=>qFA I'Alp=qF A

M a=pka<sq
[“Fp<sq

-

'Fa=p Aa g A 'Fa=9q Aa pkHA
* & F * <> F
TAp<ss gk A TAp<ss gk A

In the rules F= and F <5 | T'? is supposed to represent a collection
of formulas not containing a. We do need both the rules =F and =+ to
capture the meaning of = on the left of the turnstile; neither will do alone.
Likewise, both <% F and <A F are necessary.

We provide here a sample proof, of the sequent p = q,9 <& r F p <& 7,
simply in order to illustrate these rules.

a=>pkta=>p a=>qlta=q
a=>pp=>qt-a=q a<krhassr
pP=4q,q ra=>pka r
* * F <5
pP=q,qrEpr

The techniques of [Thomason et al., 1986] can be used to establish the
following theorem, which shows that this sequent calculus is both sound
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and complete with respect to the analysis presented above of strict inheri-
tance.

Theorem 3.1.1. The sequent I' - A is provable iff A belongs to the theory
of T.

The interpretation of this logic relies on the set 7 = {{T},{F},0, {T,F}}
of truth values. Following Belnap, we use these values to represent four pos-
sible states of a knowledge base with respect to a proposition: the state
of possessing evidence for the proposition and no evidence to the contrary;
the state of possessing evidence against the proposition and no evidence to
the contrary; the state of possessing no evidence either for or against the
proposition; the state of possessing evidence both for the proposition and
against it well. This explanation should suggest why it is natural to take
the power set of {T,F} as the set of truth values: if X € T is the truth
value for some proposition, then T € X just in case there is evidence for
the proposition, and F € X just in case there is evidence against it.

A wvaluation v on the language of strict links can be defined as follows.
Relative to a domain D, the valuation assigns an individual v(a) in D to
each individual term a of the language, and a function v(p) from D to 7 to

each generic term p. Where v is a valuation, v"/a is the valuation like v for
all terms other than a, but which assigns the value d to a. The following
rules extend v to the entire language.

* v(a = p) = [v(p)l(v(a)).

e v(a <5 p) = Not(v(pa)), where Not({T}) = {F}, Not({F}) = {T},
Not(#) = 0, and Not({T,F}) = {T,F}.

e v(p = q) = {T} if for all d € D, we have T € vd/a(a = q) if
T € vd/a(a = p)and F ¢ Ud/a(a = p) if F e vd/a(a = ¢); and
v(p = q) = 0 otherwise.

e v(p <& q) = {T} if for all d € D, we have F € vd/a(a = q) if

T ¢ vd/a(a = p)and F € vd/a(a = p) if T € vd/a(a = q); and
v(p <& q) = 0 otherwise.

Given this interpretation, the notion of semantic implication is defined
in the usual way.

Definition 3.1.2. T' semantically implies A iff, for all valuations v, if
T € v(B) for all B €T, then T € v(A).

It can then be shown that this kind of four-valued implication characterizes
the sequent calculus.
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Theorem 3.1.3. The sequent I' - A is provable iff I' semantically implies
A.

Together with Theorem 3.1.1, or course, this means that the four-valued
semantic implication also characterizes the path-based notion of strict in-
heritance described above.

3.2 Mixed inheritability

We turn now to the task of defining a new notion of inheritability for mixed
networks, by combining the theory of strict inheritability just reviewed with
the treatment of defeasible inheritability from Section 2.1.

It will be useful to focus first on the special case of mixed inheritability
for paths ending in defeasible links; this is, after all the most interesting
case, since it 1s here that we 1solate the conditions under which we can
draw an inference using defeasible information. For paths of this kind,
the account of mixed inheritability is similar in its overall structure to
the account of defeasible inheritability presented earlier: a simple path
(or link) will be classified as inheritable if it is contained in the net; a
compound path will be classified as inheritable if it is constructible, but
neither conflicted nor preempted. In fact, the notion of constructibility
for compound paths can simply be carried over from the defeasible case:
Definition 2.1.1 applies without change. However, the ideas of conflict and
preemption must be modified in the mixed environment to accommodate
the presence of strict links.

In defeasible networks, all conflicts share a simple form: they involve
paths with identical initial nodes, identical end nodes, and opposite polar-
ity. But the presence of strict links introduces the possibility of less direct
conflicts, even among purely defeasible paths. As an illustration, consider
T'yo (Figure 10). Here it seems reasonable, in light of the strict segment
r=s =1t toregard p — ¢ — r and p — u — v 4 ¢ themselves as
conflicting paths, even though they do not share an end node. Imagine, for
example, that r = dogs, s = mammals, and ¢ = animals, so that the strict
segment tells us that all dogs are animals. In the context of T'yg, then,
the path p — ¢ — 7, which represents an argument to the effect that p’s
are dogs, carries with equal force the conclusion that p’s are animals; so it
conflicts with p — u — v 4 ¢, which represents an argument that p’s are
not animals.

What this example shows is that two paths can represent conflicting
arguments, even if they have different end nodes, when one of the paths
clashes with a strict consequence of the other. Of course, such strict conse-
quences can themselves be classified as positive or negative. Let us define
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kr(z) = {z} U{y : T allows a strict positive path from z to y},
%r(z) = {y : T allows a strict negative path from z to y},

so that kp(z) and Fr(z) represent the positive and negative strict conse-
quences attributed to & by I'—the set of properties that x must possess,
according to I', and the set of properties that z cannot possess. It is then
natural to extend our conception of conflicting paths as follows.

Definition 3.2.1 (Mixed conflict). A path w(z, 0, y) conflicts in T with
any path of the form @(z, 7,m) for m € kr(y), and also with any path of
the form #(z, 7, m) for m € ®r(y).

Given this generalized notion of conflict, the characterization of conflicted
paths from Definition 2.1.3 can carry over unchanged.

As it turns out, even this revised formulation is not adequate to cap-
ture the intuitive notion of conflict in mixed nets containing distinct but
strictly equivalent nodes. This can be seen by considering T'y; (Figure 11).
According to the definition just presented, the paths + — uw — y and
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w — v 4 y do not conflict with each other in this net, since the node z is
distinct from w. But from an intuitive point of view, it does seem that these
should count as conflicting paths, and that a consistent extension should
not contain both, since the net tells us that z’s are strictly equivalent to
w’s.

There are several ways to handle this problem. The first is simply to
disallow nets containing strict cycles of the kind contained in ['17, just
as we earlier disallowed nets containing defeasible cycles. This solves the
problem, of course, by ruling out the offending cases; but the solution is
extreme, since it is sometimes useful to be able to represent in a network
distinct but strictly equivalent concepts. (For example, the designer of
a knowledge base containing some mathematical information might wish
to distinguish the concepts of triangular and trilateral plane figures, while
recording that an instance of each is necessarily an instance of the other.) A
better solution would be to reformulate the notion of mixed conflict so that
it gives the intuitively correct results in nets containing strictly equivalent
nodes; but this strategy also is problematic. The presence of such nodes
affects the treatment of preemption as well as conflict in mixed nets. Both
notions would have to be adjusted to handle the attendant difficulties; the
adjustments are complicated, and in the case of preemption, they lead to a
definition that is nearly unintelligible. Moreover, the inference algorithms
naturally suggested by the definitions designed to deal directly with the
problems of strictly equivalent nodes are more cumbersome than those
based on definitions that are able to ignore these problems.
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A third solution, which combines some advantages of the others, is to
treat networks containing strictly equivalent nodes by proxy, providing a
semantics for these networks, without actually complicating the definitions
of conflict and preemption to deal with equivalent nodes, by deriving their
meaning from others without strict equivalences. This can be done quite
simply by associating with each net I' possibly containing strictly equivalent
nodes another net I'* in which each set of strictly equivalent nodes from I’
has been collapsed into a single node. First, we let

[z]lr = {y:y € kr(z) and = € Kr(y)},

so that [z]r represents the set of nodes strictly equivalent to z in the net
I'. These strict equivalence classes from I' form the individual nodes of
I'*, and the links between these nodes are induced in the natural way:
we take w([z]r, [y]lr) € T* iff there exist u € [z]r and v € [y]r such that
m(u,v) € T, and likewise 7([z]r, [y]r) € T iff there exist u € [z]p and
v € [y]r such that T(u,v) € T. The net T*, of course, is guaranteed to be
free from strictly equivalent nodes, and so we can use the simpler definitions
of conflict and preemption to characterizing its extensions; but because
of its construction, it seems that this net can be taken also to provide a
semantics for I'. The easiest way to connect the two is by extending slightly
the relation of support between argument paths and statements, so that
paths belonging to extensions of ['* can be said to support statements
based on I': where u € [z]r and v € [y]r, we will say that a positive path
7([#]r, o, [y]r) supports the corresponding statement m(u,v), and also that
a negative path T([z]r, o, [y]r) supports the statement T(u, v). In this way,
the extensions of I'* can be used to determine the theories of T.

Throughout the remainder of this section, we will avoid any compli-
cations arising from nets containing distinct but strictly equivalent nodes,
supposing that these nets can be handled by proxy in the way suggested.
In implementational terms, the move from a net I' to its proxy I'* can
be thought of as a kind to preprocessing to be carried out before query-
ing takes place. It may be expensive, but the expense may be recoverable
during query time by the use of simpler algorithms.

We turn now to the matter of preemption. Just as the presence of strict
links allows for the possibility of new kinds of conflicts in mixed nets, 1t
provides also for the possibility of new relations of preemption. To see
this, imagine that the agent is supplied with the net T'y5 (Figure 12) as
his initial information, where @ = Hermann, p = persons born in America,
q = native speakers of German, r = persons born in Pennsylvania, and
s = native speakers of Pennsylvania Dutch. Under this interpretation, 'y
contains the information that Hermann is a particular speaker of Penn-
sylvania Dutch, that every speaker of Pennsylvania Dutch speaks German
(since Pennsylvania Dutch is a dialect of German), that German speakers
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tend not to be born in America, that speakers of Pennsylvania Dutch tend
to be born in Pennsylvania, and that everyone born in Pennsylvania is born
in America.

Now suppose that the agent has already drawn the conclusion that Her-
mann is a native speaker of German, reasoning his way to the epistemic
context (I'19,®), where ® = T13U{a = s = ¢}. In this context, the
paths ¢ = s — r and a = s = ¢ /4 p are both constructible. Neither is
conflicted, yet they stand in conflict with each other, because p € kr,,(r).
Of course, the agent should not be free in this case to endorse whichever
one of these argument paths he chooses. Intuitively, it looks as if the path
a = s = q /> p, representing the argument that Hermann was not born in
America since he is a native speaker of German, should be preempted in
the context—since the fact that his dialect is Pennsylvania Dutch seems to
provide a better argument to the contrary. Without modification, however,
our previous analysis of preemption does not give us this result. A path
can be preempted only if there is information to the contrary that is both
more specific and immediate; and, although s does provide more specific
information than ¢, the path s — r = p does not represent immediate in-
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formation to the contrary—at least, not according to our earlier standards,
which hold that immediate information can be carried only by individual
links.

Evidently, it is this last requirement concerning the nature of immediate
information that needs to be modified. In a purely defeasible environment,
it makes good sense to say that immediate information can be carried only
by single links: a compound path represents only a tentative argument,
which can itself be undermined. In the environment of mixed nets, however,
certain kinds of compound defeasible paths can legitimately be thought to
carry immediate information—namely, those paths consisting of a single
defeasible link followed by a strict end segment, of any length. In I'y5, for
example, the path s — r = p should be thought of as telling us immediately
that speakers of Pennsylvania Dutch are born in America. Even by our
earlier standards, s — r counts as an immediate statement of the fact that
speakers of Pennsylvania Dutch are born in Pennsylvania, and the strict
extension r = p simply tells us that everyone born in Pennsylvania is born
in America.

Generalizing from this example leads to the following notion of preemp-
tion for mixed nets.

Definition 3.2.2 (Mixed preemption). A positive path of the form
w(z,0,u) — y is preempted in the context (T', @) iff there exist nodes v, m
such that (i) either v = z or there is a path of the form # (2, 7, v, 72, u) € ¥,
and (ii) either (a) v & m € T and m € sp(y) or (b) v — m € T and
m € Fr(y). A negative path of the form n(z,0,u) 4 y is preempied in
the context (T', ®) iff there exist nodes v, m such that (i) either v = z or
there is a path of the form #(z,7,v,72,u) € ®, and (ii)) v — m € T and
y € kp(m).

Again, when a positive path of the form #(z,0,u) — y is preempted in
accord with this definition, we refer to v as the preempting node, and
we describe the path w(x, 7, v, 7, u) as the situator. The preemptor is
either the path w(z, 7, v) 4 m or the path n(z, 7 ,v) — m, depending on
whether the preemption relation is realized through clause (ii.a) or (ii.b).
This vocabulary applies likewise to the preemption of negative paths.

At this point, we are able to define the concept of mixed inheritability
for paths ending in defeasible links: happily, the previous Definition 2.1.5
will 1tself do the job, once the defeasible notions of conflict and preemption
appealed to in this definition are replaced with their mixed variants. In
order to extend this concept of mixed inheritability to the entire range of
mixed paths, we first introduce some notation for analyzing these paths
according to their structure.

Any path o from a mixed network can be divided into the subpaths
Str(c) and Def(o), where Str(o) is the maximal strict end segment of o,
and Def(c) is the defeasible initial segment that results from truncating
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Str(c) from o. (Example: if ¢ is # = y — p <5 r < s, then Str(o)
is p <& r < s and Def(o) is # = y — p.) Using this notation, we can
exhaustively classify the mixed paths in the following way. Such a path
o might consist of a non-null defeasible initial segment followed by a non-
null strict end segment, in which case we would have ¢ # Def(s) and
o # Str(o). Alternatively, the path might be entirely strict, in which
case we would have o = Str(¢), or it might have no strict end segment
at all, in which case we would have ¢ = Def(o). The definition of mixed
inheritability treats paths in accord with this case structure.

Definition 3.2.3 (Mixed inheritability).

Case A: 0 # Def(o) and o # Str(o). Then (T, ®) |~ o iff Str(c) € ® and
Def(o) € @.

Case B: 0 = Str(o). Then (T, ®) )~ o iff o is a path constructed from links
inI.

Case C-T: o = Def(0) and o is a direct link. Then (I',®) o iff 0 € T,
Case C-II: o = Def(o) and ¢ is a compound path. Then (T', ®) |~ o iff

1. o is constructible in (T', @),
2. o is not conflicted in (T, ®),
3. o is not preempted in (T, ®).

Here, Case A reduces the question of inheritability for defeasible paths with
strict end segments to two simpler question: inheritability for strict paths,
and inheritability for defeasible paths without strict end segments. These
are treated in Cases B and C.

It turns out, as it should, that this notion of mixed inheritability is a
conservative generalization of the ingredient theories of strict and defeasible
inheritability from in [Thomason et al., 1986] and Section 2.1—in the sense
that it agrees with these theories when applied to purely strict or defeasible
nets. The verification of this fact is reassuringly simple. It is evident
from Case B of the definition that this account agrees with the treatment
of [Thomason et al., 1986] when applied to strict nets. If T is a purely
defeasible net, on the other hand, then only Cases C-I and C-II of the
current definition come into play. Case C-I is identical to the corresponding
clause from Definition 2.1.5. And when T is defeasible, we have &p(z) = 0
and kr(z) = {z} for any node z. Under these conditions, the notions of
mixed conflict and preemption presented in Definitions 10 and 3.2.2 turn
out to be logically equivalent to the corresponding defeasible notions from
Definitions 2.1.2 and 2.1.4; so Case C-II from Definition 3.2.3 is likewise
identical to the corresponding clause from Definition 2.1.5.
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3.3 Constructing extensions

We now use this notion of mixed inheritability to characterize the credu-
lous, skeptical, and flexible extensions of a mixed network. The concepts
leading up to credulous mixed inheritance are drawn from [Horty, 1991];
the treatment of skeptical mixed inheritance is motivated by the same in-
tuitions as [Horty and Thomason, 1988], but differs slightly in details.

3.3.1 Fixed point definitions

Two of our three extension concepts—the credulous and flexible extensions—
are defined through fixed point equations, and we turn first to these.

The credulous extensions of defeasible nets were characterized as fixed
points of the defeasible inheritability relation. The credulous extensions
of mixed nets can be defined in exactly the same way, using the notion of
mixed inheritability: Definition 2.2.1 applies without change. The flexible
extensions of defeasible nets were characterized as fixed points of the re-
lation of defeasible permission. However, this relation of permission was
defined in terms of defeasible inheritability. If we appeal instead to mixed
inheritability, then Definition 2.2.5 as it stands yields a relation of mixed
permission, and we can characterize the flexible extensions of mixed nets as
the fixed points of this new relation: again, Definition 2.2.7 applies without
change.

Since, as we have seen, mixed inheritability is a conservative general-
ization of defeasible inheritability, this way of defining the credulous and
flexible mixed extensions results also in a conservative generalization of the
definitions for the defeasible case. In addition, it is easy to develop mixed
analogs to the Theorems 2.2.2 through 2.2.4 to characterize the credulous
and flexible mixed extensions.

Theorem 2.2.2 tells us that each acyclic defeasible net has an extension,
where the acyclic nets were defined as those without cyclic generalized
paths. In the present mixed environment, we need to broaden the notion
of a generalized path, and then adjust the notion of cyclicity used in this
definition. Formally, we will say now that each link is a generalized path;
and that if 7 is a generalized path, then so are 7 — p, 7 £ p, 7 = p, T <5 p,
and 7 < p. (Example: bothp A ¢ < r /£ s <t and a — p < ¢ are
generalized paths, but neither is a path.) Among the generalized paths, we
classify as defeasible those that contain at least one defeasible link. And we
say, finally, that a mixed net is acyclic if it is free from defeasible cycles—
that is, if it allows no defeasible generalized path whose initial node is
identical with its end node.

Given this new characterization of cyclicity, the statement of Theo-
rem 2.2.2 can be carried over into the environment of mixed nets without
change; in its new form, this theorem will follow as a corollary to Theo-
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rem 3.3.3. Notice that the new ideas necessary for incorporating this theo-
rem into the mixed environment generalize the earlier versions: in a purely
defeasible environment, these broader ideas classify exactly the same link
sequences described earlier as generalized paths, and they classify exactly
the same nets as cyclic. Therefore, the restatement of Theorem 2.2.2 using
these more general ideas serves only to broaden its applicability; it does
not change the original meaning of the theorem.

The point of Theorem 2.2.3 is that, in a purely defeasible environment,
a net allows an extension supporting conflicting statements only if that net
itself contains those conflicting statements. Again, the main idea behind
this theorem applies also to the mixed environment; but its generalization
results in a more complicated formulation, due to the more complicated
notion of conflict in mixed nets.

Theorem 3.3.1. An extension ® of a net I' supports both the statements
w(z,y) and T(z,y) iff (i) a link of the form w(z,u) belongs to T where
y € kr(u), and either (ii) a link w(z,v) belongs to T where y € Fr(v) or
(iii) a link @(x,v) belongs to T where v € kr(y).

This theorem suggests also a syntactic criterion for inconsistency: a mixed
net T can be classified as inconsistent just in case (i) holds, along with
either (ii) or (iii). A very general treatment of inconsistency in knowl-
edge bases containing mixed strict and defeasible information is presented
in [Goldszmidt and Pearl, 1991], and the general criterion for inconsis-
tency put forth there agrees with our simple syntactic criterion when it
is restricted to the language of mixed networks (Goldszmidt and Pearl,
personal communication).’

Finally, the statement of Theorem 2.2.4 on atomic stability, formulated
earlier only for defeasible nets, carries over into the mixed environment
without change.

3.3.2 Skeptical extensions

The skeptical extensions of defeasible nets were defined through the in-
teraction between two concepts: permission and degree. The agent was
imagined to step through the arguments in a net in the order of their de-
gree, accepting at each stage only the permitted arguments. As we have

9Notice that our syntactic criterion for inconsistency is correct only for networks that
do not contain strictly equivalent nodes. The net I' = {z = w,w = =,z — y,w 4 y},
for example, is intuitively inconsistent, and inconsistent also according to the theory of
[Goldszmidt and Pearl, 1991], but not according to our syntactic criterion. Inconsistency
for networks containing strictly equivalent nodes can, however, be defined by proxy. Such
a net can be classified as inconsistent just in case the network that results from when
its strictly equivalent nodes have been collapsed (as explained above, in the discussion
of mixed conflict) is itself inconsistent according to our syntactic criterion.
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seen, the notion of permission can easily be extended to the mixed environ-
ment. In order to characterize the skeptical extensions of mixed networks,
therefore, we need only develop an appropriate concept of mixed degree.

In the purely defeasible environment, the degree of a path was defined
as the length of the longest generalized path from its initial node to its
end node. Adapting to the present environment, we first recall from the
previous Section 3.3.1 that the notion of a generalized path has itself been
broadened, and second, we define the defeasible length of these new gen-
eralized paths as follows: if a generalized path does not contain a strict
initial segment, then its defeasible length is simply the number of defea-
sible links in the path; if a generalized path does contain a strict initial
segment, then its defeasible length is the number of defeasible links in the
path augmented by 1. (Example: the generalized path r — s = ¢t — u
has a defeasible length of 2, since it contains two defeasible links and no
strict initial segment; the generalized path p => ¢ =>r — s =>t — u is 3,
since it contains a strict initial segment along with two defeasible links.)
Using these ideas, we can now define the defeasible degree of a path ¢ in
a mixed net I' to be 1 if o is either a link or a strict path, and otherwise,
if 0 is a compound defeasible path, to be the greatest defeasible length
of any generalized path in ' from the initial node of o to its end node.
(Example: the defeasible degree of p — ¢ — r in the net T'1g is 3 since
the generalized path from p to r in I'1y whose defeasible length 1s greatest
isp—u—uv At s<r with a defeasible length of 3.) Again, we
must limit our consideration to acyclic mixed networks, so that the notion
of defeasible degree makes sense.

This notion of defeasible degree is a straightforward generalization of
the idea of degree from Section 2.2.2. However, it is not yet quite appro-
priate as a standard for specifying the order in which a skeptical reasoner
should consider the arguments from a mixed net; in the present environ-
ment, the appropriate standard must carry just a bit more information.
Basically, what we need to know of an argument path, in addition its de-
feasible degree, is whether or not that path possesses a strict end segment.
Therefore, we define the mized degree of a path o in a net I'—written
mdegp(o)—as a pair (n,v). The first component of the pair, n, tells us the
defeasible degree of ¢ in I'. The second component tells us, simply, whether
or not o possesses a strict end segment: by convention, we let v = 0 if &
does not possess a strict end segment, and v = 1 if it does. (Example:
mdegp, (p— ¢ — ) = (3,0), but mdegp (p —q —r=3s)=(3,1).) We
impose a lexical ordering on the mixed degrees by giving priority to the
first component: (n,v) < (n',v') iff either n < n’ or n = n’ and v < v'. The
idea behind this ordering is that defeasible degree is the primary standard
determining the order in which argument paths are considered—but of two
paths identical in defeasible degree, one with and one without a strict end
segment, the path lacking the strict end segment is considered first.
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Using this concept of mixed degree, together with the notion of permis-
sion appropriate for mixed nets, the skeptical extensions of these nets can

be defined as follows.

Definition 3.3.2. Where the sequence of path sets ®7, ®1, &3, &1, &3 &1 ...
is given by

o9 = T U {o: Str(o) = o and o constructed from T },
oL = @ U {0 : mdegp(c) = (n,1)and (I, ®2) o },
o0, = @, U {o: mdegr(oc)=(n+1,0) and (T, D)) }- 7 },

the path set | J,_, ®} is the skeptical extension of T.

n

The reasoning sequence defined here is supposed to exemplify the same
general principles as that of Definition 2.2.6, but of course it is more com-
plicated. At the first stage of the reasoning process, ®, the agent accepts
the individual links contained in a net along with each entirely strict path
that can be constructed from the links in T'; these strict paths can be ac-
cepted at once, because nothing can possibly interfere with them. After
that, the agent begins a process of interleaving strict with defeasible in-
ference. At each stage ®L, he will accept all the strict extensions of the
arguments he has already accepted; it turns out that each of these strict
extensions will be permitted. And then at each stage ®3 , he will consider
some of the paths (those of appropriate degree) that extend the arguments
he has already accepted by one defeasible step, and he will accept those
that are permitted in the context. The definitions of inheritability, and
so permission, are arranged in such a way that all the hard work occurs
at this stage; these definitions are built to “look ahead,” so that once the
agent has accepted an argument path ending in a defeasible link, he will
be able to accept any of its strict extensions without further thought.

Again, it should be clear that the characterization of mixed skeptical
extensions in Definition 3.3.2 is a conservative generalization of the pre-
vious Definition 2.2.6: not only is the mixed permission relation involved
a conservative generalization of the defeasible permission relation, but ap-
plied to purely defeasible nets, the present notion of mixed degree would
have the reasoner stepping through the argument paths in exactly the order
of their ordinary degree. Again, the sequence will actually reach its limit
quickly: if (n, v) is the largest mixed degree of any path in T, then &% will
be the skeptical extension of I'. And again, the appropriate mixed analogs
of Theorems 2.2.2 through 2.2.4 will characterize these extensions.

3.3.3 Iteration and fixed points

The credulous and flexible extensions of mixed nets were given a fixed
point characterization in Section 3.3.1. Here we show also how to char-
acterize these extensions iteratively, as limits of the appropriate reasoning
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sequences. We follow the train of thought set out at the end of Section 2.2.3.

As in the treatment of skeptical mixed inheritance, we suppose that
the agent moves through a monotone sequence ®9, ®1, @9 ®1 &3 @1 ... of
approximations to an extension; but here we adjust the sequence so that
it can approximate credulous or flexible extensions as well. As before, we
assume that at the first stage of the reasoning process, the agent accepts
each individual link and each strict path contained in the net: ®J = TU{o :
Str(c) = o and o constructed from T'}. Now let us introduce the operator
I, where

IN(T,®)={c : (I,®) o and mdeg(c) = (n,v) },

to aid in the definition of the successive stages. Again, these successive
stages interleave strict with defeasible reasoning. At the strict stages, the
agent simply adopts all strict extensions of the arguments he has already
accepted:

(*) @ =@ UILT,dp).

The defeasible stages are more complicated, since here the agent may have
to decide among conflicting defeasible arguments. The decision is subject
to different constraints depending on whether he is following a credulous,
skeptical, or flexible reasoning sequence; but again, the different versions
of the iterative rule can be cast in the the same general form. Using the
operators Cr and St defined in Section 2.2.3, each version requires that

(#%)  @pyy =P, UST[I (T, @)UY,

where W is specified as some conflict free subset of Cp[I, (T, ®;)]. The
credulous theory requires ¥ to be a maximal conflict free subset of CF[ISH
(T, ®})]; the skeptical theory requires ¥ to be the empty set. As before,
the flexible theory allows ¥ to be any subset of Cr[I} (T, ®})] at all that
is both conflict free and statement uniform, but the concept of statement
uniformity needs to be generalized to handle the complications introduced
by mixed nets. We will call a subset = of ¥ statement uniform in the mixed
net [ if it satisfies the following condition: for ¢ € ¥, whenever each path
in ¥ that conflicts in ' with o is itself conflicted in =, then o € =.
Following the pattern of Section 2.2.3, we will say that a sequence
@), @1, ®J, ®L @3, ®L, ... is a mizred reasoning sequence based on T if (i)
® =T U {0 : Str(c) = ¢ and o is constructed from T}, (ii) each set ®}
is formed from ®) through the iterative rule (x), and (iii) each set @9, is
formed from @ through some version of the iterative rule (). The reason-
ing sequence is credulous, skeptical, or flexible depending on the particular
version of (x*) that is adopted. Again, it should be clear that the skeptical
reasoning sequences defined here are identical to the sequences from Defini-
tion 3.3.2, through which the skeptical extensions are defined. In addition,
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the limit points of the credulous and flexible reasoning sequences coincide
with the these extensions.

Theorem 3.3.3. ® is a credulous extension of I' iff ® is the limit of a
credulous mixed reasoning sequence based on T'.

Theorem 3.3.4. & is a flexible extension of I' iff ® is the limit of a flexible
mixed reasoning sequence based on I'.

It follows as a corollary to these theorems that credulous and flexible ex-
tensions exists for acyclic mixed networks.

4 Discussion

This section explores some alternatives in the design of path-based in-
heritance theories, as well as some more general issues in nonmonotonic
reasoning suggested by these theories and their alternatives. We consider
the proper direction of argument, the nature of preemption, yet another
characterization of skeptical reasoning, and some plausible constraints on
translational interpretations. (Except for a brief mention of strict infor-
mation in the discussion of preemption, all of this discussion focuses on
purely defeasible nets; most of the problems presented by the study of in-
heritance reasoning can be seen more clearly in this environment.) Finally,
we consider a couple of additional concerns relevant to the application of
this work in knowledge representation.

4.1 Decoupling and stability

The definitions of inheritability considered so far are based on a forward
chaining notion of constructibility, according to which inheritable paths
are constructed from the bottom up. This approach to path construction
runs counter to the picture of inheritance networks as structures in which
properties are thought of as flowing downward in the graph, from more
general kinds to more specific kinds, and then finally to individuals. On
the other hand, the forward chaining notion of construction is appropriate
when one wants to emphasize the analogy between paths and arguments—
since arguments, at least as they are usually represented (say, by proof
sequences), tend to move from the beginning forward.

The forward chaining approach to path construction was first adopted
in [Horty et al, 1990]. Earlier, the approach had been explicitly con-
sidered and rejected in [Touretzky, 1986], on the grounds that it allowed
a phenomenon described there as “decoupling,” which seemed to present
difficulties. Let us say that a positive path x(z,y,0,z) is decoupled in a
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path set @ if w(y,0,2) ¢ ® (and likewise for negative paths). It is easi-
est to understand the difficulties involved in allowing extensions to contain
decoupled paths through a particular example, such as T'y3 (Figure 13),
from [Touretzky, 1986]. Given a notion of inheritability based on a for-
ward chaining construction—that is, according to the definitions of Section
2—this net allows as a credulous extension the path set T13U {n — r 4
p,a — n — q — p}. The extension is problematic, however, since it seems
to suggests that a is a p in virtue of being an n, while insisting that n’s
themselves are not p’s; the conclusions we draw about @ in this extension
are not properly coupled with the conclusions we draw about n.

Another problem resulting from the forward chaining treatment is il-
lustrated in T'y4 (Figure 14), which allows, according to the definitions of
Section 2, a credulous extension containing both the patha —n —r £ p
and the path b6 — n — ¢ — p. What is odd about this extension is that it
supports different conclusions about a and b—telling us that a is a p while
b is not—even though the original net gives us exactly the same informa-
tion about these two individuals. Again, it is precisely the possibility of
decoupling that is responsible for this oddity: if our conclusions about a
and b were both properly coupled to our conclusions about n, they would
also have to agree with each other.

Since the kind of problems illustrated by these two nets involve choices
among conflicting paths, they will not arise on the skeptical approach to
inheritance described in Section 2.2.2. Likewise, the problems do not seem
to be terribly serious for the approach to credulous reasoning that takes
the intersection of credulous extensions as the real object of concern, since
the worst of the peculiarities tend to be filtered out in the passage from
individual credulous extensions to their intersections. The problems do
appear to be serious, however, for the approach to credulous reasoning that
admits the individual credulous extensions themselves as legitimate states
of mind for an ideal reasoner. For this reason, Touretzky decided to rule
out the possibility of decoupling by basing his definition of inheritability
on the following double chaining treatment of constructible paths, rather
than the forward chaining construction of Section 2.

Definition 4.1.1 (Constructibility: alternative definition). A com-
pound positive path w(z1,...,z,) is constructible in the context (T', ®) iff
7(x1,...,2n-1) € ® and w(z2,...,2,) € ®. A compound negative path
m(x1,...,&y) is constructible in the context (I, ®) iff w(z1,...,20-1) € P
and T(za,...,2n) € .

It should be clear that the result of replacing the forward chaining notion of
constructibility with the alternative double chaining notion in the definition
of defeasible inheritability (Definition 2.1.5) is enough to enforce coupling.
No extension could then contain a path decoupled in that extension; and
in particular, the problematic extensions described above for I'y3 and T'14
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could no longer arise.

Unfortunately, the insistence on coupling, and the use of a double chain-
ing notion of constructibility to ensure coupling, themselves introduce fur-
ther difficulties, which can be illustrated by the net T'y5 (Figure 15). In
fact, if our definition of inheritability is based on the double chaining no-
tion of path construction, this net presents problems for both the skeptical
and the credulous approaches to inheritance.

On the skeptical approach, the unique extension of this net contains
neither n — r 4 p nor n — ¢ — p; in the face of conflicting evidence, the
skeptical reasoner does not conclude either that n’s are p’s, or that they
are not. However, the individual a is a particular n for which the reasons
for believing that n’s are not p’s is explicitly canceled. It seems intuitively
correct, therefore, that the reason for believing that n’s are p’s should apply
undisturbed in the case of a, and that the skeptical extension of this net
should contain the path @ — n — ¢ — p. The forward chaining notion of
constructibility allows such an extension, but since the path a — n — ¢ —
p 1s decoupled in the extension, the double chaining notion rules it out.
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On the credulous approach to inheritance, the problem presented by I'15
is of another sort: this net shows that adopting the double chaining notion
of path construction violates the condition of atomic stability described
in Theorem 2.2.4. Given double chaining, the net allows the set & =
Ti5U{n —r 4 p,a — n — q} as a credulous extension. This extension, of
course, supports the statement a — ¢; but since any credulous extension of
the net T'15U{a — ¢} will contain the path a — ¢ — p, this new net will not
allow a credulous extension supporting exactly the same set of statements
as ®. This violation of atomic stability seems especially serious once one
recalls, as pointed out in Section 2.2.1 of the present chapter, that much of
the original motivation for the credulous theory of [Touretzky, 1986] was
to avoid the kind of instability associated with shortest-path inheritance
reasoners.

Apparently, the treatment of coupling presents a choice between unattrac-
tive options. If we try to ensure coupling through the double chaining no-
tion of path construction, we sacrifice desirable conclusions in the case of
skeptical reasoning, and in the case of credulous reasoning, we violate the
condition of atomic stability. If we allow decoupling by adopting the for-



ward chaining notion of constructibility, we are forced also to accept certain
peculiar extensions, such as the extensions described above for I';3 and I'y4.
It may be possible, as Makinson (personal communication) has suggested,
to thread our way between these unattractive options—allowing decoupling
in situations such as I'i5, where it seems natural and well-motivated, but
not in situations such as [';3 and T'14, where the decoupling seems un-
motivated or gratuitous. However, a workable proposal has not yet been
developed.

4.2 Varieties of preemption

One of the most important features of an inheritance system is its treatment
of preemption—the idea that a reason for accepting a defeasible argument
should be overridden in any context offering a conflicting reason that is
both immediate and, in some sense, better or more specific. As we have
seen in Section 3.2, the notion of an immediate reason from defeasible net-
works needs to be modified in the presence of strict information, but these
modifications are uncontroversial. Unfortunately, the general framework of
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path-based inheritance also allows several options for interpreting the con-
ditions under which one reason can be thought of as better than another;
and it is not really clear which is correct, or whether different ones may be
appropriate for different reasoning tasks.

This section lists a few of the most prominent possibilities; we examine
them in a simplified setting, putting aside the complications involved in
generalizing the notion of an immediate reason to accommodate strict links.
Let us suppose that an agent is in the context (I', ®), where ® contains a
path w(z, o, u) and T contains a link 4 — y. The agent then has a reason to
accept the path w(z,o,u) — y; this path is constructible. Let us suppose
also, however, that & contains some path of the form w(z,r,v), where
v +4 y belongs to I'. In this situation, the agent is faced with reasons
for accepting conflicting arguments. Focusing on the positive case (the
negative case is symmetric), we describe some of the different conditions
under which the path (2, o, u) — y might be thought of as preempted by
w(x,7,v) £ y. Of course, there is no question here that v 4 y provides
immediate information contrary to that supplied by u — y. Therefore, the
different approaches to preemption result from different ways of explaining
how the node v must be situated with respect to x and u in order to count
as a preempting node; or alternatively, different ways of specifying the
conditions under which the link v /4 y might be treated as a better reason
than v — y for drawing conclusions about z.

4.2.1 Strict subsumption

One option is to suppose that v & y should count as a better reason than
u — y just in case the class of v’s is strictly subsumed by the class of u’s.
This idea leads to the following view of preemption.

e A positive path n(z, 0, u) — y is preempted in the context (I', @) iff
there is a node v such that (i) ® contains both a path of the form
w(x, 7, v) and a strict path of the form w(v, 7, u), and (ii) v /& y € T.

This option has not actually been incorporated into any of the defeasible
inheritance reasoners discussed in the literature, but it has been advocated
by a number of people in conversation, and also adopted in some of the
defeasible logics developed by [Nute, 1988].

The strict subsumption view of preemption has the advantage of ex-
treme simplicity. If a network reasoner is divided into separate components
for strict and defeasible reasoning, then on this view, all the specificity re-
lations among rules or reasons can be calculated in advance by the strict
component, before any defeasible inferences are drawn. Moreover, the view
accords with our intuitions in many of the central and most natural exam-
ples, where preemption usually does seem to depend on a relation of strict
specificity. According to the strict subsumption view, for example, preemp-
tion is ruled out in the original motivating case of I'y (the Tweety Triangle).
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But in fact, the informal interpretation of that net is represented more ac-
curately by T'16 (Figure 16), where again a = Tweety, r = penguins, q =
birds, and p = flying things; and here, since the class of penguins is en-
tirely included within the class of birds, the strict subsumption view tells
us correctly that r 4 p is a better reason than ¢ — p.

Unfortunately, there are cases in which preemption does seem to be
mediated by defeasible subsumption. For example, the nodes in I's can
be given the following interpretation, due to [Reiter and Criscuolo, 1981]:
a = Zack, r = high school dropouts, ¢ = adults, and p = people with
jobs. Since the class of dropouts is not entirely subsumed by the class of
adults, the strict subsumption view tells us that r 4 p and ¢ — p are
incomparable as reasons for drawing conclusions about Zack. Depending
on the treatment adopted for conflicts, this view would then lead either to
multiple extensions, with Zack employed in one and unemployed in another,
or else to skepticism concerning Zack’s employment. However, it seems
from an intuitive viewpoint that the path ¢ — r — ¢ — p should be
preempted, and that the net should have only one extension, in which
Zack is unemployed.

4.2.2 General subsumption

Because of examples like this, it is natural to suppose that preemption
can be based on defeasible as well as strict relations of subsumption. The
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easiest way of achieving this effect is by allowing the link v 4 y to count
as a better reason than v — y as long as v’s tend fo be u’s, even if some are
not. The idea is captured formally simply by dropping from the previous
proposal the requirement that the path from v to u should be strict.

e A positive path #(z, o, u) — y is preempted in the context (I', @) iff
there is a node v such that (i) ® contains both a path of the form
#(xz, m,v) and a path of the form w(v, 75, u), and (ii) v & y € T.

This treatment seems to be the most accurate way of incorporating formally
into the path-based framework the informal idea that reasons should be
prioritized according to specificity, and then in the case of conflict more
specific reasons should prevail.

As soon as we suppose that preemption can be mediated by defeasible
relations of specificity, everything becomes more complicated, but also more
interesting. It is no longer possible for the priority relations among rules to
be calculated in advance by the strict component of an inheritance reasoner,
and then simply fed into the defeasible component, since these priorities
themselves will now depend on the results of defeasible reasoning. The
system must calculate both defeasible conclusions and relations of priority
among rules as it goes along, and each calculation will appeal to the results
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of the other. Moreover, because priority relations depend on the results of
defeasible reasoning, and these results can vary in theories allowing multiple
extensions, it follows also that the priority relations among rules can vary
from extension to extension. Consider, for example, the net T'y7 (Figure 17).
Looking at the inner diamond, a credulous reasoner could choose to accept
either the path p — s 4 u, or else the path p — ¢t — v — ¢. In those
extensions in which he makes the first of these choices, the conflicting rules
p 7/ r and ¢ — r will be incomparable, and so the agent is free also to
choose between a — p 4 r and ¢ — ¢ — r; but if he makes the second
choice, the rule p 4 r is given a greater priority than ¢ — r, and so
a — q — r 1s preempted.

4.2.3 Off-path preemption

Although it may be the simplest, the general subsumption treatment is not
the only way of basing preemption on a defeasible relation of specificity.
Another option is to suppose that, in order to count v 4 y as a better
reason than u — y for drawing conclusions about a z, we should require
not only a path from v to u, but a path from x through v to u. For reasons to
be discussed shortly, this idea has been described as “off-path” preemption
in [Touretzky et al., 1987); it is the treatment incorporated into our official
Definition 2.1.4, but we will repeat it here for convenience.

e A positive path m(z,0,u) — y is preempted in the context (T', )
iff there is a node v such that (i) ® contains a path of the form
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w(x,m,v,m,u),and (ii) v A y € T.

This approach to preemption was first suggested in [Sandewall, 1986], and
advocated also [Stein, 1990]; a very similar treatment was suggested inde-
pendently by Cross (personal communication) to the authors of [Horty et
al., 1990], and adopted there.

Unlike the approach based on general subsumption, the off-path treat-
ment of preemption does not lead to a prioritization among rules that
applies to all nodes at once; instead, it leads to a prioritization that can
vary as we reason about one node or another. On this treatment, then, the
specificity relation that mediates preemption is not a two-place relation,
telling us simply that one rule provides better information than another;
it is a three-place relation, telling us only that one rule provides better in-
formation than another when we are reasoning about a particular node. In
addition, the off-path approach to preemption is intensional in a way that
the general subsumption treatment is not. According to the general sub-
sumption treatment, we can determine the priority rankings among rules
in a context once we know the statements (both strict and defeasible) sup-
ported in that context. According to the off-path approach, however, it is
not enough to know only the statements supported in order to determine
priority rankings among rules; in addition, we must know the particular
arguments through which these statements are supported.

The differences between these two approaches can be illustrated by
the net T'1g (Figure 18), where p = lawyers, ¢ = ambitious people, r =
accomplished people, s = people who are useful to society, and a = Ann.'°
Suppose we have reached the context (T'yg, ®) where ® =T13U{p — ¢ —
r}. According to the two-place view embodied in the general subsumption
definition, the rule p /4 s concerning lawyers is then supposed to represent
better information in general than the rule r — s concerning accomplished
people, since the context tell us through the path p — ¢ — r that lawyers
are a defeasible subset of accomplished people. Therefore, the path a —
r — s is preempted, and we must accept instead the argument a — p 4 s,
telling us that Ann is socially useless. According to the three-place view
embodied in the off-path treatment, however, the rule p /4 s is not supposed
to represent better information about Ann than the rule r — s, since,
although the net allows a path from a to p and a path from p to r, it does
not allow a path from a through p to r. We know that Ann is a lawyer,
that she is accomplished, and that lawyers are accomplished; but since we
cannot conclude that Ann is accomplished in virtue of being a lawyer, the
rule about lawyers does not provide better information than the rule about
accomplished people in our reasoning about this particular individual.

10This node labeling is adapted from an earlier example of Ginsberg’s (personal com-
munication), which displayed a similar attitude toward lawyers.
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4.2.4 On-path preemption

The final option we consider is the original treatment of preemption, due
to [Touretzky, 1986]. According to the previous approach, a path of the
form @ (z,0,u) — y is supposed to be preempted in the presence of a path
w(x, 7,v,Ta,u) and a link v 4 y. This treatment is described as off-path
because there is no requirement that the preempting node v should lie on
the initial segment w(z, o, u) of the path that it preempts. By contrast,
Touretzky’s original treatment is described in [Touretzky et al., 1987] as
“on-path” preemption. Strictly speaking, this is a misnomer, because the
treatment does not actually require v to lie on the path = (z, o, u); however,
it does require a very close relation between the preempting node and
preempted path.

Suppose w(z, o, u) has the form w(z1,...,2,). Following Touretzky, we
will say that the node v i1s an intermediary to this path in the path set
® if v = z; for some 1 < i < n, or else ® contains a path of the form
T(T1, . T, Y1, -, Yjs Tit1, - - ., Tn) for some 1 < 4 < n such that v = y;
for some 1 < k < j. We can think of the intermediaries to a path as those
nodes lying either on the path, or else “almost” on the path, in the sense
that they lie on another path like the original except that it interpolates a
longer argument between adjacent nodes of the original. We can illustrate
the idea by contrasting T'19 (Figure 19) with T'yq (Figure 20). Suppose we
are working against the background of a path set that contains at least
a — p — q. Consider first the path a — ¢ in I'yg. The node p is an
intermediary to this path, since it lies on @ — p — ¢q. Because this longer
path interpolates an argument between adjacent nodes of the original, it
can be thought of simply as expanding an argument that is abbreviated
there. Now consider the path @ — r — ¢ in I'sg. The node p is not classified
as an intermediary to this path. Since @ — p — ¢ does not place p between
adjacent nodes of the original path @ — r — ¢, it cannot be thought of as
expanding an argument that was implicit in the original; instead, it must
be considered as an entirely different line of reasoning.

Using this notion of an intermediary, the on-path treatment of preemp-
tion is given as follows.

e A positive path m(z,0,u) — y is preempted in the context (', )
iff there is a node v such that (i) v is an intermediary to the path
w(x, 0, u) in the path set ®, and (ii) v A y € T.

According to this treatment, the path a — ¢ — s will be preempted in
the case of I'1g, since p an intermediary. But a — r — ¢ — s will not be
preempted in I'sg, since p i1s not an intermediary there. This result about
['30 has been challenged by [Sandewall, 1986, primarily on the basis of a
node labeling which makes it seems intuitively that the patha — r — ¢ — s
should be preempted. However, an alternative labeling has been supplied
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in [Touretzky et al., 1987] that makes preemption seem less plausible in
this net; and the results of on-path reasoning have been defended also in
[Boutilier, 1989a).

On-path preemption is complicated; and apart from arguments based
on particular node labelings, it is sometimes hard to see any more general
rationale for it. Touretzky does not really try to motivate the details of
this treatment in [Touretzky, 1986]; and as we have seen, the the informal
idea that “more specific” information dominates seems to support various
other approaches, depending on whether specificity is interpreted as a strict
relation, or as a two- or three- place defeasible relation.'t In fact, the on-
path approach treats preemption as a highly intensional notion, sensitive

11What Touretzky actually does say to motivate his treatment of preemption is some-
what misleading. In Section 8.2 of [Touretzky, 1986], entitled “Inferential distance in 25
words or less,” he describes the idea as follows:

The essential intuition behind inheritance exceptionsis: subclasses override
superclases. Briefly stated, the inferential distance rule says that A may
view B as a subclass of C iff A has an inference path via B to C, and not
vice versa.

But these two sentences actually seems to support two different views. The first (sub-
classes override superclases) suggests what is described here as the general subsumption
treatment; the second seems to supports the off-path approach. Neither really describes
the more complicated on-path treatment that is adopted in the mathematical portions
of this work.
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to the detailed structure of the arguments through which statements are
supported. It seems to have little to do with any ordinary idea of speci-
ficity, and is best motivated by thinking about argument paths in a more
procedural way.

Suppose a path of the form w(z1,...,2,) — y is constructible in the
context (I', ®). In this case, because we have already accepted the argument
w(x1,...,2z,) telling us that z; is an z,, the link z,, — y gives us a reason
to accept the further conclusion that z1 is a y. In the process of coming to
accept the argument w(z1, ..., z,), however, we would first have to accept
each of its initial segments, telling us that z; is an zs, an z3, and so on.
Now suppose z; 4 y € I for some 1 < i < n. Then we cannot reach the
point where @(z1,...,2,) gives us a reason for accepting the conclusion
that z; is a y without first running into a reason for accepting instead the
conclusion that z; is not a y. This illustrates the main idea behind on-path
preemption: an argument path, which gives us a reason for accepting some
conclusion, is supposed to be preempted whenever the path cannot even be
constructed without first supplying a reason for a conflicting conclusion. If
we can think of the reasons supplied by an argument path as determined not
only by the nodes lying on that path, but also by all of its intermediaries,
then this statement describes the on-path treatment of preemption exactly.
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4.3 A fixed point approach to skeptical inheritance

The treatment of skeptical extensions presented earlier, in Section 2.2.2,
relies crucially on the notion of degree. Unlike the credulous and flexi-
ble extensions, which are characterized through fixed point equations, the
skeptical extensions are defined only through the iterative process of con-
sidering, and then accepting or rejecting, argument paths in the order of
their degree. Because of this, it may seem that skeptical inheritance is
fundamentally procedural in a way that credulous and flexible inheritance
are not.

It was pointed out in Section 2.2.2 that the inheritance definition pre-
sented there does not quite coincide with the original definition of skeptical
inheritance from [Horty et al., 1990]. In fact, this original definition also
relies on degree, also defining extensions through an iterative process; but
as 1t turns out, the use of degree in that paper was not essential. The
kind of skeptical extensions defined there could just as easily have been
given through a fixed point equation. This section presents a fixed point
approach to the skeptical extensions defined in [Horty et al., 1990], and
explains the difference between these and the extensions from Section 2.2.2
of the present chapter.

A key idea behind skeptical inheritance is the notion of a permitted
path. In Section 2.2.2, the permitted paths are characterized using the
notion of inheritability: a path is classified there as permitted if it is in-
heritable, but not opposed by any other inheritable path. In [Horty et al.,
1990], however, the permitted paths are defined in a way that bypasses the
concept of inheritability, relying instead on a characterization of what it
means for a path to be—let us say—protected in a context.

Definition 4.3.1 (Protection). A positive path w(z,0,u) — y is pro-
tected in the context (T, ®@) iff (i) z /& y ¢ T and (ii) for all nodes v such
that v 4 y € T and there is some path w(z,7,v) € ®, there is a node
z such that z — y € T and either (a) z = z or (b) there is some path
w(xz,m,2,7,v) € ®. A negative path n(z,0,u) 4 y is protected in the
context (I', @) iff (i) z — y & T and (ii) for all nodes v such that v — y € T
and there is some path #(z, 7,v) € @, there is a node z such that z A y €T
and either (a) z = z or (b) there is some path #(z, 7,2, 7, v) € ®.

Using this idea of protection, we can set out an alternative definition of
the permission relation, represented now by the symbol ' .

Definition 4.3.2 (Permission: alternative definition).

Case It ¢ is a direct link. Then (I',®) " o iff c € T.
Case II: ¢ is a compound path. Then (T', ®) )/ o iff

1. o is constructible in (T, @),
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2. o is protected in (T, ®).

We can then define the skeptical extensions, alternatively, as the fixed
points associated with this new relation of permission.

Definition 4.3.3. The path set ® is a skeptical extension (alternative
definition) of the net T iff

b={c:(T,®) 0o}

And we can show that the fixed points associated with this relation, unlike
the credulous or flexible extensions, are unique.

Theorem 4.3.4. If T is an acyclic net, there is exactly one set ® such

that ® = {o : (T, ®) }-' o}.

The skeptical extensions defined in this way coincide with the extensions
defined in [Horty et al., 1990]; and it is shown there that the analogs to
Theorems 2.2.2, 2.2.3, and 2.2.4 hold for these extensions.

Now, how does the approach to skeptical inheritance adopted here, and
in [Horty et al., 1990], differ from that of Section 2.2.27 The root of the
difference lies, of course, with the two notions of permission set out in
Definitions 2.2.5 and 4.3.2. Although very similar, these two notions do
not coincide. According to the earlier Definition 2.2.5, the permitted paths
are a subset of the inheritable paths; and so a path that is preempted, and
therefore not inheritable, cannot be permitted either. According to the
present Definition 4.3.2, on the other hand, even a preempted path can be
classified as permitted, if every path that preempts it is itself preempted.
To see the effect of this distinction, consider the net T’y (Figure 21), for
example; and imagine that the agent has reasoned his way to the context
(T21,®), with & = T9; U {2z — 2z — v — u}. According to Definition
2.2.5, the path £ — z — v — u — y cannot be permitted in this context,
since it is preempted. According to Definition 4.3.2, however, the path will
be permitted, since the path x — z — v 4 y which preempts it is itself
preempted by the path 2 — z — y.

Because of the differences in their treatment of permitted paths, the
two approaches to skeptical inheritance will at times lead to different ex-
tensions. In the case of I'y1, again, the skeptical extension given by the
current Definition 4.3.3 contains the path z — z — v — u — y, while
that given by the earlier Definition 2.2.6 does not (the two extensions are
otherwise identical). It may seem that this difference between these two
extensions is not terribly significant, since after all, they differ only in the
argument paths they contain, not in the statements they support: even ac-
cording to Definition 2.2.6, the skeptical extension of I's; will support the
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statement x — y, through the path x — z — y. As we have seen in Section
4.2, however, it is possible for the specificity relation that figures into pre-
emption to be defined in a way that is sensitive, not only to the statements
supported, but also to the paths through which they are supported. In par-
ticular, the off-path approach to preemption, which is incorporated both
into our official definition of inheritability and into the current notion of
protection, is one of those that determine specificity through paths rather
than statements alone; and so we should expect to find cases in which dif-
ferences in the paths through which a particular statement is supported
give rise also to differences in the set of supported statements.

An example is provided by the net T'as (Figure 22). According to the
treatment of Section 2.2.2, the skeptical extension of this net supports
neither ¢ — p not a 4 p. According to the present treatment, however,
the skeptical extension of this net contains the path ¢ — r 4 p, and so
supports a /4 p. The reason for this variance is that the present treatment
permits the path ¢ — r — s — ¢, so that it is possible to regard r
as providing more specific information than ¢ about @. On the previous
treatment, however, this path is not permitted, even though the extension
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nevertheless supports the statement ¢ — ¢ in some other way; and so a
skeptical attitude is forced between ¢ — r /4 p and a — ¢ — p.

A comparison between these two approaches to skeptical inheritance 1s
contained in [Touretzky et al., 1991].

4.4 Translational theories and meaning holism

We have concentrated in this chapter on direct theories of nonmonotonic
inheritance, which attempt to specify the appropriate consequences of a
network directly in terms of the network language itself. As noted ear-
lier, however, there is also considerable interest in translational or indirect
theories, those attempting to specify the consequences of a network by
interpreting it in some more standard nonmonotonic formalism. This sec-
tion describes some criteria of adequacy for such an interpretation. For
the sake of concreteness, and because we cannot consider the full range
of possible interpretations of networks into nonmonotonic logics, we focus
on the particular problem of modeling credulous inheritance in ordinary
default logic [Reiter, 1980]. As a translational task, this may seem espe-
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cially straightforward, since credulous inheritance and default logic are so
similar.

4.4.1 A mapping into default logic

Suppose that 7 is some general translation mapping each net T into a
default theory 7(T). Like the credulous accounts of inheritance, default
logic associates with a theory, in general, multiple extensions. In order
for 7 to count as an adequate translation, we must require some kind of
correspondence between the credulous extensions of a network I' and the
extensions of the default theory 7 (T') into which it is translated. Tt is a just
bit tricky to describe the correspondence exactly, however, because both
network and default extensions can contain items foreign to the other. The
extension of a net can contain paths supporting derived generic statements,
but there is no way to derive new default rules in default logic. Each
extension of a default theory will contain all the logical truths, but there
is nothing like these in network extensions.

In defining a reasonable notion of correspondence between network and
default extensions, therefore, we can require that they coincide only where
they overlap in expressive power. Let L represent the set of literals be-
longing to the background predicate calculus underlying the default logic,
where these literals include those of the network language. Of course, any
default extension E determines a subset £ N L of the literals; and if @ is
a net extension, let us take L(®) to be the subset of these literals sup-
ported by ®. (Example: if ® = {a — p,p — ¢ — r,a — p 4 ¢}, then
L(®) = {Pa,—~Qa}.) These literal fragments represent the total extent
of expressive overlap between the two kinds of extensions; and so we can
require as a condition of correspondence only that these fragments agree.
More exactly, where F is a network extension and ® is an extension for
some default theory, we will say that F and ® correspond just in case
ENL=L(d).

We can now formulate our first condition of adequacy for translation, a
correspondence condition, in the following way: where T' is a net and 7 (T')
is its interpretation into default logic, there should be some net extension
® of T corresponding to each default extension E of 7(T'), and there should
be some default extension F of 7 (T') corresponding to each net extension
® of I'. The first of these clauses can be thought of as saying that the de-
fault interpretation of a net is sound with respect to credulous inheritance;
the second that it is complete. It is not enough, however, to require for
adequacy only that a translation 7 should map each network into a sound
and complete interpretation in order to count as an intuitively adequate
translation of nets into default logic. It seems appropriate to require also,
as a second condition, that the translation should be modular, in the sense
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that 7(I' UA) = 7(T) U 7(A) for any nets ' and A.1? Ultimately, this

modularity requirement means that the translation of a net into default
logic can proceed link by link.

We will return shortly to the reasons underlying the modularity re-
quirement; but let us first consider a couple of candidate translations from
networks into default logic, in order to illustrate the difficulty of satisfying
both of these two conditions at once.

The first translation—say, 7;—is the most immediately obvious can-
didate. Where T is some network, 77(T) is defined as the default theory
(W, D) with

W={Pa:a—peTlT}U{-Pa:astpeTl},

D={(Pr:Qz/Qx):p—qeTtU{(Pz:~Qz/-Qz):p/ qeT}

This translation is clearly modular; and 1t yields a sound and complete
default interpretation for many simple nets, such as I'; (the Nixon Dia-
mond). Here, for example, 7;(T'1) is the default theory (W, D), where W =
{Qa, Ra} and D = {(Qz : Pz / Pz),(Rx : =Pz / ~Pxz)}. This theory has
two extensions: Ey = Th({Qa, Ra, Pa}) and Es = Th({Qa, Ra,—~Pa}).
The net Ty itself has two credulous extensions: ®; = 'y U{a — ¢ — p}
and &3 =T'1 U {a — ¢ 4 p}. And these different extensions stand in the
proper kind of correspondence: E1 N L = L(®1) and B2 N L = L(Py).

The translation 7; works well, then, in the case of the Nixon Dia-
mond. Tt works also (of course) for any net containing no conflicting paths
at all, and (interestingly) for nets containing only diamond-like conflicts,
no matter how deeply nested. However, as is well known, this simple
translation fails to give the appropriate meaning to nets in which pre-
emption comes into play.'> In the case of 'y (the Tweety Triangle),
for example, 7q yields the default theory (W, D) where W = {Ra} and
D ={(Rz : Qz / Qx),(Qx : Pz / Px),(Rx : -Pxz / ~Pxz)}. This the-
ory allows Th({Ra,Qa, Pa}) as one of its extensions; but since there is no
network extension of I'y to which this default extension corresponds, the
translation of this network is not sound.

One response to this problem—originally suggested in [Reiter and Cri-
scuolo, 1981], and developed in detail by [Etherington and Reiter, 1983]—is
to modify 77 in such a way that the reasons that might override the appli-
cation of a rule are built explicitly into the logical representation of that
rule. In the environment of I's, for example, the link ¢ — p would be

12 Translations satisfying this condition are sometimes described as local [Ginsberg,
1990].

13Because default logic is built on top of a classical logic, it also fails in the case of
nets containing conflicting literals, links of the form ¢ — p and a /4 p. But that is a
different sort of problem, and we ignore it here.
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translated, not by the normal default rule (Qz : Pz / Pz), but instead by
the semi-normal rule (Qz : [Pz A =Rz] / Pz). This new translation—call
it 75—does provide a sound and complete representation of I's in default
logic; when the normal translation of ¢ — p is replace by its semi-normal
variant, the anomalous extension allowed by 77 is avoided. However, 7,
does not meet the standards set out here either, since it fails to satisfy the
condition of modularity.

4.4.2 Modularity

Why is the modularity of a translational interpretation so important? If we
think of a translational interpretation as an attempt to specify the meaning
of a network—mapping the network language into a logical formalism for
which a precise notion of consequence is already defined—then the root
of the problem with non-modular translations is that they provide only a
holistic account of meaning. Holism is the view, in linguistics and the phi-
losophy of language, that meaning can properly be ascribed only to entire
theories, not individual sentences—or that the meaning of an individual
sentence can vary depending on the theory in which it is embedded. An
expression of the view remarkably apt to the present context can be found
in the following passage:

What has experiential import is the corporate body of state-
ments, and this import is not the simple sum of the experien-
tial imports of the individual statements. In ordinary language
as opposed to formalized language, this phenomenon is made
even more pervasive by what is sometimes called the “nonmono-
tonicity” of the logic of everyday discourse ....If I say, “Hawks
fly,” T do not intend my hearer to deduce that a hawk with a
broken wing will fly. What we expect depends on the whole
network of beliefs. If language describes experience, it does so
as a network, not sentence by sentence [Putnam, 1988, p. 9].

Of course, we are concerned here to specify the consequences of a net
rather than its “experiential import,” but if we read the passage with this
substitution in mind, it provides a good description of the idea underly-
ing non-modular translation. Although 73(T'2) does seem to represent the
meaning of network I's as a whole, it does not do so link by link. The rule
(Qz : [Px A—Rz] / Px) does not represent the meaning of the link ¢ — p,
since this link will be represented by another rule when it occurs in I'y, and
by other rules still when it occurs in other nets. Instead of representing the
meaning of this link, the rule captures, at best, the meaning of the link as
it occurs in this particular net.

In the present environment, where the project is to provide a semantics
for a network formalism, there are at least two reasons to avoid a holistic
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theory. The first of these is a problem about update that was pointed out
in [Touretzky, 1984]. Any knowledge representation system should be able
to accommodate updates in some natural fashion, but update can be a very
complicated process if the meaning of representational items is holistic. If
the translation of any particular link can depend on the entire network in
which 1t occurs, then when one updates a net by adding a new link, it is
not enough simply to update the translation of the net by supplementing
it with the translation of this new link. Because of the addition of the new
link, the overall environment in which the original links are embedded has
now changed, and so translations of these links may have to be adjusted.

As an example, consider the interpretation assigned by 75 to the net
T'y; preemption is not involved, and so it simply agrees with that of 7.
Suppose, now, that we update this net by adding the new link ¢ — r.
How should we construct the default theory that results from this net;
what is 73(T';1 U {¢ — r})? Because 73 is not modular, it is not enough
simply to supplement 73(T';) with the translation of this new link—(Qz :
Rz / Rz). Instead, we have to realize that in the new environment the
original interpretation of r — p is no longer adequate; because of the
addition of the new link, the interpretation of this original link must now
be changed to (Rz : [-Pz A—Qx] / =Pz). Although the update operation
defined on the net was quite simple—just a matter of adding a new link—
the corresponding operation on the default theory is more complicated.

A second reason for avoiding non-modular, or holistic, interpretations
of network formalisms can be seen by thinking about the original point
of supplying a semantic analysis for these systems. Originally, we needed
the analysis because, at least in certain cases, it was hard to see exactly
what the networks meant, what conclusions they ought to support; and
the semantics was supposed to tell us that. In order for a translational
interpretation to do this job, however, the task of mapping the network
formalism into the language for which the semantics is actually defined
must be routine and mechanical; and in particular, the mapping cannot
itself rely on insights about the meaning of the network, since that is what
the semantics is supposed to provide.

A modular translation is the ideal. Here, the translation of a link in
a network cannot possibly rely on insights about the meaning of that net-
work, since the link has the same translation no matter where it occurs.
Non-modular strategies, however, tend to require a fairly sophisticated un-
derstanding of the meaning of a net simply to achieve the proper trans-
lation; and in the case of theories like default logic, where the priorities
among conflicting defaults that represent preemption relations in network
must be coded explicitly, there is a very general reason for this. As we
have seen in Section 4.2, the preemption relations in a network can them-
selves depend on the results of defeasible reasoning (which itself may be
influenced by other preemption relations, themselves established through
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defeasible reasoning, and so on). In order for the preemption relations from
a particular network to be encoded properly into a default theory, therefore,
all of the defeasible reasoning necessary to establish these relations must
be carried out before the translation takes place. This kind of reasoning, of
course, can be arbitrarily difficult; and it can embody all the problematic
features that suggested in the first place the need for a precise semantic
theory to specify the meaning of network.

To 1illustrate this point about the dependence of non-modular transla-
tion on prior defeasible reasoning, consider the interpretation using semi-
normal defaults even of a simple net like the earlier I';7—where, as we have
seen, the priority relations among rules vary from extension to extension.
In fact, all of the generic links in this net can be represented through nor-
mal defaults, except for the link ¢ — r. How should we translate this link?
Should it be represented simply as (Qz : Rz / Rz), which would place it
on a par with the conflicting link p /4 r, or should it be represented as
(Qz : [Re A—Pz] / Rx), which would give the other link priority. The an-
swer is that neither of these candidates is correct. According to any of the
treatments of preemption that rely on defeasible specificity, the rule p £ r
is supposed to be preferred to ¢ — r only in those extensions that contain
the path p — t — u instead of the conflicting p — s /4 u. In order to cap-
ture the intended meaning of the link ¢ — r in this environment, therefore,
we must represent it through a rule like (Qz : [Rz A (Uz D - Pz)] / Rz),
giving priority to the link p / r only for those objects that we have decided
are u’s.

With this rule in place, the translation of I'17 into default logic does
provide a sound and complete interpretation of this net. The translation
can be said to give us the meaning of the net, but only in a very weak
sense. Since the interpretation is non-modular, we could not just translate
the individual links in a routine way, and then let the logic tell us what
conclusions were contained in its different extensions. Instead, we had to
have a pretty firm idea already of the conclusions contained in its different
extensions to begin with, simply in order to translate simply net properly.
We did not use the translation to discover the network’s meaning; we dis-
covered its meaning through some other kind of reasoning, and then simply
designed the translation to yield the right results.

4.4.3 Other translations

Although we have focused here on a particular strategy for mapping in-
heritance networks into a particular logic, the kind of problems described
arise more generally. For example, Etherington [Etherington, 1987; Ether-
ington, 1988] suggests a way of modifying the mapping into default logic in
order to meet Touretzky’s criticisms; but the modified mapping seems also
to run afoul of the modularity requirement. Likewise, it may seem possible
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to code inheritance networks into prioritized circumscriptive theories [Lif-
schitz, 1985], but it hard to see how this could be done in a modular way.
In the case of circumscription, the problem does not lie with translation of
the particular links, which is uniform, but with the prioritization of abnor-
malities in the circumscription schema. Again, these priorities may have to
be rearranged as the knowledge base is updated; and again, the arrange-
ment must be based on pretheoretic intuitions. We cannot use the meaning
ascribed to a net by prioritized circumscription to get the priorities, since
we need the priorities before the theory can be applied.

With only a few exceptions, such as [McCarty and Cohen, 1990], re-
searchers working in this area seem now to have accepted the modularity
requirement as a criterion of adequacy for a logical interpretation of in-
heritance networks. There have recently been a number of proposals for
interpreting networks into more expressive nonmonotonic formalisms that
address this requirement, at least; and several are claimed to satisfy it.

Perhaps the most interesting from a mathematical perspective is the in-
terpretation in [Gelfond and Przymusinska, 1990] of inheritance networks
into autoepistemic logic; this paper contains a number of illuminating the-
orems and a useful discussion of the principles underlying inheritance rea-
soning from a more general point of view. A different kind of mapping,
into a simplified default logic, is set out in [Ginsberg, 1990]; this interpre-
tation is especially provocative because, unlike the direct theories described
here, and unlike most other logical interpretations, it allows contrapositive
reasoning based on defeasible information.

Interpretations of inheritance networks within the framework of logic
programming are set out in [Grégoire, 1989a; Grégoire, 1989b] and in [Lin,
1991]. Grégoire relies on theories of negation for stratified logic programs,
while Lin appeals only to the simple negation as failure rule. Grégoire’s
work 1illustrates the points emphasized here about the need for a pretheo-
retic analysis of preemption to guide logical interpretation. He derives the
priorities that condition his interpretation of a particular network from an
application to that network of a direct theory of skeptical inheritance; and
so it can be argued that it is this direct theory that constitutes the core
of his analysis. However, Grégoire is explicit about what he is doing, and
he supplies some interesting arguments to justify the strategy; the basic
idea is that a translation of inheritance nets into the language of logic pro-
gramming or default logic can be valuable even if it does depend on the
results of some direct theory, because it can then be used to explain the
meaning of the inheritance net to person or system that understands only
logic programming or default logic.

An interpretation of inheritance based on circumscription is set out in
[Haugh, 1988], which develops some earlier ideas from [McCarthy, 1986]
Another interpretation based on circumscription is presented in [Krish-
naprasad et al., 1989a). This work, along with [Krishnaprasad and Kifer,
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1989] and [Krishnaprasad et al., 1989b], is based on results obtained in
[Krishnaprasad, 1989].

Another interesting interpretation is that of [Padgham, 1989b], which
interprets inheritance networks within a lattice of concepts supplemented
with additional operators allowing for the representation, for example, of
typical instances of those concepts; portions of this work have appeared as
[Padgham, 1988] and [Padgham, 1989a].

There have recently been developed several more generally expressive
nonmonotonic formalisms that, like inheritance theories, embody implicit
preferences between conflicting defaults, often based on specificity (or log-
ical strength) of the antecedent. These include the argument systems of
[Loui, 1987], [Nute, 1988], and [Pollock, 1987]; the preference based condi-
tional logics of [Kraus et al., 1990]; the conditional logics of [Boutilier, 1992]
and [Delgrande, 1987; Delgrande, 1988]; and a logic proposed in [Geffner,
1989] that is motivated by probabilistic considerations. To date, none of
these logics has been applied in any general analysis of inheritance network;
but it would be very interesting to compare the independently motivated
preference criteria developed in these theories with those at work in the
direct approaches to inheritance. A slightly different way of relating inher-
itance networks to more expressive logics with implicit preference among
defaults is explored in [Horty, 1992]. Here, instead of interpreting nets into
a previously existing logic, it is shown that the ideas found in direct in-
heritance theories can themselves be generalized to apply to a full logical
language; the perspective of the paper is that 15-A inheritance can then be
thought of simply as the implicational fragment of this language.

Finally, a number of authors have recently investigated probabilistic
and statistical interpretations of the information contained in defeasible
inheritance networks. For example, [Bacchus, 1989] uses a simple proba-
bilistic approach to define a system, unlike any of those considered here,
in which chaining can proceed over only a single defeasible link. Pearl’s
e-semantics is deployed in [Geffner and Pearl, 1987] to interpret positive
and negative defeasible links as expressing probabilities arbitrarily close to
one or zero; the interpretation supports chaining over multiple defeasible
links. And [Neufeld, 1991] deploys a probabilistic interpretation to discuss
some of the issues raised in [Touretzky et al., 1987].

4.5 Implementational concerns

As explained in the introduction, this chapter has presented inheritance
theory from a biased standpoint, emphasizing conceptual issues over the
kind of concerns that might arise from an application of the work to knowl-
edge representation. As a partial remedy to this bias, we conclude simply
by providing some pointers to the literature on a couple of the concerns
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most relevant to applications—complexity and expressiveness.

4.5.1 Algorithms and complexity

The properties of algorithms for nonmonotonic inheritance reasoning have
been a matter of concern since the subject was first introduced. Even the
very early [Minsky, 1974] was motivated by the idea that the incorporation
of default information into a knowledge base could simplify the process of
information retrieval. And Fahlman’s dissertation [Fahlman, 1979], which
was inspired by Minsky’s work, contained an informal argument that, in
ordinary cases, the parallel inference algorithms described there could be
expected to perform in time linear in the depth of the knowledge base.

On the basis of his formal reconstruction of Fahlman’s ideas into a
credulous theory of inheritance, Touretzky was able to show that that
Fahlman’s argument was correct in special cases, but problematic for net-
works allowing multiple extensions. As a remedy, he proposed a technique
by which, given an extension, a network could be conditioned in such a
way that algorithms much like those described by Fahlman would lead to
the appropriate results in linear time; this work is described in [Touretzky,
1986, Chapter 4], which also introduces a notation to specify the marker
propagation algorithms envisaged by Fahlman for carrying out inheritance
reasoning on a parallel machine.

In the case of skeptical inheritance, tractability for the definition pre-
sented here in Section 4.3, and originally in [Horty et al., 1990], was estab-
lished in that paper.!* The paper describes a parallel marker propagation
algorithm that answers queries of the form “Is z a y?” in a time roughly
equal to O(D(z,y) + C(z,y)), where D(z,y) is the depth of the network
once it 1s “trimmed” so that links irrelevant to the query at hand are ig-
nored, and and C(z, y) is the number of conflicts contained in the trimmed
network. In realistic knowledge bases, where conflicts are expected to be
infrequent, the time for this query algorithm approaches the purely parallel
O(D(z,y)), which approximates Fahlman’s original intuition.

A different approach to skeptical inheritance, discussed here in Sec-
tions 2.2.1 and 2.2.2, identifies the skeptically supported conclusions of a
network with those conclusions supported by each of its credulous exten-
sions. If we put aside the matter of preemption, then the results con-
cerning normal default theories from [Kautz and Selman, 1991] can be
seen as providing a polynomial algorithm for computing skeptical inher-
itance in this sense. Subsequently, [Selman, 1990] showed that adding
almost any form of preemption leads to intractability for this form of skep-

14The algorithm there relies on certain idiosyncratic features of the inheritance def-
inition contained in that paper that are missing from the definition presented here in
Section 2.2.2. However, Selman (personal communication) has established the tractabil-
ity of the definition from Section 2.2.2.
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tical reasoning. One exception, however, is the reasoner of [Stein, 1989;
Stein, forthcoming], which describes a very interesting labeling algorithm
for computing the intersection of credulous extensions that incorporates
some notion of preemption and does run in polynomial time.

It is shown in [Selman and Levesque, 1989] that, for a variety of path-
based inheritance definitions, including at least those of [Touretzky, 1986]
and [Horty et al., 1990], the question of tractability hinges on the kind
of chaining involved in path construction. Definitions based on the stan-
dard, upward chaining notion of path construction presented here in Sec-
tion 2.1 lead to tractable query algorithms; those definitions based on the
alternative, double chaining notion presented in Section 4.1 lead to query
algorithms that are NP-complete. These surprising results, which are de-
scribed more fully in [Selman, 1990], show that the issues discussed in
Section 4.1 from a conceptual point of view have important computational
consequences as well.

All of the formal work on complexity mentioned so far concerns purely
defeasible inheritance networks. Inference in strict 1S-A networks is trivial;
a purely parallel algorithm that draws conclusions in accord with the defi-
nition of [Thomason et al., 1986) is provided there. However, as usual, the
matter becomes much more complicated with strict and defeasible informa-
tion are mixed together, and little is currently known about the complex-
ity of reasoning in this case. Some preliminary results in [Touretzky and
Thomason, 1990] indicate that a low order polynomial algorithm is still
available; but the particular algorithm presented there was not verified for
correctness, and has revealed some problems subsequent to publication. It
is established in [Goldszmidt and Pearl, 1991], however, that at least the
consistency of a mixed net can be established rather easily—in only O(E?)
time, where F is the number of links in the net.

4.5.2 Expressive enhancements

In fact, there have been only a few applications within actual knowledge
representation systems of the kind work described in this chapter on the
semantics of nonmonotonic inheritance reasoning. There are, of course, a
variety of knowledge representations systems that incorporate monotonic
inheritance (including KL-oNE and its descendants), and any number of
systems relying on nonmonotonic inheritance of an unprincipled kind; but
the applications of principled nonmonotonic inheritance have been sparse.'®

150ne example is the work of [Rector, 1986], who has built a sizable knowledge base
of medical information organized as an inheritance hierarchy; the query algorithms he
defines rely on preemption to handle exceptions to inherited information, but there are
severe limitations on the structure of the knowledge base. Another example is the recent
use of nonmonotonic inheritance in representing grammatical information; a description
along with references appears in [Thomason, 1991].
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A major reason for this is that most of the defeasible formalisms for
which semantic theories have actually been developed are extremely limited
in their expressive resources. Fahlman originally envisaged in [Fahlman,
1979] a richly expressive network formalism. In order to focus on the se-
mantic problems presented by nonmonotonic inheritance in a constrained
environment, however, Touretzky limited his attention in [Touretzky, 1986]
only to the defeasible 15-A fragment of Fahlman’s rich formalism; and most
of the theoretical research on nonmonotonic inheritance that has appeared
since then has dealt only with this limited language or very modest exten-
sions.

For the purposes of realistic knowledge representation, of course, the
restriction to 1s-A links is insufficient: there is just not much that can
be said in such a limited language. In retrospect, it seems to have been
a good idea to focus research initially on this simple fragment, since so
many interesting problems can be seen so clearly there. But the past few
years have done much to articulate our semantic understanding of these
problems; and at present, the most important research objective in the
theoretical study of nonmonotonic inheritance should be to broaden the
scope of coverage to include languages with expressive resources more suit-
able to realistic knowledge representation. Some work along these lines
has already started. For example, as a prelude to incorporating defeasible
information into these structures, [Thomason and Touretzky, 1992] investi-
gates the theory of strict networks containing roles and relations. And 1t is
shown in [Horty and Thomason, 1990] that the kind of theories described
in the present chapter can be extended to provide a semantics for defeasible
networks containing complex nodes defined through boolean operations.
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A Proofs of selected theorems

Theorem 2.2.8. ® s a credulous extension of an acyclic net T iff & 1s
the limit of a credulous reasoning sequence based on T.
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Proof. The proof has two parts.

Part 1. Let ®q,®,,... be a credulous reasoning sequence based on I
We show that ® = | J_, ®, is a credulous extension of T

Part 1A: if o € ® then (T',®) |~ 0. Suppose o € ®. If ¢ is a link, the
definition of the sequence tells us that ¢ € T'; and so (T',®) |~ 0. Next,
let o be a compound path, with deg(6) = n+ 1. Then the definition of
the reasoning sequence tells us that o € ®, 41, and so (T, ®,,) ) o—that
is, o is constructible but neither conflicted nor preempted in the context
(T, ®,). Since o is constructible in (T, ®,), it is plainly constructible also
in (T, ®). To show that (T', ®) )~ o, we show that ¢ is neither conflicted nor
preempted in this context.

Suppose ® contains a path 7 conflicting with . Then degp(r) =
degr(o), and so 7 € ®,,41. Moreover, the definition of the reasoning se-
quence tells us that both ¢ and 7 are first introduced at ®,41; that is,
both ¢ and 7 belong to ®,41 —®,. But this is impossible, since ®,, 41 — P,
must be a conflict free set.

Tt is easy to see that ¢ cannot be preempted in (T', ®) either. Let o
be a positive path of the form @ (2,01, u) — y (the argument for negative
paths is similar), and suppose it is preempted in (', ®). Then there is a
node v such that v £~ y € T and either v = z or w(z, 71, v, 72, u) € ®. Since
degr(o) = n+1, we know that degp(w(z, 71, v, 72, u)) = degp(w(z, 01, u)) <
n. The definition of the reasoning sequence then tells us that either v = z
or w(x,m,v,T,u) € ®,, and so ¢ must be preempted already in (T, ®,),
contrary to assumption.

Part 1B: if (T, ®) j~ o then o € ®. Suppose (', ®) ) o. If 7 is a link,
then ¢ € T'; but I' = ®&; C ®. Next, let o be a compound path. Then o
is constructible but neither conflicted nor preempted in the context (T, ®).
Suppose o is a positive path of the form 7(z, 01, u) — y (the argument for
negative paths is similar), and that degp(c) = n + 1.

Since o is constructible in (T', ®), we know that #(z,01,u) € ® and
u — y € I'. However, degr(n(z,01,u)) < n, and so the definition of the
reasoning sequence tells us that #(z,01,u) € ®,. So ¢ is constructible
also in (T, ®,,). Moreover, ¢ cannot be conflicted or preempted in (T, ®,,),
since it is not conflicted or preempted in (T, ®), and ®,, C ®. Therefore
(T, ®,) o, and so ¢ € I,41(T,®,). From this, we can conclude that
o€ P,y C O For suppose 0 & $,,41. Then since &, 41 — P, is a maximal
conflict free subset of I, 41(T, ®,), there must be some 7 € ®,,11 — P, that
conflicts with o. But then 7 € ®, and so ¢ is conflicted in (T, ®), contrary
to assumption.

Part 2. Let ® be a credulous extension of I'. We show that there
exists a credulous reasoning sequence @1, ®,, ... based on I such that ® =
U.Z, ®,. The sequence is defined by taking ®; = I' and

D11 =P, U{oc €D :degr(c) =n+1}.
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Since it is clear that & = UZO:1 ®,,, we need only show that ®,®,,...
is a credulous reasoning sequence; and for this it is enough to establish
that 2 = {o € ® : degp(¢) = n + 1} is a maximal conflict free subset of
Int1 (T, @,).

We show first that Z is a subset of I,41(T, ®,). Take o € Z. Since we
know from the definition of Z that degp(¢) = n+ 1, it is necessary only to
show that (T, ®,) ~o. Since E C @, we have ¢ € ®; and so (T, &) o, since
® is an extension. Let ¢ have the form w(z, 01, u) — y (negative paths are
similar). Since o is constructible in (T, ®), we know that w(z,0q1,u) € @
and u — y € T. But degp(n(z,01,u)) < n, and so the definition of the
sequence tells us that 7(z,01,u) € ®,. Therefore o is constructible also
in (T, ®,), and since ®, C @, it is neither conflicted nor preempted. So
(T, ®,) ~o.

Next we show that = is conflict free. Suppose it contains two conflicting
paths. Since = C @, both of these paths must belong to ®; but then
Theorem 2.2.3 tells us that the paths must both be direct links, in which
case they would both have a degree of 1, and could not belong to =.

Finally, we show that = is maximal among the conflict free subsets
of In41(T,®,). Suppose o € In41(T,®,), but that ¢ ¢ Z. Since ¢ €
I41(T, ®,), we know that ¢ is inheritable—constructible, but neither con-
flicted nor preempted—in the context (T', ®,). Since o & =, it follows that
o ¢ ®; and so since ® is an extension, we know that ¢ is not inheritable in
the context (T', ®). Because o is constructible in (T', ®,), it must be con-
structible also in (T', ®). Moreover, an argument based on degree similar to
that in Part 1A of this proof shows that ¢ cannot be preempted in (T, ®).
Therefore, ¢ must be conflicted in this context; there must be some path
7 € ® that conflicts with ¢. But in this case, we have degp(7) = degp(0),
and so 7 € Z. Hence = is maximal. [ |

Theorem 2.2.9. ® is a flexible extension of an acyclic net T iff ® is the
limit of a flexible reasoning sequence based on T'.

Proof. The proof has two parts.

Part 1. Let @1, ®,, ... be a flexible reasoning sequence based on I'. We
show that & = Uzozl ®,, 1s a flexible extension of T'.

Part 1A: if o € ® then (T',®) |~ 0. Suppose o € ®. If ¢ is a link, the
definition of the sequence tells us that ¢ € T'; and so (T', ®) }~ 0. Next, let
o be a compound path, with degr(¢) = n+ 1. Then the definition of the
sequence tells us that o € ®,,41, and so (T', ®,,) - o—that is, we have

(1) (T, @) |~ o,

(2) there is no path 7 such that (T', ®,) 7 and 7 conflicts with
.
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From (1) we can conclude that

(1) (T, @) ~ o,

by an argument analogous to that in Part 1A of the proof of Theorem
2.2.8. Now suppose that there is some path 7 conflicting with o such that
(T, ®) b . By an argument similar to that in Part 1B of the proof of
Theorem 2.2.8, we can then conclude that (T', ®,) |~ 7; but this contradicts
(2). Therefore we have

(2') there is no path 7 such that (T', ®) ) 7 and 7 conflicts with

05

and so (T', @) - 0.

Part 1B: if (T, ®) }- o then ¢ € ®. Suppose (T, ®) }- o. If o is a link,
then ¢ € T'; but I' = ®&; C ®. Next, let ¢ be a compound path, with
deg(o) = n+ 1. Then we have

(1) (T, @) o,

2) there is no path 7 such that (T', ®) |~ 7 and 7 conflicts with
.

From (1) we can conclude by an argument similar to that in Part 1B of the
proof of Theorem 2.2.8 that (T', ®,) o, so that o € I, 41(T, ®,,). Now there
are two cases to consider. First, suppose that I, +1(T, ®,) contains no argu-
ment conflicting with . Then it follows at once from the definition of the
reasoning sequence that ¢ € ®, 11 C ®. Next, suppose there is an argument
T € I41(T, ®,) that conflicts with o. Then we know (T, ®,,) |~ 7—that is,
7 is constructible, but nether conflicted nor preempted in (T, ®,}—but (2)
tells us that we cannot have (T, ®) |~ 7. Since 7 is constructible in (T, ®,),
it must be constructible also in (I', ®); and an argument similar to that in
Part 1A of the proof of Theorem 2.2.8 allows us to conclude that 7 cannot
be preempted in (I, ®). Therefore, 7 must be conflicted in (T', ®); there
must be some argument ¢’ in ® that conflicts with 7. Since ¢’ conflicts
with 7, we have degp(¢’) = degp(7) = degp(6) = n+ 1. So o' € $py1.
Moreover, since ¢’ and o both conflict with 7, they have to support the
same statement. Therefore, since ®, 41 — @, is a statement uniform subset
of I,41(T, ®,), we must have o € $,,41 C P as well.

Part 2. Let ® be a flexible extension of I'. We show that there exists a
flexible reasoning sequence ®1, @5, ... based on I such that ® = Uzozl P,,.
As before,the sequence is defined by taking ®; = I' and

D11 =P, U{oc €D :degr(0) =n+1}.

Since it is clear that ® = [ J°_, ®,,, we need only show that ®;,®,,...is

n=1
a flexible reasoning sequence; and for this it is enough to establish that
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E={c€ ®:degpr(c) = n+ 1} is a conflict free and statement uniform
subset of I, 41 (T, @,).

The arguments that Z is a subset of I,,41 (T, @) and that it is conflict
free are identical with the analogous arguments in Part 2 of the proof of
Theorem 2.2.8; so we need only show that = is statement uniform. Suppose
that 01,02 € I41(T, ®y), where these two paths support the same state-
ment. In that case, of course, we have degp(o1) = degr(o2) = n+ 1, and
both (T, ®,) )~ o1 and (T, ®,) ) o9—both paths are constructible in this
context, but neither conflicted nor preempted. The paths o1 and o3 must
then be constructible also in (T, ®), and an argument like that in Part 1A
of the proof of Theorem 2.2.8 shows that they cannot be preempted there
either. Moreover, since these paths support the same statement, each will
be conflicted in (T, ®) only if the other is; and so we have (I', ®) |~ oy iff
(T, ®) ) o2. Again, since these paths support the same statement, any
path 7 such that (I', ®) |~ 7 conflicting with either will conflict also with
the other. Therefore, we have (T', ®) b o1 iff (I, ®) |~ 03. Since ® is a
flexible extension, it follows from this that o1 € ® iff 9 € ®. From this we
can conclude also that o1 € Ziff o2 € Z; and so = is statement uniform. W

Theorem 3.3.3. ® s a credulous extension of I' iff ® is the limit of a
credulous mized reasoning sequence for I,

Proof. The proof has two parts.

Part 1. Let 9, ®1, ®% ®1 ... be a credulous mixed reasoning sequence
based on I'. We show that ® = | J,_, ®), is a credulous extension of T.

Part 1A: if ¢ € ® then (T, ®) |~ 0. Suppose ¢ € &. We consider four
cases, depending on the structure of . f o is a defeasible link, the definition
of the reasoning sequence tells us that o € I, and so we know from Case
C-T of the inheritability definition (Definition 3.2.3) that (I',®) 0. If &
is a strict path, the definition of the reasoning sequence tells us that o
is constructible from the links of I' and so we know from Case B of the
inheritability definition that (T', ®) |~ o.

Next, suppose ¢ is a compound defeasible path that does not possess
a strict end segment. Then mdegr(o) = (n + 1,0); so the definition of the
reasoning sequence tells us that ¢ € ®)_;; and so (I', ®;.) )~ c—that is, &
is constructible but neither conflicted nor preempted in (I, ®!). Since o is
constructible in (T', ®L), it is plainly constructible also in (', ®). We show
that o is neither conflicted nor preempted in this context, from which it
follows by Case C-II of the inheritability definition that (T, ®) |~ o.

Suppose @ contains a path 7 conflicting in [ with o. Note first that the
defeasible degree of 7 must agree with that of o, since any two compound,
defeasible paths that conflict in a mixed net must have the same defeasi-
ble degree in that net. Now suppose 7 has no strict end segment. Then
mdegp(7) = (n+ 1,0), and so 7 € <I>2+1. Moreover, the definition of the
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reasoning sequence tells us that both ¢ and 7 are first introduced at <I>9L+1;
that is, both o and 7 belong to ®3,, — ®.. But this is impossible, since
) ., — ®. must be a conflict free set. Now suppose 7 does possess a strict
end segment. Then mdegp(7) = (n+1, 1); so the definition of the reasoning
sequence tells us that 7 € ®};; and so (I', ® ;) )~ 7. From this we can
conclude by Case A of the inheritability definition that Def(7) € <I>2+1; and
of course, mdegp(Def(7)) = (n+ 1,0), so that Def(r) is first introduced at
@) ;. It follows from the definition of conflict (Definition 3.2.1), however,
that Def(7) itself conflicts with o, since 7 does. Therefore, Def(7) cannot
be introduced at ®%_,, since 7 ; — &, must be conflict free.

It is easy to see that ¢ cannot be preempted in (T, ®) either. Let o be a
positive path of the form 7(z, o1, u) — y (the argument for negative paths
is similar), and suppose it is preempted in (I', ®). Then there exist nodes
v,m such that v = z or w(z,71,v,72,u) € ® and either (a) v — m €T
and m € R(y) or (b) v & m €T and m € k(y). It is clear, however, that
mdegp(7(z, 71, v, 72, u)) = mdegp(w(z,01,u)) < (n,1). Therefore, either
v =2 or n(x,m,v,72,u) € ®L; and so o is preempted already in (T, ®L),
contrary to assumption.

Finally, suppose ¢ 1s a compound defeasible path that does possess a
strict end segment. Then mdegp(o) = (n, 1); so the definition of the reason-
ing sequence tells us that o € ®!; and so (', ®2) )~ o—that is Def(co) € ®2
and Str(o) € ®2. However, since ®2 C ®, Case A of Definition 3.2.3 then
tells us that (T, ®) |~ o as well.

Part 1B: if (T, ®) o then o € ®. Suppose (T, ®) o If o is a defeasible
path that does not possess a strict end segment, then it can be shown that
o € ® through an argument similar to that contained in Part 1B of the
proof of Theorem 2.2.8. If ¢ is a strict path, Case B of the inheritability
definition tells us that ¢ is constructible from the links in I'; and then the
definition of the reasoning sequence allows us to conclude that o € ®9 C ®.

Finally, suppose o is a defeasible path that does possess a strict end
segment, where mdegr(o) = (n, 1). Then Case A of the inheritability defi-
nition tells us that Def(o) € ® and Str(c) € ®. We know mdegp(Def(o)) =
(n,0); so the definition of the reasoning sequence tells us that Def(c) € ®2;
and of course, Str(c) € ®2 also, since ®) C ®2. Therefore, (T', ®2) | o;
and so the definition of the reasoning sequence tells us that o € ® C ®.

Part 2. Let ® be a credulous extension of I'. We show that there exists
a credulous mixed reasoning sequence ®¢, ®1 ®3 ®1 ... based on I such
that ® = (J22, ®,. The sequence is defined by setting ®; = ' U {o
Str(o) = o and o constructed from I' }, and then taking

oL = @ U {o€®: mdegr(c)=(n,1)},
0., = @ U {c€®:mdegr(s)=(n+1,0)}.

Since it is clear that ® = UZO:1 ®,,, we need only show that ®%, ®1, &3 &1 ...
is a credulous reasoning sequence. For this, it is enough to establish (1)
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that Q@ = {0 € ® : mdegp(o) = (n, 1)} is identical to I}(T', ®2), and (2)
that 2 = {o € ® : degp(o) = (n+1,0)} is a maximal conflict free subset of
I,+1(T, ®,). We prove here only the first of these claims; the argument for
the second is similar to that presented in Part 2 of the proof of Theorem
2.2.8.

We show first that Q is a subset of I} (T, ®2). Suppose o € Q. Since we
know that mdegp(o) = (n, 1), it is enough to show that (I', ®%) 0. Since
Q C @, we have o € ®; and so (I, ®) |~ o, since @ is an extension. From
this, it follows by Case A of the inheritability definition that Def(o) € ®
and Str(o) € ®. Clearly, mdegp(Def(c)) = (n,0), so that Def(c) € ®2;
and of course Str(c) € ®2, since ®2 C @Y. Therefore, (I', ®2) ) o by Case
A of inheritability.

Next we show that I1(T', ®2) is a subset of Q. Suppose o € I}(I', ®2).
Since we know that mdegr(o) = (n, 1), it is enough to show that o € ®.
Because o € I} (T, ®Y), we know also that (I', ®2) ) o; so Def(c) € ®2 and
Str(o) € ®2, by Case A; so Def(a) € ® and Str(o) € @, since ) C ®; and
so (I',®) |~ o, by Case A. From this is follows that ¢ € ®, since ® is an
extension. [ |

Theorem 4.3.4. If T is an acyclic net, there is exactly one set ® such

that ® = {0 : (', ®) ' o}.

Proof. Suppose both ®; = {¢: (T, ®1) )"0} and &3 = {0 : (T, ®3) ' o}.
We show by induction on degp(o) that o € ®, iff ¢ € ®5. If degp(o) = 1,
then ¢ is a link; so o € T, and so (T', ®) }-' ¢ for any ®. Next suppose as
inductive hypothesis that 7 € ®; iff 7 € &3 whenever degp(7) < degp(0)
Take o € @1, where o has the form 7(z, 01, u) — y (the negative case is
similar). Since ¢ € @1, we know (I, ;) "o, so that ¢ is both constructible
and protected in the context (I',®;). Since o is constructible, we have
m(z,01,u) € &1 and u — y € . But degp(n(z,01,u)) < degp(c). So
7w(x,01,u) € Py by induction, and so ¢ is constructible also in (T, ®5).
Now suppose o is not protected in (I', ®5). Then either (i) z A y € T or
(ii) there is a node v for which v /+ y € T and there is some path #(z, 7,v) €
®,, but no node z for which z — y € T and either (a) z = z or (b) there
is some path w(z,m,2z,7,v) € ®5. If (i), then o cannot be protected
in (T, ®1), contrary to assumption. So suppose (ii). Then since we have
both degp(w(z, 7,v)) < degr(e) and degr(7(z, 11, z, T2, v)) < degp(o), the
inductive hypothesis tells us that (ii) holds also for ®; so again, ¢ cannot
be protected in (', ®;), contrary to assumption. Therefore, o is protected
in @5, and so we have (I', ®3) )’ 0. Therefore o € ®5. [ |
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