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1 Introduction

Deontic logic was originally developed as a tool for formalizing normative reasoning in ethical

and legal contexts, and has since been explored primarily by philosophical logicians and a

few legal theorists. As it turns out, however, the subject also has a bearing on arti�cial

intelligence, for at least three reasons. First, deontic logic is often employed as a formalism

for knowledge representation in the legal domain; references to some of these applications,

as well as others in computer science, can be found in Wieringa and Meyer [39]. Second,

as Davis [7, p. 448] points out, we would eventually want to encode at least a rudimentary

system of norms in any intelligent system, particularly an autonomous system; and the

language of deontic logic seems a promising candidate for providing a declarative statement

of the appropriate prohibitions, permissions, and obligations. And third, the formalism of

deontic logic can be applied not only to legal and ethical reasoning, but also to the kind of

normative reasoning about goals studied, for example, in Wellman and Doyle [38], and may

thus have a role in the theory of planning as well.

Ever since its inception in the work of von Wright [37], deontic logic has been developed

primarily as a species of modal logic. I argue in this paper, however, that the techniques

of nonmonotonic logic may provide a better theoretical framework|at least for the for-

malization of commonsense normative reasoning|than the usual modal treatment. After

reviewing some standard approaches to deontic logic, I focus on two areas in which nonmono-

tonic techniques promise improved understanding: reasoning in the presence of conicting

obligations, and reasoning with conditional obligations.

2 Modal techniques in deontic logic

2.1 Standard deontic logic

On the usual approach to deontic logic, obligation is interpreted as a kind of necessity, which

can be modeled using possible worlds techniques. The most familiar theory of this kind,

known as standard deontic logic, is based on models of the formM = hW;f; vi, withW a set
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of possible worlds, v a valuation mapping sentence letters into sets of worlds at which they

are true, and f a function mapping each world into a nonempty set of worlds. Where � is an

individual world, f(�) can be thought of as the set of worlds ideal from the standpoint of �,

those in which all the oughts in force at � are satis�ed; or if we follow the common practice

of identifying propositions with sets of worlds, f(�) can then be viewed as a proposition

expressing the standard of obligation at work in �.

Against the background of these standard deontic models, the valuation rule for the

connective, representing `It ought to be the case that : : : ', is given as

M; � j=A if and only if f(�) � jAj,

with jAj representing the set of worlds in which A is true. The idea is that A should hold

just in case A is a necessary condition for things turning out as they should|just in case A

is entailed by the relevant standard of obligation.

Let us say that a situation gives rise to a normative conict if it presents both of two

conicting propositions as obligatory|if, for example, it supports the truth of bothA and

:A. We often seem to face conicts like this in everyday life, and there are a number of

vivid examples in philosophy and literature. Perhaps the best known of these is Sartre's de-

scription in [29] of a student during the Second World War who felt for reasons of patriotism

and vengeance (his brother had been killed by the Germans) that he ought to leave home

in order to join the Free French, but who felt also, for reasons of sympathy and personal

devotion, that he ought to stay at home in order to care for his mother.

Sartre presents this student's situation in a compelling way that really does make it seem

as if he had been confronted with conicting, and perhaps irreconcilable, moral standards.

However, if standard deontic logic is correct, Sartre is mistaken: the student did not face

a normative conict|no one ever does, because according to standard deontic logic, such

a conict is impossible. This is easy to see: in order for A and :A to hold jointly at

a world �, we would need both f(�) � jAj and f(�) � j:Aj, from which it follows that

f(�) would have to be empty; but in these standard models, the only requirement on f is

that it should map each world into a nonempty set. Apart from what is presupposed by the
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background framework of normal modal logic, then, the entire content of standard deontic

logic seems to be simply that there are no normative conicts; and in fact, validity in these

standard models can be axiomatized by supplementing the basic modal logic K with

:(A ^:A)

as an additional axiom schema. The resulting system is known as KD.

Now this feature of standard deontic logic|that it rules out normative conicts|has

received extensive discussion in the philosophical literature, by writers such as Donagan

[10], Foot [11], Lemmon [20], Marcus [23], and Williams [40]. The bulk of this literature is

concerned with the special case in which the norms of interest are the oughts generated by

an ideal ethical theory. It is often argued, as by Donagan, for example, that an ideal moral

theory could not be structured so as to generating conicting oughts; and it is sometimes

concluded from this that it is a desirable feature of standard deontic logic that it rules

out the possibility of normative conict. However, such a conclusion is surely unjusti�ed

if we think of the oughts represented in a deontic logic as including, not simply the norms

generated by an ideal ethical theory, but also those involved in our everyday, commonsense

normative reasoning.

For one thing, the task of actually applying an ideal moral theory to each of the ethical

decisions we face every day would be di�cult and time-consuming; and it seems unlikely,

for most of us, that such a theory could have any more bearing upon our day to day ethical

reasoning than physics has upon our everyday reasoning about objects in the world. Much of

our commonsense ethical thinking seems to be guided instead, not by the dictates of moral

theory, but by simple rules of thumb|`Return what you borrow', `Don't cause harm'|

and it is not hard to generate conicts among these.1 Moreover, our normative reasoning

more generally is concerned, not only with ethical matters, but also with the dictates of

\Small Moralls" (etiquette, aesthetics); and of course, these lead to other conicts both

among themselves and with the oughts of morality. Therefore, even if it does turns out

1The relation between moral theory and the rules of thumb that guide everyday ethical decisions has

recently been discussed by Dennett [9].
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that there can be no clashes among the oughts generated by an ideal ethical theory, it still

seems necessary to allow for conicting oughts in any logic that aims to represent either our

commonsense ethical thinking or our normative reasoning more broadly.

The need for a deontic logic that tolerates conicting norms is even clearer if we imagine

an intelligent system that is designed to reason about and achieve certain goals supplied

to it by its users, and that represents those goals declaratively as ought statements in a

deontic logic. It is always possible for di�erent users (or even for the same user) to supply

the system with conicting goals; and in such a case, we would not want the mechanisms

for reasoning about goals to break down entirely, as it would if it were guided by standard

deontic logic.

This kind of situation is analogous to that envisioned by Belnap [2, 3] as a way of mo-

tivating the applicability of contradiction tolerating logics (in particular, a relevance logic)

in the area of automated reasoning. Belnap imagines a computer designed to reason from

data supplied by its users; and he argues that there are situations in which, even if the

users inadvertently supply the machine with inconsistent information|say, A and :A|we

would not want it to conclude that everything is true. In the same way, we can easily

imagine a situation in which, even if a machine happens to be supplied by its users with

inconsistent goals|say, A and :A|we would not want it to conclude, as in standard

deontic logic, that it should regard every proposition as a goal. Indeed, if the module for

reasoning about goals in such a machine is integrated with the module for reasoning about

facts, then the present situation is actually a special case of Belnap's: since A and :A

are logically inconsistent in the standard deontic logic, a reasoner guided by this system

would have to conclude from this information, not only that everything is obligatory, but

also that everything is true.

2.2 A weak modal logic

One strategy for adapting deontic logic to reason sensibly in the face of conicting norms

is to continue the attempt to develop the subject within a modal framework, but simply

to move to a weaker, non-normal modal logic. The clearest example of this is Chellas's
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suggestion, in [5] and [6, Sections 6.5 and 10.2], that we adopt as our deontic models certain

minimal models for modal logics, in which the accessibility relation maps individual worlds,

not into sets of worlds, but into sets of propositions|sets of sets of worlds. More exactly,

Chellas recommends a deontic logic based on models of the form M = hW;N; vi, with W

and v as before, but with N a function fromW into P(P(W )), subject to the condition that,

for each of the propositions X and Y in P(W ), if X 2 N(�) and X � Y , then Y 2 N(�).2

Intuitively, the various propositions belonging to N(�) can be thought of as expressing the

variety of di�erent ways in which things ought to turn out at �, the variety of di�erent

standards of obligation at work in �.

In these models, the truth conditions for ought statements can be presented through the

rule

M; � j=A if and only if there is an X 2 N(�) such that X � jAj;

the idea is that A should hold just in case A is a necessary condition for satisfying some

standard of obligation in force at �. And validity is axiomatized by the system EM, which

results from supplementing ordinary propositional logic with the rule schema

A � B

A �B:

In fact, this logic is weak enough to tolerate normative conicts: the statements A

and :A are jointly satis�able, without entailing B. However, in weakening standard

deontic logic to allow conicts, it seems that we have now arrived at a system that is too

weak: it fails to validate intuitively desirable inferences. Suppose, for example, that an agent

is subject to the following two norms, the �rst issuing perhaps from some legal authority,

the second from religion or conscience:

2Chellas recommends also the further condition that ; 62 N (�). We ignore this condition because it

seems like an overly strong constraint for many application areas, particularly the case in which the oughts

of a deontic logic represent goals supplied to an intelligent system by its users. We would not want to rule

out the possibility that a fallible user might present an intelligent system with an impossible goal (\Find a

rational root for this equation"), or to abandon sensible reasoning in such a case.
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You ought either to �ght in the army or perform alternative service,

You ought not to �ght in the army,

We can represent these norms through the formulas (F _ S) and :F . Now it seems

intuitively that the agent should conclude from these premises that he ought to perform

alternative service. However, the inference from(F _ S) and :F to S is not valid in

the logic EM.

Let us look at this problem a bit more closely. Any logical consequence of an ought

derivable in EM is itself derivable as an ought in this system; and of course, S is a logical

consequence of (F _ S) ^ :F . Therefore, we would be able to deriveS from our premise

set if we could somehow merge the individual oughts (F _ S) and :F together into a

joint ought of the form

((F _ S) ^ :F ):

But how could we get this latter statement? It seems possible to derive it from our premises

only through a rule of the form

A B

(A ^ B);

dubbed by Williams [40] as the rule of agglomeration. However, such a rule is not admissible

in EM, and in fact, it is exactly the kind of thing that this logic is designed to avoid: from

A and :A, agglomeration would allow us to conclude (A ^ :A), and so B for

arbitrary B, due to closure of ought under logical consequence.

Evidently, the issue of agglomeration is crucial for a proper logical understanding of

normative conicts. We do not want to allow unrestricted agglomeration, as in the standard

deontic logic KD ; this would force us to treat conicting oughts as incoherent. On the other

hand, we do not want to block agglomeration entirely, as in the weak deontic logic EM ; we

would then miss certain desirable consequences in cases in which conict is not a problem.
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3 An approach based on nonmonotonic logic

As far as I know, the only intuitively adequate account of reasoning in the presence of

normative conicts set out in the literature so far occurs in van Fraassen's [36], a paper that

is largely devoted to more broadly philosophical issues. Suppose that � is a set of oughts,

possibly conicting. The basic idea behind van Fraassen's suggestion is that A should

follow from � just in case satisfying A is a necessary condition for ful�lling, not just a single

ought from �, but some maximal set of these.

Formally, the account relies on a notion of score. Where M is an (ordinary, classical)

model of the underlying, ought-free language, the score ofM, relative to �, is de�ned as the

set of oughts from � that it ful�lls: score�(M) = fB 2 � :M j= Bg. In this non-modal

framework, we now let jAj represent the ordinary model class of A: jAj = fM :M j= Ag.

Van Fraassen's the notion of deontic consequence, which we represent as the relation `F , is

then de�ned as follows:

De�nition 1 � `F A if and only if there is a modelM1 2 jAj for which there is no model

M2 2 j:Aj such that score�(M1) � score�(M2).

As in the logic EM, this notion of consequence is weak enough that conicting oughts do

not imply arbitrary oughts: we cannot derive B from A and :A. However, unlike

EM, this way of characterizing deontic consequence does allow what seems to be the right

degree of agglomeration: we can agglomerate individual oughts as long as this does not lead

to the introduction of an inconsistent formula within the scope of an ought. For example,

although we do not get

A;:A `F (A ^ :A);

we do have

(F _ S);:F `F ((F _ S) ^ :F );

and then, since any logical consequence of an ought is itself an ought, this tells us that

(F _ S);:F `F S:
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Although this suggestion of van Fraassen's does appear to capture an intuitively attractive

and stable account of reasoning in the presence of conicting norms, and although the

general topic of normative conict has been an issue of intense concern in philosophy for

over a decade, it is hard to �nd any discussion of this proposal in either the philosophical

or the logical literature on the topic. I feel that part of the reason for this is that both

philosophers and logicians are accustomed to approaching deontic logic from the theoretical

perspective of modal logic; and as we will see, van Fraassen's proposal does not �t naturally

within this framework. It turns out, however, that the proposal can be accommodated

within the framework of nonmonotonic logic. In fact, it can be interpreted in a natural way

within theories exemplifying two of the most popular techniques developed for the study of

nonmonotonic reasoning|the �xed point and model preference techniques.

3.1 Default logic

The best known of the �xed point approaches to nonmonotonic reasoning is Reiter's default

logic [28], a theory that supplements ordinary logic with new rules if inference, known

as default rules, and then modi�es the ordinary notion of logical consequence in order to

accommodate these new rules.

An ordinary rule of inference (with a single premise) can be depicted simply as a premise-

conclusion pair, such as (A=B); such a rule commits a reasoner to B once A has been

established. By contrast, a default rule is a triple, such as (A : C = B); very roughly, this

rule commits the reasoner to B if A has been established and, in addition, C is consistent

with the reasoner's conclusion set. A default theory is a pair � = hW;Di, in which is W is

a set of ordinary formulas and D is a set of default rules.

In specifying the conclusions derivable from a default theory, Reiter �rst de�nes an oper-

ator � that uses the information from a particular default theory to map formula sets into

formula sets. Where � = hW;Di is a default theory and S is some set of formulas, ��(S)

is the minimal set satisfying the following three conditions:

1. W � ��(S);
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2. Cn[��(S)] = ��(S);

3. For each (A : B = C) 2 D, if A 2 ��(S) and :B 62 S, then C 2 ��(S).

The operator �� maps any formula set S into the minimal superset of W that is closed

under both ordinary consequence and the default rules from D that are applicable in S.

The appropriate conclusion sets of default theories, known as extensions, are then de�ned

as the �xed points of this operator: the set E is an extension of the default theory � if and

only if ��(E) = E.

Default logic is a conservative extension of ordinary classical logic, in the sense that the

extension of a default theory hW;Di in which D is empty is simply Cn[W], the ordinary

consequence set of W. In contrast to the situation in ordinary logic, however, not every

default theory leads to a single set of appropriate conclusions. Some have no extensions;

these theories are often viewed as incoherent. More interesting, for our purposes, some lead

to multiple extensions. A standard example arises when we try to encode as a default theory

the following set of facts:

Nixon is a Quaker,

Nixon is a republican,

Quakers tend to be paci�sts,

Republicans tend not to be paci�sts.

If we instantiate for Nixon the general statements expressed here about Quakers and re-

publicans, the resulting theory is � = hW;Di, with W = fQ(n); R(n)g and D = f(Q(n) :

P (n) = P (n)); (R(n) : :P (n) = :P (n))g. This theory allows as extensions both Cn[W [

fP (n)g] and Cn[W [ f:P (n)g].

In cases like this, when a default theory leads to more than one extension, it is di�cult

to decide what conclusions a reasoner should actually draw from the information contained

in the theory. For this reason, the multiple extensions associated with default theories often

seem like an embarrassment: most of the time, what we really want is a unique conclusion

set, and so we are forced either to select nondeterministically from among these various

extensions, or else to combine them somehow (usually by taking their intersection) into a
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unique set. When it comes to interpreting deontic ideas, however, these multiple extensions

are no longer embarrassing: they give us exactly what we need for understanding the logic

of normative conict.

Formally, the interpretation of van Fraassen's theory within default logic is straight-

forward. Where � is some set of ought statements, we can de�ne the default theory

�� = hW;Di, where W = ; and D = f(> : B = B) : B 2 �g (with > the universal

truth). It can then be shown that

Theorem 1 � `F A if and only if A 2 E for some extension E of ��.

A proof can be found in [16].

3.2 A model preference logic

A di�erent approach to nonmonotonic reasoning is taken by theories falling within the model

preference framework. Here, the idea is that the standard notion of logical consequence, ac-

cording to which a formula is a consequence of some premise set just in case it is true in all

models of that premise set, is too severe as a representation of commonsense consequence,

because it forces us to consider, in addition to the most plausible models of those premises,

also others that are intuitively more bizarre. Model preference logics proceed by specifying

a preference ordering on the background models, and then de�ning a new notion of conse-

quence according to which a formula follows from a premise set just in case it holds in all

the most preferred models of those premises.

The original and best known approach falling within this framework is the semantic

theory underlying McCarthy's circumscription [25], in which models are ordered according

to the extension assigned to a particular predicate, usually a predicate representing instances

of some abnormality. On this approach, the information

Tweety is a bird,

Birds tend to y,

for example, could be represented through the formulas
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B(t),

8x[B(x)^ :Ab(x) � F (x)],

where the second of these premises states, more exactly, that birds y unless they are

abnormal. Models (sharing the same domain) might then be ordered according to the

extension assigned to the abnormality predicate Ab, with a modelM1 preferred to a model

M2 whenever the extension assigned by M1 to Ab is a subset of that assigned by M2. In

the most preferred models, of course, the extension of Ab will be empty. Therefore, even

though F (t)|representing the conclusion that Tweety ies|does not hold in all models of

the above premises, and so is not logically entailed, it does hold in all of the most preferred

models of these premises, and can be shown to follow from the premises through a simple

application of McCarthy's circumscription schema.

There have been a number of variations of McCarthy's original notion of circumscrip-

tion, involving increasingly sophisticated preference relations among models; and the idea

of model preference has been explored in other contexts as well. Another early example

is Minker's [24] generalization of the closed world assumption to the context of disjunctive

databases, which takes the most preferred models of a database to be those in which the

fewest atomic sentences are true. Preference orderings involving temporal considerations

have been considered by researchers such as Kautz [18] and Shoham [30]. And the theory

of model preference logics has been studied from a very general point of view in a series of

papers by Lehmann and his colleagues, beginning with [19].

It was pointed out by van Benthem [34] that van Fraassen's theory, as he originally states

it, can also be seen as a certain kind of model preference logic, in which the preference order

over models is not absolute, as in the theories previously mentioned, but dependent on the

background premise set. Where � is a set of ought statements, van Benthem suggests an

ordering �� on models, de�ned so that M1 �� M2 just in case M2 j= B impliesM1 j= B

for each B 2 �; the idea is that the more preferred models relative to � are those that

satisfy more of the oughts from �. It can then be seen that:

Theorem 2 � `F A if and only if there is a model M such that M j= A and M0 j= A

for all models M0 �� M.
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The proof is trivial, of course, since the present characterization of deontic consequence is

simply a reformulation of van Fraassen's original de�nition that makes the idea of model

preference more explicit.

4 Exploring the theory

4.1 The consequence relation

Although, as we have seen, van Fraassen's notion of deontic consequence �ts naturally

within the framework of nonmonotonic logic, the consequence relation `F is itself monotonic:

� `F A implies �;�0 `F A. This result follows at once from our Theorem 1 together

with Theorem 3.2 of Reiter [28], and also, more directly, from Theorem 3 below; what it

suggests is that, in relating van Fraassen's account of oughts to nonmonotonic logics, we

are not actually relying on the nonmonotonicity of these theories, but only on their ability

to yield multiple, mutually inconsistent sets of sentences as consequence sets for a given set

of premises. This will change in Section 6, where we do appeal to nonmonotonicity in our

treatment of conditional oughts.

It is easy to see also both that the logical truths follow as oughts from any premise set,

and, as mentioned, that any logical consequence of a generated ought is itself generated as

an ought: ` A implies � `F A; and � `F A and A ` B together imply � `F B.

Moreover, van Fraassen's consequence relation allows us to derive only consistent formulas

as oughts (a form of ought implies can), no matter what ought statements it is supplied with

as premises: if � `F A, then A is consistent.

Because only consistent formulas are derivable as oughts, we can see at once that the

consequence relation `F is not reexive. Although an inconsistent ought might appear

among some set of premises, it cannot appear as a conclusion of those premises; and so we

do not have

(A ^ :A) `F (A ^ :A);

for example. From this, it follows that van Fraassen's theory cannot be captured as a

conventional modal logic, since any such logic carries a reexive consequence relation.
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In addition, the `F relation fails to satisfy the cut rule; for example, although we have

(A ^B) `F A

and

A;:B `F (A ^ :B);

we do not have

(A ^B);:B `F (A ^ :B):

This observation, along with the example, is again due to van Benthem [34].

Finally, it is perhaps obvious, but just worth pointing out, that the set of oughts supported

by a particular premise set is sensitive, not only to the total model theoretic content of the

various ought statements in the premises, but to the presentation of this content, the way

it is divided up among the various oughts. If � is a background set of ought statements, let

� = fB :B 2 �g represent the model theoretic content of �. Then it is possible to have

two sets of ought statements �1 and �2 equivalent in content in the sense that j�1j = j�2j,

and also to have �1 `F A, without having �2 `F A. For example, let �1 = fA;:Ag

and �2 = f(A^:A)g. Then although j�1j = j�2j, we have �1 `F A, but not �2 `F A.

4.2 Relation to familiar deontic logics

As might be expected, van Fraassen's consequence relation `F generally lies between `EM

and `KD , the consequence relations associated with EM and KD ; it generally allows us to

derive more oughts from a given set of premises than EM and fewer than KD. But there are

exceptions to this general rule, and we need to introduce some technical vocabulary in order

to state the matter exactly.

First, let us o�cially characterize an ought statement as a statement of the formA in

which A is -free. Since the standard modal theories allow for iterated deontic operators

and van Fraassen's theory does not, we must restrict ourselves in comparisons to the shared

sub-language of ought statements. Next, let us de�ne a set of ought statements � as unit

consistent if each individual ought belonging to the set is itself satis�able|that is, if B is
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consistent for each B 2 �. And let us say that � is not just unit consistent but consistent

if the oughts belonging to � are jointly satis�able|that is, if � itself is consistent.

Before working out the exact relations among these di�erent deontic logics, we �rst o�er

yet another characterization of the consequence relation `F , which is perhaps the most

straightforward.

Theorem 3 Let � be a set of ought statements. Then � `F A if and only if there a

consistent subset G of � such that G ` A.

Proof First, suppose � `F A. LetM1 be as in De�nition 1, and let G = Th(M1)\�.

Clearly, G is consistent and a subset of �; and it is clear also that score�(M) = score�(M0)

for anyM;M0 2 jGj. To see that G ` A, suppose otherwise: then there exists a modelM2 2

jGj\ j:Aj; but in that case we have score�(M2) = score�(M1), contrary to the de�nition of

`F . Next, suppose G ` A for some consistent subset G of �. Standard techniques allow us

to de�ne a maximal consistent subset G� of � containing G. Since G� is consistent, and since

it must also entail A, we have some model M1 2 jG�j � jAj; and then since G� is maximal,

it is easy to see that there can be no M2 2 j:Aj such that score�(M1) � score�(M2). So

� `F A.

We consider �rst the relations between van Fraassen's theory and EM. If a set of ought

statements � is not even unit consistent, we must have � `EM A for every A; and so EM

is stronger than van Fraassen's theory, since this theory allows us to derive only consistent

oughts. As we have seen from the army example discussed in Sections 2 and 3, however,

van Fraassen's theory does allow us to draw conclusions from certain unit consistent sets

that cannot be derived in EM ; and together with the following theorem, this shows that the

theory is properly stronger than EM for unit consistent sets of oughts.

Theorem 4 Let � be a unit consistent set of ought statements. Then if � `EM A, it

follows that � `F A.

Proof We begin by constructing a model for the modal language in which the possible

worlds are ordinary models of the underlying classical language. Let M = hW;N; vi, where
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W is the set of models of the underlying classical language, and in which N(�) = fX : jBj �

X and  B 2 �g for each � 2 W , and v(p) = jpj for each proposition letter p. It is clear

that M is a minimal model satisfying the condition that, if X 2 N(�) and X � Y , then

Y 2 N(�); and clear also that M; � j= � for each � 2 W . Therefore, since � `EM A, we

know that M j= A; that is, for each � 2 W , there is an X 2 N(�) such that X � jAj.

From this and the de�nition of N , we can conclude that jBj � jAj for some B 2 �.

However, since � is unit consistent, fBg is then a consistent subset of � that entails A; and

so we can conclude that � `F A from Theorem 3.

We turn now to KD. Of course, anything can be derived in KD from an inconsistent set

of oughts; and so, together with the following theorem, this shows that, as expected, KD is

properly stronger than van Fraassen's theory.

Theorem 5 Let � be a set of ought statements. Then if � `F A, it follows that � `KD

A.

Proof Suppose � `F A. By Theorem 3, it follows that G ` A for some subset G of �;

and so ` (B1 ^ : : : ^Bn) � A, for some B1; : : : ; Bn 2 �. Since KD is a normal modal logic,

we can conclude from this that `KD (B1 ^ : : : ^Bn) � A; and so � `KD A, since

B1; : : : ;Bn 2 �.

It is reassuring to see, however, that, unlike EM, van Fraassen's theory di�ers from KD only

when applied to an inconsistent set of ought statements; otherwise, the two theories yield

exactly the same results.

Theorem 6 Let � be a consistent set of ought statements. Then if � `KD A, it follows

that � `F A.

Proof As in the proof of Theorem 4, we construct a model for the modal language

with the ordinary models of the underlying classical language as its possible worlds. Let

M = hW;f; vi, with W and v as before, but in which f(�) = j�j for each � 2 W . Since

� is consistent, f(�) is always a nonempty set; and so M is a standard deontic model.

Moreover, M j= �, and so since � `KD A, we have M j= A; that is, f(�) � jAj for
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each � 2 W . From this and the de�nition of f , we can conclude that j�j � jAj; and since �

is itself consistent, Theorem 3 allows us to conclude that � `F A.

4.3 Some variations

Although van Fraassen's account embodies an intuitively coherent and stable approach to

reasoning in the presence of normative conicts, it is not the only such approach. In this

section, I simply mention a couple of variations on van Fraassen's original account|one that

generates fewer oughts from a given premise set, and one that generates more.

First, suppose an agent is givenA and:A as premises. We have assumed so far that

the agent should draw from this information both the conclusions A and :A, though

not the agglomerate (A ^ :A). But there is another option. It is possible to imagine in

this case that the agent might want to resist the conclusion that A precisely because he

has reason to believe that :A, and that he might likewise want to resist the conclusion

that :A because he has reason to believe that A. And in general, it is possible to

imagine that the agent might want to conclude that a proposition ought to hold just in case

he has reason for thinking that it ought to hold, and no reason for thinking that it ought not

to.3 In the present environment, we can capture this approach to deontic reasoning quite

simply, by modifying the idea underlying Theorem 1 to reect a \skeptical" treatment of

extensions. We can suppose that A follows from a set � of ought statements just in case

A belongs, not simply to some extension of ��, but to each such extension.

Second, we have noted that van Fraassen's treatment ignores inconsistent oughts that

3It may be a view along these lines that lies behind the following passage by Foot:

What we must ask : : : is whether in cases of irresolvable moral conict we have to back both the

judgment in favor of doing a and the judgment in favor of b, although doing b involves not doing

a. Is it not possible that we should rather declare that the two are incommensurable, so that

we have nothing to say about the overall merits of a and b, whether because there is nothing

that we can say or because there is no truth of the matter and therefore nothing to be said [11,

p. 395{396].
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occur among the premises: from((A^:A)^B), for example, no oughts can be concluded

except the logical truths. There is another option, however. We can imagine that an agent

provided with an inconsistent ought, which cannot be satis�ed entirely, might still wish to

satisfy \as much" of this formula as possible. This approach can be captured by adapting

an idea set out in another context in Anderson et al. [1, Section 82.4]: we �rst articulate

the premise set of ought statements into a larger set representing its intended meaning more

explicitly, and then apply van Fraassen's approach to this articulated set of premises in order

to draw the appropriate conclusions.

The procedure suggested by Anderson et al. for articulating the premise set, and defended

in detail there, is as follows (we con�ne ourselves to the propositional case). Implication is

�rst eliminated from ought statements, so that the resulting formulas are written in ^, _, and

:; and an occurrence of a subformula in an ought statement is de�ned as positive or negative

depending on whether it lies within the scope of an even or odd number of negations. Given

a premise set of ought statements �, the articulated set �� is then de�ned as the smallest

superset of � that contains both (: : :B : : :) and (: : : C : : :) whenever it contains either

(: : : (B^C) : : :) with the occurrence of the conjunction positive, or(: : : (B_C) : : :) with

the occurrence of the disjunction negative. As an example, where � = f((A^ :A)^B)g,

then �� = � [ f(A ^B);(:A ^ B);A;:A;Bg.

Given this idea of articulation, the new notion of deontic consequence can be de�ned in

the obvious way: A can be said to follow from � in the present sense just in case it follows

from �� according to van Fraassen's original de�nition|that is, just in case �� `F A.

With � as above, for example, we can reach the following conclusions in the present sense,

none of which follows according to van Fraassen's original de�nition: (A^B),(:A^B),

A,:A, and B.

Of course, the two variations suggested here on van Fraassen's original account run in

orthogonal directions, and they can be combined without mutual interference: in reasoning

from a premise set �, an agent might �rst extend this to the articulated set ��, and then

draw only those conclusions contained in each extension of the associated default theory

���. Where again � = f((A ^ :A) ^ B)g, an agent reasoning in this way would have to
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abandon all the conclusions listed above exceptB.

5 Conditional oughts

Much of our normative reasoning involves ought statements that are not absolute but con-

ditional, as in `Given A, it ought to be that B', which we represent through the standard

notation (B=A).

In the literature, two general styles of analysis have been proposed for this kind of con-

ditional ought. First, some writers have proposed an analysis involving some combination

of an ordinary ought and an ordinary material conditional. Von Wright [37] originally sug-

gested, for example, that the conditional ought should be analyzed through a formula of the

form (A � B), and Prior [27] suggested A � B (these two suggestions are compared

in Hintikka [15]). Others|such as Hansson [14], Lewis [21, Section 5.1], and van Fraassen

[35]|have suggested that (B=A) should be analyzed instead as a primitive dyadic modal

construction within the general framework of conditional logic (these various suggestions

are compared in Lewis [22]). As usual in conditional logic, this kind of analysis relies on a

background ordering of the possible worlds, intended to represent a relation of similarity; the

basic idea is then that (B=A) should be true at a world if B is obligatory at the nearest

or most similar worlds in which A is true.

As it turns out, there are problems with each of these two general lines of approach,

concerning the degree of strengthening, or monotonicity, to be allowed in the antecedent of

a conditional ought. If (B=A) is analyzed either as A � B or as (A � B), then the

conditional ought allows unrestricted strengthening in the antecedent: (B=A ^ C) then

follows from (B=A) for any statement C. This is easy to see. First, (A ^ C) � B is a

consequence of A � B; and second, since (A ^ C) � B is a consequence of A � B and

oughts are closed under consequence,((A^C) � B) follows from(A � B). On the other

hand, the analysis of conditional oughts based on the semantic framework of conditional logic

blocks strengthening in the antecedent completely. There is no way to derive(B=A ^ C)

from(B=A); there is no reason to think, just because B is obligatory in the nearest worlds
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in which A holds, that it should be obligatory also in the nearest worlds in which A ^ C

holds.

It seems, however, that neither of these extreme approaches to strengthening in the

antecedent of a conditional ought is correct, as we can see through an example. Suppose

that an agent, hoping to abide by the proprieties, decides that his behavior should be

governed by the following three oughts:

You ought not to eat with your �ngers,

You ought to put your napkin on your lap,

If you are served asparagus, you ought to eat it with your �ngers.

Taking an unconditional ought, in the usual way, as an ought conditional on the universal

truth >, we can represent these three statements as (:F=>), (N=>), and (F=A).

Now it seems, intuitively, that the third of these oughts should override the �rst in case

asparagus is served, so that in that case, the agent should not conclude that he ought not

to eat with his �ngers; but even if asparagus is served, nothing interferes with the second of

these oughts, and so the agent should still conclude that he ought to put his napkin on his

lap. That is: from the given premises, we want to derive(N=A), but not (:F=A).

The only way to derive (N=A) in this situation, it seems, is by strengthening the

antecedent of the second premise; a treatment of conditional oughts that simply rules out

this kind of strengthening, such as those based on conditional logic, will not allow us to derive

this conclusion. On the other hand, a treatment that allows unrestricted strengthening, such

as those suggested by von Wright and Prior, will incorrectly yield (:F=A) from the �rst

premise. What is needed, apparently, is a certain amount of strengthening, but not too

much: we want to allow oughts formulated explicitly only for very general circumstances

to apply also by default in more speci�c situations, unless they are overridden in those

situations.

As far as I know, no treatment of conditional oughts based on any of the standard

philosophical logics is able to model this kind of reasoning. It seems, for example, that the

consequence relation associated with any appropriate theory would have to be nonmonotonic.
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Suppose the formula (F=A) were deleted from our premise set above. In that case, since

the general injunction against eating with one's �ngers is not explicitly overridden in the

particular situation in which asparagus is served, it should apply here by default also; and

so we would want to derive(:F=A). But with (F=A) present as a premise, the general

injunction is overridden, and so (:F=A) is no longer acceptable. Adding a premise leads

us to withdraw a conclusion.

The idea of analyzing conditional oughts within the general semantic framework of con-

ditional logic led to certain departures from the earlier treatment that involved mixing

ordinary oughts with material conditionals; but in retrospect, it seems that these departures

may have been both too radical and too conservative. The way in which the departures

seem too radical is by forcing us entirely to abandon strengthening, or monotonicity, in

the antecedent of a conditional ought; for it appears that we may want to admit a cer-

tain amount of antecedent monotonicity. But the departures also seem too conservative

because, although they do abandon antecedent monotonicity, they nevertheless treat condi-

tional oughts within an ordinary logical framework, with a monotonic consequence relation;

and it appears that the consequence relation that governs our reasoning about conditional

oughts is itself nonmonotonic.

6 A nonmonotonic approach to conditional oughts

Because it seems to demand a nonmonotonic consequence relation, it is natural to hope

that a useful theory of conditional oughts might be developed within the framework of

nonmonotonic logic. This section �rst describes a preliminary attempt at developing such a

theory, which generalizes the theory of simple oughts set out earlier, and then explores some

problems with the preliminary proposal.

6.1 Conditioned extensions

We focus �rst on ought contexts: structures of the form hW;�i, like default theories, except

that the set of defaults is replaced by a set � of conditional ought statements, and the set
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of ordinary formulas is replaced by a single formula W . The two components of an ought

context are supposed to represent both the background set of conditional oughts and the

particular facts relevant to an agent's normative reasoning in that context.

Let us say that a conditional ought (B=A) is overridden in the context hW;�i just in

case there is a statement (D=C) 2 � such that (i) jW j � jCj � jAj, (ii) W [ fD;Bg

is inconsistent, and (iii) W [ fDg is consistent. The idea here is that a conditional ought

should be overridden in some context whenever another ought is applicable, more speci�c

than the original, and inconsistent with the original. In the de�nition, clause (i) tells us

that(D=C) is both applicable in the context and more speci�c than(B=A), while clause

(ii) tells us that that the two oughts are inconsistent in the context. The point of clause

(iii) is to prevent a conditional ought from being overridden by others that are themselves

inconsistent in a particular context; for example, it prevents any conditional ought from

being overridden in any context by a statement of the form (?=C), with ? universally

false.

Using this characterization of the circumstances under which conditional oughts are over-

ridden, let us now de�ne a set of sentences E as a conditioned extension of the context hW;�i

just in case there is another set F such that

F = fB : (B=A) 2 �;

jW j � jAj;

(B=A) is not overridden in hW;�i;

:B 62 Eg;

and E = Cn[fWg [ F ]. This is, of course, a �xed point de�nition; and so there is reason

to suspect, just as certain default theory lack conventional extensions, that certain ought

contexts might lack conditioned extensions. Fortunately, the suspicion turns out to be

unfounded.

Theorem 7 Every ought context hW;�i has a conditioned extension E.
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Proof Given hW;�i, �rst de�ne

F1 = fB : (B=A) 2 �;

jW j � jAj;

(B=A) is not overridden in hW;�ig;

and then letF2 be somemaximal subset of F1 that is consistent withW ; these are guaranteed

to exist. Let E = Cn[fWg [ F2]. Evidently, E is a conditioned extension of hW;�i if and

only if F2 = F (where F is as de�ned in the text); and it is clear from the de�nition of

F2 that F2 = F just in case F2 = F1 \ fB : :B 62 Eg. So suppose �rst that B 2 F1 and

:B 62 E. Then B is consistent with fWg [ F2, and so B 2 F2, since F2 is maximal. Next,

suppose B 2 F2. Of course, B 2 F1; and we must have :B 62 E as well, for otherwise we

would have both B and :B in Cn[fWg [ F2], and so F2 would not be consistent with W .

Because conditioned extensions exist for every ought context, we can de�ne a relation

`CF of conditional deontic consequence in the following way: where � is a set of conditional

oughts, we let

De�nition 2 � `CF (B=A) if and only if B 2 E for some conditioned extension E of

hA;�i.

This notion of conditional deontic consequence yields the correct results in the asparagus

case: where

� = f(:F=>);(N=>);(F=A)g;

the unique conditioned extension of hA;�i is Cn[fA;F;Ng]; and so we have � `CF (N=A),

as desired, but we do not have � `CF (:F=A). Just as in those theories based on the

semantic framework of conditional modal logics, the present account of conditional oughts

is nonmonotonic in the antecedent of the conditional. The unique conditioned extension of

h>;�i, for example, is Cn[f:F;Ng], and so we have � `CF (:F=>); but, as mentioned,

we do not have � `CF (:F=A). In addition, however, the consequence relation `CF|

unlike the consequence relation associated with conditional modal logics, and also unlike
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the earlier `F|is itself nonmonotonic. For example, let �0 = � � f(F=A)g. Then the

unique extension of hA;�0i is Cn[fA;:F;Ng], and so we have �0 `CF (:F=A); but again,

although �0 � �, we do not have � `CF (:F=A).

The present account exhibits, also, several properties desirable in a conditional deontic

logic. Since conditioned extensions are closed under logical consequence, the consequents of

supported ought statements are closed under consequence as well: if � `CF (B=A) and

B ` C, then � `CF (C=A). Again, by examining the de�nition of conditioned extensions

we can see that conditional oughts are sensitive only to the propositions expressed by their

antecedents, not to the particular sentences expressing those propositions: if jAj = jBj, then

� `CF (C=A) just in case � `CF (C=B). And �nally, an ought context hW;�i will have

an inconsistent extension if and only if the formula W is itself inconsistent; and from this

we conclude that � `CF (?=A) if and only if jAj = j?j.4

It turns out, moreover, that the consequence relation `CF is a conservative extension of

the relation `F described earlier, in the following sense:

Theorem 8 Where � is a set of conditional oughts, let �0 = fB :(B=A) 2 � and jAj =

j>jg. Then �0 `F C if and only if � `CF (C=>).

Proof (sketch) We know by Theorem 1 that �0 `F C if and only if C 2 E for some

extension E of the default theory ��0. Reection on the construction underlying Theorem

2.1 of Reiter [28] shows that E is an extension of ��0 just in case there is a set F such that

F = fB : B 2 �0;

:B 62 Eg;

and E = Cn[F ]. It is easy to see that no conditional ought can be overridden in any context

of the form h>;�i; and of course j>j � jAj if and only if jAj = j>j. Therefore, we can

4The three properties described in this paragraph can be compared to the rules RCOEA, RCOM, and

COD from Chellas[6, Section 10.2].
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conclude that E is an extension of ��0 just in case there is a set F such that

F = fB : (B=A) 2 �;

j>j � jAj;

(B=A) is not overridden in h>;�i;

:B 62 Eg;

and E = Cn[f>g [ F ]; that is, just in case E is a conditioned extension of h>;�i. The

theorem then follows at once from the de�nition of the relation `CF .

From this result and the discussion in Section 4, we can conclude that the consequence

relation `CF , like `F , satis�es neither reexivity nor cut.

6.2 Problems with the theory

This account of conditional deontic consequence exhibits a number of advantages not found

in the usual modal approaches. The consequence relation `CF is itself nonmonotonic, as is

the antecedent place in derived conditional oughts; but unlike those accounts based on the

the semantic framework of conditional logic, the current account does allow for a certain

amount of strengthening, or monotonicity, in the antecedent of these derived oughts. And

the theory generalizes the earlier treatment of reasoning in the presence of normative conict,

which already lies beyond the scope of modal approaches to deontic logic.

However, the present account of conditional deontic consequence is beset by several prob-

lems, and so can be taken, at best, only as a preliminary. We close simply by listing four of

these problems.

First and most important, the account does not allow any kind of transitivity, or chaining,

across conditional oughts. We cannot derive (C=A) from a premise set consisting of

(C=B) and (B=A); and in particular, taking simple oughts as oughts conditional upon

>, we cannot deriveB from(B=A) andA. Of course, this situation is no worse than

the situation in those accounts based on conditional logics, which also forbid transitivity

of the conditional, and of the deontic conditional. However, the nonmonotonic framework

allows for a new possibility that is not present in these standard logics|the possibility that
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transitivity should hold as a defeasible rule, subject to override. This is, in fact, exactly how

transitivity is supposed to work in a number of application areas of nonmonotonic logics,

such as the kind of reasoning supported by nonmonotonic inheritance hierarchies. Here,

we would want to conclude, for example, that Elton is underpaid given only the premises

that Elton is a musician and that musicians tend to be underpaid; but we would allow this

conclusion to be overridden by the additional information that Elton is a rock star, where

rock stars are a particular class of musicians that tend not to be underpaid.

I think that it would be natural to incorporate this kind of defeasible transitivity also

into an account of conditional deontic reasoning; but I have not attempted to do so here

because the task of combining defeasible transitivity with a proper treatment of overriding

(known in the inheritance literature as \preemption") presents signi�cant technical and

conceptual problems. In spite of the e�orts of a number of researchers|including Boutilier

[4], Delgrande [8], Ge�ner [12], and Pollock [26]|I know of no solution to these problems

for a language as expressive as propositional calculus that is generally accepted; and the

matter is not settled even for the very simple language of inheritance hierarchies, as can be

seen from Horty [17] and Touretzky et al. [32].

The second problem faced by the present account of conditional deontic consequence

concerns the matter of reasoning with disjunctive antecedents. If � = f(C=A);(C=B)g,

for example, it seems that we should be able to conclude from � that (C=A _ B); but in

fact, the only conditioned extension of hA _ B;�i is Cn[fA _ Bg], and so we do not have

get this result. This kind of problem is, of course, well known in the context of default

logic; and several proposals, such as that of Gelfond et al. [13], have been put forth for

modifying standard default logic so that it yields the desirable conclusions in the presence

of disjunctive information. Given the similarity between conditional extensions of ought

contexts and ordinary extensions of default theories, it should not be too di�cult to adapt

these proposals to the present case; but it is not simply an exercise, since the adaptation

would have to involve extending the notion of overriding to apply properly to disjunctive

antecedents.

The third problem with the present theory concerns a detail in the treatment of overridden
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oughts. According to the present theory, an conditional ought can be overridden only by

a single opposing statement, which is both applicable in the context and more speci�c.

However, there appear to be cases in which it is natural to suppose that an ought, although

not overridden by a single opposing rule, might be overridden by a set of opposing rules.

Suppose, for example, that � = f(Q=>);(:(P ^ Q)=A);(P=A)g. Here, it seems that

in the context hA;�i, the �rst rule should be overridden by the second two taken together,

although it is not overridden by either individually.

The �nal problem concerns yet another detail in the present treatment of overriding.

Suppose an ought statement is overridden by another which is itself overridden. What is

the status of the original? According to the present treatment, it remains out of play; but it

is also possible to imagine that the original rule should then be reinstated. As an example,

let � = f(Q=>);(P=A);(:P=A ^ B)g, and consider the context hW;�i, where W is

the formula (A ^B) ^ :(P ^ Q). Of course, the �rst rule in � is overridden in this context

by the second, but the second is likewise overridden by the third. Since overridden rules

remain out of play, according to the the present treatment, this context has Cn[fW;:Pg]

as its only conditioned extension; and so we do not have (Q=W ). But it does not seem

unreasonable to modify the present treatment so that the statement(Q=>) is reinstated in

this context, since the rule that overrides it is itself overridden. In that case, we would have

Cn[fW;:P;Qg] as a conditioned extension; and so we would be able to derive (Q=W )

from �. The issue of reinstatement in inheritance hierarchies is explored in detail in Horty

[17] and in Touretzky et al. [33].

The problems pointed out here with the present account of conditional deontic conse-

quence are serious, but I do not feel that they should lead us to abandon the project of

designing a conditional deontic logic using the techniques of nonmonotonic logic. In fact,

none of these problems is unique to the deontic interpretation of the background nonmono-

tonic theory; instead, they reect more general di�culties in nonmonotonic reasoning, which

surface here just as they surface elsewhere. Of course, it is impossible to o�er a �nal evalu-

ation of the nonmonotonic approach to conditional deontic reasoning until these issues with

the underlying logical framework are resolved. But the approach does seem to be promising;
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and it may be that, in bringing the techniques of nonmonotonic logic into contact with

the new data provided by normative reasoning, we will not only discover new possibilities

for the construction of deontic logics, but gain a deeper understanding of the underlying

nonmonotonic logics as well.
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