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Abstract. The view update problem is considered in the context of deductive databases where the update of 
an intensional predicate is accomplished by modifying appropriately the underlying relations in the 
extensional database. Two classes of disjunctive databases are considered. The first class contains those 
disjunctive databases which allow only definite rules in the intensional database and disjunctive facts in 
the extensional database. The second class contains stratified disjunctive databases so that in addition 
to the first class, negation is allowed in the bodies of the rules, but the database must be stratified. 
Algorithms are given both for the insertion of an intensional predicate into and the deletion of an 
intensional predicate from the database. The algorithms use SLD resolution and the concept of minimal 
models of the extensional database. The algorithms are proved to be correct and best according to the 
criterion of causing minimal change to the database, where we give first priority to minimizing deletions. 
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1. Introduction 

This paper is devoted to the problem of view updates in deductive databases. In this 
context, derived or intensional predicates correspond to the views of traditional 
relational databases. The view update problem is thus the problem of accomplishing 
the update of  an intensional predicate by modifying appropriately the underlying 
relations in the extensional part of the database. 

In the case of purely defined deductive databases, it is sometimes hard to see how 
the extensional relations should be modified to accomplish certain view updates. As 
an example, consider the simple database 

p(x) A(x) 

+- 

where P is an intensional predicate and A and B are extensional. Suppose we want to 
update this database with the information that P(c). If we are restricted to definite 
clauses, there are only three plausible ways to do this: add A(c), add B(c), or add 
both A(c) and B(c). Each of  the first two options seems arbitrary; the third results 
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in an update that is too strong. If we allow disjunctive information into the database, 
however, we can accomplish the update by adding A(c)V B(c); and this option 
appears intuitively to be correct. 

We define here general algorithms for accomplishing view updates (both 
insertions and deletions) in disjunctive deductive databases; and we provide a 
semantic justification of the updates accomplished by these algorithms, 
making precise a sense in which they represent 'minimal modifications' of the 
underlying database. We consider two kinds of updates: those involving 
the insertion or deletion of information into and from a disjunctive deductive 
database, and those involving the insertion or deletion of information into 
and from a stratified normal disjunctive database. Insertions into normal deductive 
databases may require the insertion of negative information. (Of course, a data- 
base cannot contain negative information explicitly; but it can yield such 
information through nonmonotonic reasoning techniques, such as closed world 
reasoning [6, 7].) 

There has recently been a good deal of work devoted to the view update 
problem in deductive databases. Fagin et al. [2] provide a semantic charac- 
terization of correctness that forms the basis of our own. That paper works with 
a fully expressive logical language, however, and so it cannot contain algorithms 
for computing the appropriate updates; in addition, it does not deal with 
negative information concluded through closed world reasoning. More recently, 
the problem has been investigated by Guessoum and Lloyd [4,5]; but they limit 
their treatment to definite databases, and so the algorithms they provide do 
not agree with the semantics of [2]. They also allow changes in the intensional 

database. 
The work that is closest to our own is that of Rossi and Naqvi [8]. This work 

does deal with disjunctive information, and it provides algorithms; however, 
unlike the approach presented here, it does not insert the disjunctive informa- 
tion directly into the extensional database (which is supposed to remain definite), 
but keeps it aside in a filter that is then to be used in the process of query 

evaluation. 

2. The Language 

A deductive database, DB, is divided into an intensional component, IDB, and 
an extensional component, EbB. L is the background language of the database; 
the predicates occurring in L are partitioned into two sets: the L~ predicates 
are intensional, and the LE predicates are extensional. Those predicates occurring 
in EbB belong to L~; the predicates occurring in the heads of ID~ rules belong 
to LI. For simplicity, constants are substituted for variables in the database, 
so we can deal with ground atoms rather than predicates; these atoms are said 
to be intensional or extensional depending on the kind of predicate they contain. 
There are no denials or integrity constraints. 
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Updates must involve modifications of  the extensional database only; the rules are 

not modified. Hence we assume, without further elaboration, that a view update to 

DB does not change IDB. We also assume that EbB does not contain redundant  
information, such as A ~ and A V B ~ .  Hence we include a subsumption 

elimination step in our algorithms. This is not a crucial point, however, and 
subsumption elimination may be omitted in all cases. Since in our case there are 

no variables or function symbols, subsumption checking involves only checking 

for substrings. 
In Section 3 we focus on a special kind of disjunctive database: the intensional part  

consists of  definite rules and the extensional part  consist of positive clauses which 

may be disjunctive. The definition is given below. In Section 4 we extend Definition 

2.1 to obtain stratified disjunctive databases. 

D E F I N I T I O N  2.1. Let L be a function-free, first-order language. Let DB be a first- 

order theory in L. Then DB is called a disjunctive database iff: 

1. DB = EbB U lob and EBB N IjgB = ~); 
2. C E EbB iff C is a positive ground clause; 
3. C E IDB iff C is a clause of  the form A +-- B1,..  •, Bm, with A, B1, • •., Bm ground 

atoms and m > 0; 
4. The predicate symbols occurring in EDB do not appear  in the bead of any rule in 

1DB- 

3. Updating Disjunctive Databases 

This section describes techniques for updating disjunctive databases. Here, the 
algorithms for insertion and deletion are described in terms of p roof  trees 

constructed with SLD derivations. 

3.1. INSERTIONS 

We first define a special kind of SLD-tree, as follows. 

D E F I N I T I O N  3.1. Let L be a function-free first order language. Let DB be a 
disjunctive database in L. Let P be an a tom (in this case, P is ground) such that P 

is intensional. Assume R to be a computat ion rule that only selects atoms from 
L I. A restricted SLD-tree for the goal G = ~ P, given DB, is a tree satisfying the 

following conditions: 

1. The root of  the tree is G; 
2. each node in the tree is a (possibly empty) goal; 

3. a goal "~ is a child of  a node A if 7 can be SLD-derived from A via R. 

A restricted SLD-tree may contain infinite branches. However, since variables are 
not included in the goals, it is possible to check for repeated ancestors of  a selected 
literal before expanding it. 
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E X A M P L E  3.1. Let DB be the disjunctive database: 

P+--A,B 

P+--E 

P ~ Q , C  

Q,---A,D 

AVBVC~---  

Let {A, B, C, D, E} be the set of  extensional atoms and {P, Q} be the set of  

intensional atoms. The restricted SLD-tree for +-- P in DB is the following: 

+ - p  

, - A , B  ,---E ,---Q,C 

I 
• - A , D , C  

A statement P is a logical consequence of DB if any of the conjunctions of  
atoms in the leaves in a restricted SLD-tree for the goal G = +-- P is true in DB. 
Take, for example the leftmost leaf in Example 3.1. I f  A and B are true in  DB, 
then P is also true in DB. Since it is desirable to 'minimize' the changes to DB, 
the insertion algorithm needs to consider the weakest formula that achieves the 

insertion. In the example, this formula is given by the disjunction of these leaves: 

(A A n v (E) v (A A D A C). 
Since we are limited to modifying only the extensional part  of  the disjunctive 

database, there are some updates that are not possible. 

E X A M P L E  3.2. Let DB be the disjunctive database: 

P ~ Q , C  

Let {C} be the set of  extensional atoms and {P, Q} the set of  intensional atoms. 

The insertion of P into DB requires the insertion of  Q. The only possible 
modification to the extensional part  of  DB is to insert C. There is no way to insert 

Q. 

D E F I N I T I O N  3.2. Let DB be a disjunctive database such that DB V P. An insertion 
of an a tom P is a possible insertion into DB iff there exists a disjunctive database DB' 

such that DB ~ ~- P. 

Algorithm 1 (Insertion of an intensional a tom P into a disjunctive database - 
Insertion 1). Given an a tom P and a disjunctive database DB such that DB V P, the 
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algorithm computes a database D B '  such that DB'  ~- DB  A P whenever the insertion 

is possible. 

1. Let D B  r = DB. 

2. Construct a restricted SLD-tree for ~ P  from DB. 
3. Let + - F I , . . . ,  ~-Fn be the leaf nodes containing only conjunctions of  extensional 

atoms. I f  n = 0 the insertion fails. Otherwise, construct the conjunctive normal 

form of F 1 V . . .  V F~, writing it as C1 A -..  ACm, where subsumed clauses are 

omitted from the conjunctive normal form. 

4. For each Ci, 1 < i < m, insert Ci into DB' .  

5. Delete all subsumed clauses from DB' .  

E X A M P L E  3.3. From the restricted SLD-tree of  Example 3.1. we obtain 

F I = A A B ,  F 2 = E a n d  F 3 - - A A D A C .  Then D B ~ - P i f D B ~ - F  1 V F 2 V F  3. The 

conjunctive form of F1VF2VF3  is C1/~C2AC3,  where C I = A V E ,  
C2 = B V D V E, C3 = B V C V E. Then, the updated database D B  ~ is: 

P + - A , B  

P ~ - - E  

P + - Q , C  

Q ~ - A , D  

A V B V C + - -  

AVE+---  

B V C V E + -  

B V D V E + - -  

In order to justify this algorithm, we must show first that it actually accomplishes 

the desired insertion. 

L E M M A  3.1. Let  D B  be a disjunctive database in L. Let  P be an atom in L 1 and 

assume that the insertion o f  P into DB is possible, and D B  ~/ P. Then, i f  D B  t is the 

deductive database constructed by Algorithm 1, D B '  ~- D B  A P. 

Proof. D B  ~ ~ D B  follows from Steps 1, 4, and 5. Now, let M be a model of  DB' .  

By construction, each Ci, 1 < i < m, as developed by Algorithm 1, is true in M. 

Hence Fl V -. .  V Fn is true in M. By the soundness of  SLD-derivations and the inten- 
sional parts of  rules of  DB' ,  P is true in M. [] 

But, of  course, this is not enough; in addition, we must require that the insertion 
should modify the original database as little as possible, where this can be defined as 
follows. 

D E F I N I T I O N  3.3. Let D B  be a disjunctive database in L. Let P be an a tom in L I 
and assume D B  ~/P. A minimal insertion of P into D B  is a minimal D B  t such that 
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DB I ~- DB /X P. That is, there is no database DB" such that DB ~ ~- DB" ~- DB /~ P 
and DB" ¢ DB'. 

As the following lemma shows, Algorithm 1 does in fact produce a minimal 
insertion. 

LEMMA 3.2. Let DB be a disjunctive database in L. Let P be an atom in LI and 
assume that the insertion of  P into DB is possible, and DB ~/ P. Let DB' be the 

deductive database that is obtained from Algorithm 1 after inserting P. I f  
DB' F- DB" F- DB and DB" ~/ DB I then DB" ~/ P. 

Proof By construction, DB' = DB U {Ci C {C1, . . . ,  Cm}IDB ~/ Ci}, where the Ci 
are obtained in step 4 of Algorithm 1. Therefore, since DB" t7/DB' and DB ~' ~- DB, 

3i, 1 < i < m, such that DB" ~/ Ci. Hence, DB" ~/ F1 V . . .  V F~. Hence, DB" [7/P. • 

Unfortunately, however, the minimality condition alone does not imply unique- 
ness, and so it cannot be used as a criterion to justify the insertion algorithm. 
This should be obvious already from the example used in the introduction; there, 
the addition of  either A(c) or B(c) yields a minimal modification of the database. 
In order to force a unique result, we require not only that the update should be 
minimal, but also that it must yield the weakest modification of  the database, in 

the following sense. 

D E F I N I T I O N  3.4. Let DB 1 and DB 2 be disjunctive databases. DB 1 is weaker than 
DB2 iff DB2 ~- DB1. Let @N be a set of  disjunctive databases. DB is the weakest dis- 
junctive database in ~ N  iff for any other disjunctive database DB' in ~ ,  DB is 
weaker than DB'. 

The following theorem shows that Algorithm 1 constructs the weakest of the 
minimal disjunctive databases that accomplish the desired update. 

T H E O R E M  3.3. Let DB be a disjunctive database in L. Let P be an atom in L I and 
assume that the insertion of  P into DB is possible, and DB ~/ P. Let DB' be the dis- 
junctive database that is obtained from Algorithm 1 after inserting P. Then DB ~ is 

the weakest disjunctive database DB" such that DB" ~- DB /~ P. 
Proof. Let D B " F - D B / ~ P .  If F E D B  then DB"~-F.  Now suppose that 

F c (DB' - DB). Then F = Ci, for some i, 1 < i < m, where Ci is a clause formed 
by Algorithm 1. Since DB"~-P ,  by the construction of the Cis, and the 
completeness of  SLD-resolution, DB" ? Ci. • 

Another interesting characterization of the weakest minimal insertion is given by 

the disjunction of all minimal insertions. 

D E F I N I T I O N  3.5. Let D B 1 , . . . , D B ,  be disjunctive databases with identical 

intensional portion IDa. Then 

~/ DB i = { C  l V . . .  V CnlC i E EDB~, 1 < i < n} tJ IDB. 
i=1 
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T H E O R E M  3.4. Let DB be a disjunctive database in L. Let P be an atom in L1 and 

assume that the insertion o f  P into DB is possible, and DB ~ P. Let DB ~ be the 

disjunctive database that is obtained f rom Algorithm 1 after inserting P. Let 

D B 1 , . . . ,  DBn be all the minimal updates that insert P into DB. Then DB ~ is logically 

equivalent ~o vn=IDBi . 

Proof. Since DB ~ is the weakest insertion, DB i F DB ~, therefore, Vn=IDBi ~- DB ~. 

Conversely, since DB t is a minimal insertion, DB' is one of the DB i. Therefore, 

DB ~ F V~=IDB i. m 

This final characterization of the appropriate result of  insertion updates can be 

derived easily from that of  Fagin et al. [2]; Theorem 3.3 thus shows how the 

characterization can be reached through a slightly different route. 

3.2. DELETIONS 

We now present the algorithm for updating disjunctive databases by deleting 
information from the database. We note that in a definite database when an 
intensional atom P is deleted, -~P becomes true in the updated database. The 
reason for this is that a definite database has a unique minimal model where either 

P or ~P  is true. However, a disjunctive database may have several minimal 
models. The deletion of P may be accomplished by deleting P from some but 

not all of  the minimal models. Hence the deletion of P does not necessarily make 
~P true. 

D E F I N I T I O N  3.6. Let DB be a disjunctive database such that DB F P. A 

deletion of an a tom P from DB results in a disjunctive database DB t such that 

DB'  V P. 

Note that the deletion of an atom, unlike insertion, is always possible. 

Algorithm 2 (Deletion of an intensional a tom P from a disjunctive database - 
Deletion 1). Given an atom P and a disjunctive database DB such that DB ~-P. 

The algorithm computes a database DB" such that DB" ~ P. 

1. Construct a restricted SLD-tree for ~---P from DB. 

2. Let ~ F I , . . . ,  ~ Fn be the leaf nodes containing only conjunctions of  extensional 

atoms. Construct the conjunctive normal form of Fl V . . - V F n ,  writing it as 

C1 A . . .  ACm, where subsumed clauses are omitted in the conjunctive normal 
form. 

3. Let Si be the sets of  clauses in DB which subsume Ci, 1 < i < m. For each j, 
1 <j_<  m such that there is no i, i ¢ j  and 1 < i < m, such that Si C Sj, obtain 
DBj =- (DB - Sj). Without loss of  generality assume that the remaining DBj are 
DB1, . . .  ,DB  k. 

j=k 4. Let DB" be Vj=1DBj. 

5. Delete all subsumed clauses f rom DB". 
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EXAMPLE 3.4. Let DB be the disjunctive database: 

P + - A , B  

P~---E 

P * - - Q , C  

Q * - - A , D  

A~--- 

B V D ~ - -  

BVE~---  

JOHN GRANT ET AL. 

The following lemma shows that Algorithm 2 accomplishes the desired deletion. 

L EMMA 3.5. Let DB be a deductive database in L. Let P be an atom in L I and assume 

DB F- P. Then the deductive database DB" constructed by Algorithm 2 does not imply 

P. That is, DB"  ~/ P. 

Proof. By construction and the soundness and completeness of SLD-resolution for 
all i, 1 < i < m, (DB - Si) ~/ Ci, where Ci is obtained from Algorithm 2. Therefore 
(DB - Si) ~/ P. Hence DB" ~ P. • 

In the previous case of inserting information we required that the update should 
modify the original database as little as possible; this led us to present in Definition 
3.3 the concept of a minimal insertion. In the case of deletions, the counterpart  idea 
of a minimal modification can be defined as a maximal subset of the original 
database that accomplishes the desired deletion. 

D E F I N I T I O N  3.7. Let DB be a disjunctive database in L. Let P be an atom in L I 

and assume DB ? P. A minimal deletion of P from DB is a maximal subset DB i of 
DB that does not imply P. That is, DB i C_ DB, DBi l / P  and for any other disjunctive 
database DB ~ C_ DB such that DB i C DB ~, DB ~ h- P. 

Again, however, there may be several such minimal deletions; and so, in 
accordance with the views of Fagin et al. [2], it seems that a semantically correct 
algorithm should yield a result equivalent to their disjunction. The following 
theorem shows that Algorithm 2 is correct in this sense. 

IDB is the same as in Example 3.1. Hence the restricted SLD-tree for ~ P  is the same, 
so C1 = A V E, C2 = B V D V E, C? = B V C V E. Hence, $1 = {A}, 
$2 = {BV D , B V E } ,  $3 = {BVE} .  Since $3 c $2, $2 is eliminated, leaving $1 
and $3. From step 3 we obtain the disjunctive databases 
DB 1 = IDB tJ {B V D, B V E} and DB 3 = IDB U {A, B V D}. Then, DB" is: 

IDe U 

{ B V D * - -  

A V B V E ~ - - } .  
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T H E O R E M  3.6. Let DB be a disjunctive database in L. Let P be an atom in Lt 

and assume that DB ~-P. Let DB" be the disjunctive database that is obtained 

from Algorithm 2 by deleting P. Let D B I , . . . ,  DB,  be all the minimal updates that 

delete P from DB. Then DB"  is logically equivalent to Vr~=lDBi . 

Proof. The proof  follows from the observation that the minimal deletions of P are 
precisely the (DB - S i )  obtained in step 3 of Algorithm 2. [] 

As it turns out, there is an interesting asymmetry between insertion and 
deletion. In the case of insertion, the disjunction of minimal insertions is actually 
equivalent to a particular one of the minimal insertions; but in the case of 
deletion, the disjunction of minimal deletions need not itself lie among the minimal 
deletions. 

A peculiar property of the deletion algorithm is that logically equivalent databases 
that are syntactically different can be transformed into non-equivalent databases 
after the deletion of an atom from the database. Consider, for example the dis- 
junctive database DB in Example 3.4. Extend DB with the extensional fact A V B. 
The new disjunctive database is equivalent to DB since A subsumes A V B. The 
deletion of P from this new database using Algorithm 2 results in the disjunctive 
database: 

DB I = IDB U 

{BVD; 

A V B } .  

DB" from Example 3.4 is weaker than this database. The minimality condition 
does not guarantee the preservation of equivalence after updating equivalent data- 
bases. In the case of insertion, in addition to minimality, the weakness condition 
was used to select the best update. The weakest insertion was the insertion 
selected. A similar condition can be imposed on deletion. We call it the strongness 
condition. 

D E F I NI TI ON 3.8. Let DB 1 and DB2 be disjunctive databases. DB1 is stronger than 

DB 2 iff DB1 ~- DB 2. Let ~ be a set of disjunctive databases. DB is the strongest 
disjunctive database in ~N' iff for any other disjunctive deductive database DB t in 
~ ,  DB is stronger than DB ~. 

In general, there is no strongest disjunctive database that does not imply 
an atom P and is weaker than DB. Moreover, there is not a direct cor- 
respondence between minimal and strong deletions. The following algorithm 
non-deterministically selects a disjunctive database DB I that: (1) accomplishes 
the deletion, (2) is weaker than DB, and (3) is stronger than or incom- 
parable with any other disjunctive database containing IDB that does not imply 
P. 
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Algorithm 3 (Deletion of an intensional atom P from a disjunctive database 
Deletion 2). Given an atom P and a disjunctive database D B  such that D B  t- P. The 
algorithm computes a database D B  ~ such that D B  ~ ~ P. 

1. Construct a restricted SLD-tree for ~ P  from DB. 

2. Let + -F1 , . . . ,  +-Fn be the leaf nodes containing only conjunctions of extensional 
atoms. Construct the conjunctive normal form of F1 V - .. V Fn, writing it as 
C1 A--.  A Cm where subsumed clauses are omitted. 

3. Let S i be the sets of  clauses in D B  which subsume Ci, 1 < i < m. Choose j, 1 _< j _< m 
such that there is no i, i ¢ j and 1 < i < m, S i c  Sj. Delete the set S: from DB. 

4. For  each clause C C S], form all disjunctions C v Q where Q is an extensional 
atom that does not appear in C. 

5. Add to D B  all clauses C V Q which do not subsume C 2. Call the resulting database 
D B  I. 

EXAMPLE 3.5. Using the same disjunctive deductive database as in Example 3.4, 
there are two answers for the deletion of P using Algorithm 3 depending on the 
choice of $1 or $3 (see Example 3.4). These are (omitting the intensional part which 
is the same in all cases): 

(1) {AVB; (2) {A; 

A V C; BV D}. 

A V D ;  

B V  D; 

BYE). 

The following lemma shows that Algorithm 3 accomplishes the deletion. 

L EMMA 3.7. Let  D B  be a disjunctive deductive database in L. Let  P be an intensional 

atom in L x. Assume that D B  F- P. Then the deductive database D B  ~, constructed by 

Algori thm 3, does not imply P. That is, D B '  V P. 
Proof. By construction, D B  t ~ Cj, where Cj is derived in Algorithm 3. Therefore, 

D B '  ~ C 1 A " "  A C m and hence D B '  ~/ P. • 

Theorem 3.8 shows that there is no stronger deductive database than D B  ~ that 

deletes P. 

T H E O R E M  3.8. Let  D B  be a disjunctive deductive database in L. Let  P be an 

intensional atom in LI. Assume D B  V P. Let  D B  ~ be the deductive database that is 

obtained f r o m  Algori thm 3 after deleting P. Then there is no deductive database, 

DB" ,  stronger than D B  ~ and weaker than D B  such that D B "  ~/ P. 
Proof. Since the clauses added to the database in step 5 are logically implied by 

DB, D B  ~- D B  ~. Now suppose that D B  ~ D B "  F- D B  ~ and assume D B  ~ ~/ D B  H. Let 
C1 A . . .  A C m  be the conjunctive formula obtained in step 2 of Algorithm 3. Let S 7 
be the set selected in step 3 for deletion. Since for all i, i C j ,  DBIF - Ci, then 
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DB I~ ~- Ci, where C i is derived in Algorithm 3. But since DB ~- DB" and DB ~ V DB", 
by the construction, DB ~ ~- Cj, so DB" ~- P. [] 

If  we prefer to have a unique disjunctive database after a deletion as in the 
case of Algorithm 2, we can take the disjunction of  all possible disjunctive data- 
bases obtained with Algorithm 3. This database is stronger than the disjunction 
of the minimal updated databases. A disadvantage of strong databases over minimal 
databases is that they are language dependent. New disjunctions are formed in 
step 4, to be included in the updated database; one disjunction for each extensional 
atom in the underlying language of the database. So the algorithm produces 
non-equivalent databases over different languages from two logically equivalent 
databases 

4. Updating Stratified Disjunctive Databases 

4.1. NORMAL INSERTIONS 

In this section we present an algorithm to insert information into a subclass of 
normal disjunctive databases. A normal disjunctive database, DB, is a disjunctive 
database in which the clauses in the IDB can be of the form A +-- L1 , . . . ,  Lm with 
A a ground atom, L1, . . .  ,L  m ground literals (i.e. atoms and negated atoms) 
and rn _> 0. We consider insertions into normal databases that are stratified. The 
definitions of stratified databases, stratification, and the stratum of an atom are as 
defined in [1]. 

The insertion of an atom into a normal disjunctive database may require 
the 'insertion' of  negative information into the database. Consider, for example, 
a database DB with IDB = {P(x)+-- ~A(x)}. Assume that A is an extensional 
predicate. The insertion of  P(a) into DB must modify DB into a new data- 
base DB' such that the new database implies ~A(a). Also, because of this duality 
between the insertion of atoms and negated atoms into a normal disjunctive 
database, the algorithm below can be used for both kinds of insertions, positive 
and negative. 

Negative information can be derived from databases using nonmonotonic reason- 
ing techniques, such as closed world reasoning. Because we are working with 
disjunctive databases, we use the generalized closed world assumption (GCWA), 

devised by Minker [6]. According to this rule, a ground formula, -~F, is derivable 
from a disjunctive database, DB, if F is false in all minimal models of that 
database. In that case, we say GCWA(DB) ~- -,F. 

For the insertion algorithm into stratified databases we need to extend the 
definition of restricted SLD-trees to cover negation. The new trees will be called 
restricted stratified SLD-trees. We use normal goals where literals of the form ~C 
may appear. Restricted stratified SLD-trees are defined inductively on the stratum 
of the atom associated with the tree. 
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D E F I N I T I O N  4.1. Let DB be a stratified disjunctive database in L. Let P be an 
a tom (in this case, P is ground) such that P is intensional. Assume R to be a com- 

putation rule that only selects literals with atoms from L I. A restricted stratified 
SLD-tree for the goal G = +-- P given DB is a restricted SLD-tree for ~ P  if the stra- 

tum of P is 1. Otherwise, assume all restricted stratified SLD-trees for atoms in a 

stratum less than n are defined and let the stratum of P be n. A restricted stratified 
SLD-tree for ~ P  is a tree satisfying the following conditions: 

1. The root of  the tree is G. 

2. Each node in the tree is a (possibly empty) goal. 

3. Let L i be the selected literal in the node A = +- L1,. .  • ~ Li_ I, L i ,  Li+ 1,.. •, Lk .  

(a) I f  L i is positive, a normal goal ~/is a child of  A if-~ is SLD-derived from A via 

R. 
(b) I f  L i = ~ Q  is negative, let ~ F , , . . . ,  *--F n be the leaf nodes in the restricted 

stratified SLD-tree for ~-Q. Construct the conjunctive normal form of 

F 1V --- V F  n, writing it as C1A .-.  A Cm. A normal goal ~ L 1 , . . .  , L i _ l ,  "/, 
Li+ 1 , ' " ,  L~ is a child of  A iff ~.is the conjunction of literals obtained from 

-~Ci, for some Ci, 1 < i < m. 

E X A M P L E  4.1. Let DB be the stratified disjunctive database: 

Q +--A,~R 

R e - - B , C  

R ~ - - A , S  

S~- -B ,D 

AVC+--  

A V D + -  

The conjunctive normal form obtained from the restricted stratified SLD-tree for 
~ R  (in this case just restricted SLD-tree) is B A (CV A)A (CV D). Therefore, the 

restricted stratified SLD-tree for +-Q is: 

0-- A, - ,B ,-- A, --,C, --,A ~- A, --,C, --,D 
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Algorithm 4 (Insertion of an intensional atom P into a stratified disjunctive database 
- Insertion 2). Suppose that P is an intensional atom, and let D B  be a stratified dis- 

junctive database such that G C W A ( D B )  F/P. The algorithm computes a database 
D B '  such that G C W A ( D B  r) [- P. 

1. Let Jff be the minimal models of EbB, the extensional component of DB. 

2. Construct a restricted stratified SLD-tree for ~--P from DB. 
3. Let +--F1,... ,  ~ F  n be the leaf nodes containing only conjunctions of (possibly 

negated) extensional atoms. If n = 0 the insertion fails. Otherwise, construct the 
conjunctive normal form of Fl V --- V Fn, writing it as C = C1 A .- • ACm, where 
subsumed clauses are omitted from the conjunctive normal form. 

4. If EBB U {C} is consistent then order C by placing positive clauses first and 
negative clauses last. For  each Cj, 1 <_ j <_ m, do 
(a) If  Cj is a positive clause, Cj = A1 V . . .  V AI then: 

For  each M ¢ JC{ such that for all A i, 1 < i < l, Ai f~ M let Mi = M U {Ai},  

1 < i < l ,  a n d l e t ~ / H = ( J g - { M } ) U { M i l l  < i < l } .  
Eliminate from ~ every M for which there exists M~C ~(, such that 
M t C M .  

(b) If  Cj is a mixed clause, Cj = A I V . . .  V At V -~ El V . . .  V -7 Es, then: 
For  each M E J~" such that for all Ai, 1 < i < l, Ai ~ M and for all Ek, 

1 < k < s ,  E k e M l e t M i = M U { A i } ,  1 < i < l ,  a n d l e t J / l =  ( ~ - { M } ) U  

{Mill < i < l}. 
Eliminate from ~/~ every M for which there exists M I E  ~ ,  such that 
M I C M .  

This step must be repeated until there is a complete pass through all the mixed 
clauses which causes no change to J/t. 

(c) If Cj is a negative clause, Cj = -7 E1 V . . . V -~ El then: 
For  each M E J¢' such that for all Ei, 1 < i < / ,  Ei ¢ M eliminate M from JC{. 

5. Build D B  t from the new ~ .  

(Comment.  If the D B  is represented by using model trees as discussed in [3], it is 
not necessary to reconstruct all the clauses in EDB'). 

6. Else (EBB U {C} is inconsistent) 
(a) Construct all D B  i such that each EDSi is a maximal subset of Cn(EDB) (the set 

of  positive logical consequences of  ED~) with the property that EBB, U {C} is 
consistent. (This can be done by a process where first single elements of 

Cn(EDB) are omitted to obtain EbBs and the consistency of EDBj U {C} is 
checked; when the latter is inconsistent, the process is iterated with EDB j sub- 
stituted for Cn(EDB); the maximal sets EBB, obtained this way are retained. 
The consistency of  EDBj U {C} can be checked by doing all possible 
resolutions using the elements of EBB s and Ci [the clauses in C l; the empty 
clause indicates inconsistency.) At the end, subsumed clauses are omitted 
from DB~. Assume without loss of  generality that these are D B I , . . . ,  DBk. 

(b) For  each DBi, 1 < i < k, apply steps 4 and 5 to obtain DB[. 
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(c) Let DB'=  VL1DB;. 

The next example illustrates the case where DB' is obtained using steps 4 and 5. 

EXAMPLE 4.2. Let DB be the stratified disjunctive database: 

P +- --, A, C, R 

P +-- -, D,R 

R + - - B  

R s - - E  

AVB+-- 

A V D + -  

C V D + -  

CVE+-- 

The clauses obtained by step 3 after the construction of the restricted stratified 
SLD-tree for +-P are C1: -~A v ~D, C2 : CV ~D, C3 : BV E. 

The minimal models of the extensional database of DB are MM(ED~) = {{A, C}, 
{A,D, E}, {B, D,E}, {B, C,D}}. In this case EDB is consistent with the Cis. The 
algorithm first modifies MM(ED~) to make C3 true. This produces the new set of 
minimal models {{A, B, C}, {A, C, E}, {A, D, E}, {B, D, E}, {B, C, D}}. Next, the 
set of minimal models is modified to make C2, true. The algorithm produces 
the set {{A, B, C}, {A, C, E}, {A, C, D, E}, {B, C, D, E}, {B, C, D}}. The models 
{A ,C ,D,E}  and {B,C,D,E} are removed since they are not minimal. Finally, 
C1 is true in the three remaining models. Then, the minimal models of the new 
extensional database are MM(EDB,) = {{A, B, C}, {A, C, E}, {B, C, D}}. Building 
the extensional database from these models we obtain: 

AVB~--- 

AVD~--- 

C~- 

BVE~--- 

The following example illustrates the case where step 6 must be used, that is, where 
EDB U {C} is inconsistent. 

EXAMPLE 4.3. Let DB be the stratified disjunctive database: 

P +-- R, ~C, ~D 

P ~-- A, ~B,-~D 

P *- B, ~C, -~A 

R+'-A 

R ~ - - B  
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S+--B,D 

A V B ~ - -  

AVC+--  

D+-- 

The conjunction of  clauses obtained by step 3 after the construction of the restricted 
stratified SLD-tree for ~--P is (A V B) A (~B V ~ C) A (~A V ~ D). This conjunct is 
inconsistent with EDB. EDB has two minimal models {A, D} and {B, C, D}. There 
are three maximal subsets of Cn(EDB) consistent with the conjunction 

C I A C 2 A C 3 : E D B I = { A V B ,  A V C ,  A V D ,  B V D } ,  E D B 2 = { A V B ,  A V C ,  
A V D, C V D}, and EDB 3 = {A V B, D}. Applying the insertion to each of these 

databases we obtain E'DB~ = {A, B}, E ~  2 = {A, C} and E ; B  3 = {B,D}. The dis- 
junction of these three new databases together with the rules produces 

DB' = IDB U {A V B,A V D , B V  C}. 

The simple characterization of minimality from the treatment of positive updates 
does not apply directly to this more complicated context, where nonmonotonic 
reasoning is involved and insertions and deletions from and into the extensional 
database may be needed to accomplish the insertion of an intensional atom. How- 
ever, there is a sense in which the insertion defined by Algorithm 4 is minimal. 
The new database first minimizes the deletion of  positive conclusions from the 
original database and then, subject to that constraint, minimizes the addition of 
new positive conclusions. That  is, insertions are preferred over deletions. As it turns 
out, this condition is enough to guarantee uniqueness. The following theorems 
characterize this property. The first theorem shows the minimality of DB r with 

respect to DB and C. 

T H E O R E M  4.1. Let C be the conjunction of the clauses obtained in step 3 
of Algorithm 4 and assume that EDB U {C} is consistent. Then, for any positive 
clause D, DBr~ - D iff DBU (C}  ~-D, where DB I is obtained in step 5 of 
Algorithm 4. 

Proof. Since, by the construction of DB r, every (minimal) model of DB I is a model 
of DB U {C}, it follows that DB U {C} ~- D implies that D is true in every model 
of DB r. Therefore DBr~ - D. To prove the other direction by the contrapositive, 
let DBU {C} y D .  Then there must be a minimal model of  DBU {C},  say 
M = {A1, . . . ,Ak},  where D is false. Let D be Ak+l V- . .  VAn. M must be a model 
of DB. Since M is also a model of C, by the construction of DB ~, if M is a minimal 
model of DB then M remains a minimal model of  DB'. Hence, DB ~ V D. Otherwise 
M is a non-minimal model of DB. Therefore, there is Mr c M, say 
M r= {A1 , . . . ,A i } ,  such that M r is minimal model of DB. M'  is not a model of  
DB LJ {C} because it is a proper subset of a minimal model of DB U {C}. Consider 
what happens to M r in step 4 of Algorithm 4. For  any Cj, part of C, that is true in M r 
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the algorithm does nothing. Consider now some Cj false in M r. I f  Cj is positive or 
mixed then M r is expanded in a minimal way to satisfy Cj. The expansion, 
M" C_ M, since M is a minimal model of  DB. Hence M "  cannot be a model of  D. 
In the case of  negative Cj, since M is a model of  Cj, M r must already be a model 

of  Cj. Therefore M (or a subset of M)  is a minimal model in dg from which DB ~ 
is built. Hence, DB r ~/ D. • 

Theorem 4.1 suggests an alternative approach to obtaining the result of  step 4 

since the algorithm obtains the logical consequences of  EDB U {C}: do all possible 
resolutions using elements of  EbB and Ci, 1 < i < m. Obtain the set of  all positive 
clauses at the bot tom of  the resolution trees and omit subsumed clauses from the 

set. The result is EDB,. This result shows an interesting connection between resolu- 
tion and minimal model manipulation. 

The following lemma is a technical result, needed later to characterize the minimal 

models of  V~= 1DBi . 

L E M M A  4.2. Let DB = V k_ 1DBi, dg the set of  minimal models of  DB, and .//gi the set 
of  minimal models of  DBi, 1 < i < k. Then M E J/{ iff M E d/Z~. for some i, 1 < i < k, 
and there is no M'  E ~ j  for some j, 1 <_ j <_ k, such that M '  C M. 

Proof. ( ~ )  Suppose that M E J¢~. for some i, 1 < i < k, and there is no M r E ~ j  
for some j, 1 < j _< k, such that M r C M. Clearly, M is a model of  DB. I f  M is 

not a minimal model of  DB then there is an M r C M, a model of  DB which is 

minimal. This would require that M r E ~ j  for some j,  1 _< j _< k contradicting the 

hypothesis. 
( 3 )  We show the contrapositive. Suppose that M ~ ~ .  for any i. I f  M is a super- 

set of any M r E Jti ,  then M is not minimal since M '  is a model of  DB. On the other 
hand if for any set M r E J¢{i, either M c M r or M N M~ ¢ Mr then there must exist a 

clause, Dg, in each DBg such that M does not model D~. Then D1 V .- • V Dk is not 
modeled by M hence M is not a model of  DB. • 

T H E O R E M  4.3. Let DB be a stratified deductive database in L. Let P be an atom in 
LI and assume DB ~/ P. Then the deductive database DB r, constructed by Algorithm 4, 
implies P. That is, DB r ~- P. Moreover, DB r = V{DB"]DB" ~- P and/~DB" ~ P, and 

/~DB"' ~- P such that Cn(EDB,, ) r] Cn(ED~) c Cn(EDB,,,) ('1Cn(EDB)}. 
Proof. Assume first that EDi~ U {C1 , . . . ,  Cm} is consistent. Since, by Theorem 4.1, 

DB r is equivalent to Cn(DBU {C1, . . . ,  Cm}) it follows that DB r ~- P. Now, since 

EbB U {C1, . . . ,  Cm} is consistent, again from Theorem 4.1 Cn(EDB,)D_ Cn(EDB). 
Therefore, /SDB'" F- P, such that Cn(EDB,)NCn(ED~) C Cn(EDB,,,)ACn(EDB). 
Assume that there exists another DB" such that D B " ~ - P  and /~DBr"F - P, such 
that Cu(EDB, , )NCn(EDs)cCn(EDB, , )NCn(ED~) .  Then it is also true that 
Cn(ED~,,) _D Cn(EDB); otherwise we can choose DB r as DB m and show that 

Cn(EDB,,) [-1Cn(EDB) C Cn(EDB,,,)~Cn(EDB). Let M be a model of  DB". Then 
M is also a model of DB and a model of  {Ca , . . . ,Cm}.  But by Theorem 4.1, 
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DB ~ contains all the possible positive resolvents of  DB with {C1, . . . ,  Cm}. There- 

fore, by the soundness and completeness of  resolution, M is also a model 

of  DB t. Therefore, D B " ~ - D B  r. Hence, the disjunction of all DB",  V D B "  is 

equivalent to DB ~. 
I f  ED~ U { C 1 , . . . ,  Cm} is inconsistent, consider a DBi as constructed in step 6a. By 

the argument above, for each i, 1 < i < k, DB[ ~- P. That  is, in every minimal model 

of  each DB[, 1 < i < k, each Cj, 1 <_ j <_ m, is true. By Lemma 4.2 and step 6b the 
same is true for DB ~. Also, the constructions of  the DB[ assume that they play the 

role of  DB"  in the statement of the theorem. Hence the result follows from the first 

part. [] 

4.2. NORMAL DELETIONS 

Algorithm 5 (Deletion of an intensional a tom from a stratified disjunctive database - 
Deletion 3). Suppose that P is an intensional atom, and let DB  be a stratified 

disjunctive database such that G C W A ( D B ) ~ - P .  The algorithm computes a 

database DB'  such that G C W A ( D B )  ~ V P. 

1. Let J¢/be the set of  minimal models of  EoB, the extensional component  of DB. 
2. Construct a restricted stratified SLD-tree for +---P from DB. 

3. Let F1 , . . . , Fn  be the leaf nodes containing only conjunctions of  (possibly 

negated) extensional atoms. Construct the conjunctive normal form of  

FI V • .. V Fn, writing it as C 1 A • - • A Cm, where subsumed clauses are omitted 
from the conjunctive normal  form. 

4. Select a disjunction Cj, 1 <_ j <_ m. The selection is made giving preference to C} 
which satisfies step 5 or the first part  of  step 7, if possible, to minimize deletions. 

5. I f  Cj is a negative clause, Cj = -~ E1 V . . .  V ~ E l then: 
For each M C ~ ,  let e (M)  be the number of  atoms in M from { E l , . . . ,  Et}. Let 

m = m a x { e ( M ) }  for all M ~ ' .  Select M E ~ /  such that e ( M ) = r n .  Let 
M ' =  M U {E l , . . .  , E  t}. Let J - - - - ( J C l -  {M})U {M'}.  Eliminate from ~ any 
proper subset of  M ~. 

6. I f  C! is a positive clause c j  = A1 V . . .  V AI then: 

Let M '  =-HB6~ ~ - { A 1 , . . .  ,At} .  I f  M '  = ~ let J4" =(3; otherwise let 
d g =  d¢ U {Mr}. Eliminate from ~" any proper superset of M ~. 

7. I f  Cj is a mixed clause, Cj = A1 V . . .  V A z V ~ E1 V . . .  V -7 E~. then: 
I f  there exists a model in ~/~ that contains n o  Ai, 1 < i < l, then, for each M E d// 
let e (M)  be the number of  atoms in M from {E l , . . .  ,Es}. Let m = max{e(M)} 

for all M ~ J~. Select M E d/l such that e (M)  = m. Let M '  = M U { E l , . . . ,  Es}. 
Let ~ '  = ( ~ / -  {M}) U {M'}.  
Eliminate from J/~ any proper subset of  M ~. 

Otherwise, let M '  = HBDs - {A1,. . .  , A1}. Let ~# = .M U { M ' } .  Eliminate from 
J/{ any proper superset of  M ~. 

8. Build DB ~ from the new J/{. 
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EXAMPLE 4.4. Let DB be  the stratified disjunctive database: 

p +-- -~Q 

Q ~ - ~ C , - , D  

Q+--A,R 

R+--B,C 

R *--,A,-~D 

AVC+-- 

BVD~--- 

CVD+-- 

Three conjuncts are obtained from the restricted SLD-tree for +--P: C1 = C V D, 
C2 = ~ A V -~ B V ~ C, and 6"3 = -1 A V D. The minimal models of the extensional 
part of  the database are: J/{ = {{A, D}, {B, C}, {C, D}}. 

Assume now that we want to delete P from the database. Suppose we select C2 for 
the deletion. The algorithm changes the model {B,C} to {A,B,C}.  Now 

= {{A, D}, {A, B, C}, {C, D}. The effect on DB is to add A V D. 
Alternatively, if C1 is selected, the new minimal model {A, B} is added. The new 
= {{A,B}, {A,D}, {B,C}, {C,D}}. The effect on DB is to delete C VD. 

Selecting C 3 has the same effect as selecting C 2. [] 

The following lemma shows that Algorithm 5 accomplishes the desired deletion. 

LEMMA 4.4. Let DB be a stratified deductive database in L. Let P be an atom in L x 
and assume DB ~- P. Then the deductive database DB t, constructed by Algorithm 5 
does not imply P. That is, DB' ~/ P. " 

Proof The construction creates a database with a minimal model where the clause 
Ci selected in step 4 is not true. [] 

The next result shows in what sense the deletion is minimal. First of all, minimality 
is defined with respect to the Cj that is chosen in step 4. Observe that if step 5 or the 
first part in step 7 is the step executed to obtain DB ~ then EbB, ~- EbB. Hence, if 
insertions are preferred over deletions, a Cj should be chosen for which step 5 or 
the first part of step 7 is applicable. Under these considerations there is no database 
ED~,, that does not imply the chosen Cj that is weaker than EbB but stronger than 

E D B ,  . 

T H E O R E M  4.5. (1) There does not exist DB", such that DB"~/Cj and 
Cn(EDs,) NCn(ED~)C Cn(ED~,,)ACn(EDB). (2) There does not exist DB", such 
that DB"~¢ Cj, Cn(EDB,)('] Cn(EDB)= C n ( E o a , ) N  Cn(EDB), EDB' t-EDB,, , EDB,, ~¢ 

E D B  t . 

Proof. Case 1. Cj is negative, -~E 1 V . . .  V-7 E k. In this case E~B, (']EDB = EDB, 
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hence statement 1 is satisfied automatically. For  statement 2, the existence of such an 

EDB" would require some a tom missing from a minimal model of  ED~,, which is im- 

possible due to the way the algorithm constructs EDB'. 

Case 2. Cj is mixed, -,El V • .. V ~ Ek V A 1 V • .. V A t. There are two possibilities. 
First, if there exists a minimal model that contains no Aj, 1 <_j <_ l, then the 

proof  is similar to case 1. Second, if originally EDe ~- A1 V . . .  V A1, then As V . . .  V Az 
now must be deleted. The algorithm replaces AI V .- • V Al by A 1 V • -- V AI V B, for 
all possible ground atoms B not in the disjunction. Clearly this is minimal 
(see Deletion 2, Algorithm 3) and conditions 1 and 2 are satisfied. 

Case 3. Cj is positive. Same argument as for the second part  of  case 2. I I  

5. Conclusion 

We have developed algorithms for the insertion and deletion of intensional atoms 
into and from stratified disjunctive databases. We have also shown in what sense 

these algorithms are optimal. There are a variety of  ways in which this work can 
be extended. For  example, it would be useful to consider Skolem constants, as in 
[8], to apply this approach to programs with variables; and it may be possible to 
use the tree representation of the minimal models of  a disjunctive database 
described in [3] to implement the insertion of information into the stratified 

database. Such algorithms are currently under investigation. The most  technically 
challenging project, however, would be to extend the algorithms developed here to 

a richer class of  disjunctive databases which are not stratified, and also rules that 
contain disjunctions in their heads. 
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