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ABSTRACT 
This paper describes a new approach to inheritance reasoning in semantic networks allowing for 
multiple inheritance with exceptions. The approach leads to an analysis of defeasible inheritance 
which is both well-defined and intuitively attractive: it yields unambiguous results applied to any 
acyclic semantic network, and the results conform to our intuitions in those cases in which the 
intuitions themselves are firm and unambiguous. Since the definition provided here is based on an 
alternative, skeptical view of inheritance reasoning, however, it does not always agree with previous 
definitions when it is applied to nets about which our intuitions are unsettled, or in which different 
reasoning strategies could naturally be expected to yield distinct results. After exploring certain 
features of the definition presented here, we describe also a hybrid (parallel-serial) algorithm that 
implements the definition in a parallel marker-passing architecture. 

1. Introduct ion  

This paper describes a new approach to inheritance reasoning in semantic 
networks allowing for multiple inheritance with exceptions. Like the previous 
approaches of Touretzky [22] and Etherington [4], but unlike many other 
approaches, such as those of Roberts and Goldstein [19] or Fahlman [5], the 
approach presented here leads to an analysis of defcasible inheritance which is 
both well-defined and intuitively attractive: it yields unambiguous results 
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applied to any acyclic semantic network, and the results conform to our 
intuitions in those cases in which our intuitions themselves are firm and 
unambiguous. Since the definition provided here is based on an alternative, 
skeptical view of inheritance reasoning, however, it does not always agree with 
these previous definitions when it is applied to nets about which our intuitions 
are unsettled, or in which different reasoning strategies could naturally be 
expected to yield distinct results. 

The paper is organized as follows. In Section 2, after setting out our notation 
and basic terminology, we sketch a view of the general nature of inheritance 
reasoning in nonmonotonic networks, drawing upon a loose analogy with 
ordinary deductive reasoning. In Section 3, we isolate the principles underlying 
our particular approach to inheritance. These principles are then organized 
into a rigorous definition in Section 4, and the resulting definition is examined 
in more detail in Section 5. An actual inheritance reasoner based on the 
definition presented here has been implemented in COMMON LISP; the pro- 
gram, along with some sample inputs and runs, can be found in Horty et al. 
[11]. Of more theoretical interest, we describe in Section 6 of this paper a 
hybrid (parallel-serial) algorithm that implements our inheritance definition in 
a parallel marker-passing architecture. 

Although we offer a few scattered remarks, we do not attempt to provide 
any systematic comparison between the approach to nonmonotonic inheritance 
presented here and other approaches described elsewhere in the literature. 
Very briefly, our approach differs from many of those based on nonmonotonic 
logics, such as that of Etherington [4], in allowing us to give a uniform meaning 
to each link of a network. We are not forced to devise different logical 
representations for the same link when it occurs in different networks; and 
indeed, we do not translate the links from these networks into an intermediate 
logical formalism at all, but set out our theory directly, in terms of the network 
language itself. In this respect, the approach taken here agrees with the 
previous approach of Touretzky [22]. However,  it differs both from Touret-  
zky's approach and from that of Etherington in this way: while both of these 
theories can associate a number of different extensions with a single network, 
the skeptical theory described in this paper always leads to a unique extension. 
Because it allows us to avoid the complexities of dealing with multiple 
extensions, this skeptical approach may prove to be more practical in some 
applications. 

2. Basic Concepts 

2.1. Notation 

Letters from the beginning of the alphabet (a, b, c) will represent objects, and 
letters from the middle of the alphabet (p,  q, r) will represent kinds of objects. 
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Letters from the end of the alphabet  (u, v, w, x, y, z) will range over  both 
objects and kinds. 

An assertion will have the form x--~ y or x - ~  y, where y is a kind. If x is an 
object,  such an assertion is to be interpreted as an ordinary atomic statement:  
a--~p and b-/-~p, for instance, are analogous to Pa and 7Pb in logic; they 
might represent  statements like "Tweety  is a bird" and " Jumbo  isn't a bird."  If  
x is a kind, these assertions are to be interpreted as generic statements: p---~ q 
and r-~q,  for example,  might represent  the statements "Birds fly" and 
"Mammals  don' t  fly." There  is nothing in ordinary logic very close in meaning 
to generic statements like these. In particular, "Birds fly" cannot be inter- 
preted through a universally quantified formula of the form Vx[Px ~ Qx], and 
"Mammals  don' t  fly" does not mean anything like Vx[Rx ~ 7Qx], since the 
generic s tatements can be true even in the face of exceptions to the universal 
c la ims--a  bird that cannot  fly, for example.  1 We describe a pair of assertions 
having the form x---~y and x--~y as conflicting assertions. Note that the 
conflicting assertions include not only logically contradictory pairs, like "Twee-  
ty is a bird" and "Tweety  isn't a bird,"  but also the kind of conflicts exhibited 
by pairs of generic s tatements such as "Birds fly" and "Birds don' t  fly.,,2 

Capital Greek  letters will represent  networks, where a network consists of a 
set I of individuals and a set K of kinds, together with a set of positive links 
and a set of negative links, both finite subsets of ( I  x K ) U  (K x K).  We 
identify the positive and negative links in a network with our positive and 
negative assertions. 

Lower case Greek  letters will range over  sequences of links, among which 
we single out for special consideration the paths, defined inductively as follows: 
each assertion is a path; and if ~---~p is a path,  then both ~r---~p--~ q and 
o---~ p ~ q are paths. As this notation indicates, paths are special kinds of link 
sequences- - jo ined,  in the sense that the end node of any link in a path is 
identical with the initial node of the next link. It follows from their definition 
that paths are subject also to two further constraints. First, a negative link can 
occur in a path, if at all, only at the very end: a--~p4-~q is a path, but 
a-/* p ~ q isn't. Second, an individual can occur only as the initial node of a 
path: p---~a-/-~q isn't a path. 

Paths will be said to enable assertions, or statements,  much in the way that 
proofs enable their conclusions: a path of the form x--* o---~ y is said to enable 
the assertion x--~ y, and likewise, a path of the form x---~ ~r-/-~ y is said to 
enable the assertion x ~ y. As this suggests, it is often natural to understand a 
pa th- - l ike  a p roo f - - a s  representing a particular chain of reasoning behind the 
assertion it enables. The path a---~p---~ q, for example,  enables the assertion 

' For detailed argumenta t ion  on this point,  with support ing linguistic evidence, see Carlson [3]. 
z Intuitively, these pairs are inconsistent.  But  whether  the second is the negation of the first, and 

whether  they are logically inconsistent,  are issues that would have to be settled by a logic of the 
generic plural. Unfor tunate ly ,  there is as yet no such logic. 
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"Tweety  flies," while representing an argument  like "Tweety  flies because he is 
a bird and birds fly." We describe a pair of paths as conflicting paths if they 
enable conflicting assertions. 

2.2. Inheritance 

Since we identify the links in a net with assertions, a net can be viewed as a set 
of hypotheses,  or axioms. Let  us say, informally for a moment ,  that an 
assertion A is supported by a net F if we can reasonably conclude that A is true 
whenever all the links in F are t rue - - i f  the information contained in F would 
naturally lead to the conclusion that A. Our object here is to explicate this 
informal idea. We want to know exactly what we can conclude from a given 
net; so we need to provide a formal account of the conditions under which a 
net F supports an assertion A. 

In the context of ordinary deductive logic, we often find ourselves in a 
similar situation, when we want to know what statements are deducible from a 
given set of hypotheses. In that context, it is a common practice to approach 
the question in a roundabout  way. Instead of defining the relation of de- 
ducibility directly, one first characterizes the deduct ions--sequences  of state- 
ments representing certain kinds of arguments,  or chains of reasoning- -and  
then defines a s tatement  as deducible from a set of hypotheses if those 
hypotheses permit  a deduction of that statement.  

Of  course, the process of drawing conclusions from a set of defeasible 
hypotheses through inheritance reasoning is quite different from the process of 
drawing conclusions from through deduction. Inheritance reasoning doesn ' t  
depend on the interplay of connectives, for example,  since there aren ' t  really 
any connectives, to speak of, in our semantic nets (the symbols ~ and -¢-> are 
not connectives, since they apply to individuals and kind terms rather than 
sentences, and they do not nest); and even some of the connective-free 
structural rules governing classical deducibility, such as weakening, fail to hold 
for nonmonotonic  inheritance. Still, we find it helpful in the case of inheritance 
to follow a similar kind of roundabout  strategy in describing the consequences 
of a set of hypotheses. Instead of trying to specify directly the statements 
supported by a given net, we first characterize the arguments or chains of 
reasoning-- represented ,  now, by pa ths - - tha t  are permitted by a net. As in the 
case of ordinary deducibility, this relation between sets of hypotheses and the 
chains of reasoning they permit  is really the central idea; and it will be the 
primary focus of our attention. Once we have identified the paths that a net 
permits,  it is natural to define the statements supported by a net by stipulating 
that a net supports a statement just in case it permits a path enabling that 
statement.  

We refer to the entire set of statements a net supports as the theory of the 
net, and to the entire set of paths it permits as its extension. 
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3. Motivation 

In this section we examine several simple examples of nets and the paths they 
should permit, in order  to illustrate the principles underlying our general 
characterization of the permission relation, which is then presented in Section 
4. 

3.1. Forward chaining 

Consider, first, the simplest kind of case imaginable, a linear net F~ (Fig. 1). 
Just to fix an interpretation, let a = Tweety,  p = Canaries, q = Birds, and 
r = Flying Things. F~ explicitly contains the information, then, that Tweety is a 
canary, that canaries are birds, and that birds fly. Now given just this 
information, we would certainly want to allow a chain of reasoning along the 
lines of "Since Tweety is a canary, a kind of bird, and birds fly, Tweety 
f l ies"--so we want the net F t to permit the compound path a--+p--> q ~  r, 
representing this argument. In just the same way, we want the net F 2 (Fig. 2), 
with b = Jumbo, s = Royal Elephants,  t = Elephants,  and u = Flying Things, to 
permit the path b -+  s -+  t--+--/+ u, which represents an argument something 
like "Jumbo is a royal elephant,  a kind of elephant,  and elephants don' t  fly; so 
Jumbo doesn't  fly." 

These examples illustrate some of the compound reasoning paths that can be 
constructed by assembling the direct links contained in a net, but they don' t  yet 
tell us, when we think of the construction as proceeding inductively, how these 
paths are to be assembled. There  are, of course, two natural options for 
assembling compound paths from direct links: roughly, top-down and bottom- 
up. Most treatments of inheritance reasoning--including those of Roberts and 
Goldstein [19], Fahlman [5], and Touretzky [22]--presume the top-down 
approach. They are guided, more or less explicitly, by a picture of inheritance 
according to which properties are imagined to flow downward through the 
semantic net, from more general to more specific kinds and then finally to 
individuals, unless the flow is interrupted, somehow, by an exception. Formal- 
ly, this "proper ty  flow" picture leads to the construction of compound permit- 

/ r  / 
/'q / ' ,  

/ o  / o  
a b 

Fig. 1. F~. Fig. 2. F 2. 
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ted paths through the process of  backward chaining, according to which, at the 
inductive step, a c o m p o u n d  permi t ted  path of  the form x--* y ~ ~ is assembled 
by adding the direct  link x---~ y to its permit ted  end segment  y ~ o-. 

The  present  t rea tment ,  on  the o ther  hand,  is in tended to capture  a kind of  
bo t tom-up  approach  to inheri tance reasoning.  This approach  seems especially 
natural  when one wants to push the analogy,  as we do,  be tween paths and 
a rguments - - s ince  arguments ,  at least as they are usually represented  (say, by 
p roof  sequences) ,  tend to move  f rom the beginning forward.  Formal ly ,  the 
bo t tom-up  approach  leads to the construct ion of  c o m p o u n d  paths th rough  the 
process of  forward chaining: at the inductive step, the c o m p o u n d  permit ted  
path o---* x---~ y is assembled by adding the direct link x--~ y to its permit ted  
initial segment  o - ~  x; and likewise, the c o m p o u n d  permit ted  path o - ~  x - ~  y is 
assembled by adding the direct link x--/*y to the permit ted  initial segment  
~r--~x. This adherence  to forward chaining is one of  the central  principles 
guiding our  approach.  Not  only does it e m b o d y  a different m e t a p h o r  for 
inheri tance reasoning ( " a r g u m e n t  cons t ruc t ion"  instead of  "p rope r ty  f low"),  
but  it leads also to different technical results, as illustrated by our  discussion of  
the net F~5 in Section 5.5, below. 3 

3.2.  Restricted skept ic i sm 

In our  approach,  then,  c o m p o u n d  permi t ted  paths are const ructed th rough  
forward chaining, but of  course,  not  every path constructible th rough  forward 
chaining f rom the materials  in a given net  should be permi t ted  by that net. 
Conflicts can interfere,  as in the net E~ (Fig. 3). This net has come to be known 
as the Nixon Diamond ,  because of  the interpreta t ion,  due to Reiter ,  under  
which a = Nixon,  q = Quakers ,  r = Republ icans,  and p = Pacifists. Wha t  E~ 

P / ' \  

a 

Fig. 3. F~. 

Of course, the very description of the kind of network-based reasoning we study here as 
"'inheritance" reasoning itself seems to suggest the top-down or "property flow" picture-- 
according to which individuals are supposed to "inherit" properties from their superiors in a 
network roughly as one might inherit, say, the family jewels from Aunt Martha. Once one adopts 
the bottom-up approach, the terminology of "inheritance" is no longer so appropriate; but the 
terminology by now has become fixed, and it would introduce more confusion than it would 
eliminate if we tried to characterize this kind of reasoning process in a phrase more nearly neutral 
between the top-down and the bottom-up views. 
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tells us explicitly, under  this in terpreta t ion,  is that  Nixon is both  a Q u a k e r  and 
a Republ ican ,  that  Quaker s  are pacifists, and that  Republ icans  are not  
pacifists. Unres t r ic ted  forward  chaining would  allow us to construct  f rom this 
informat ion  both  the paths a---> q--->p and a---> r-/->p. But since these two paths 
conflict, enabling the conflicting s ta tements  a---> p and a-C-> p ,  we don ' t  want  F 3 
to permit  both  these paths at once.  Given just the informat ion  conta ined in F3, 
we wouldn ' t  want  to conclude both  that  Nixon is a pacifist and that  he isn't. 

Wha t  you  say about  inheri tance depends  crucially on your  t rea tment  of  nets 
like the Nixon D i a m o n d ,  which contain c o m p o u n d  conflicting paths. One  
opt ion  is to suppose,  a l though you  can ' t  permit  bo th  of  two such paths,  that  it 
is reasonable  to permit  one  or  the other .  In the case of  the Nixon D i a m o n d ,  for  
example,  this s trategy would  lead us to the conclusion that  either the path  
a---> q--->p or the path a---> r--/->p should be permit ted.  W h a t  lies behind  this 
s trategy is a kind of  credulity or  belief-hunger--the idea that  it 's best to draw as 
many  conclusions as possible f rom a given net,  even at the cost  of  making  
arbi t rary choices a m o n g  conflicting arguments .  As  deve loped  by Toure t zky  
[22], this s trategy involves associating with each net  containing c o m p o u n d  
conflicting paths a n u m b e r  of  consistent  extensions,  which he refers to as 
" g r o u n d e d  expans ions ,"  reminiscent  of  the "ex tens ions"  of  Rei ter  [18], the 
"fixed points"  of  M c D e r m o t t  and Doy le  [13], or  the "stable  expansions"  of  
M o o r e  [14]. For  this reason,  because they can consistently be associated with a 
n u m b e r  of  different extensions,  Toure t zky  describes nets like these as "am-  
b iguous . ' 4  

We take a different  point  of  view. Ra the r  than supposing that  an inheri tance 
reasoner  should try to conclude as much as possible f rom a given net,  we adopt  
a broadly  skeptical att i tude,  according to which conflicting a rguments  tend to 
neutral ize each other .  Our  basic idea, which will be explained in more  detail 
momentar i ly ,  is that  a compound path is to be neutralized by any conflicting 
path which is not itself preempted. Even  before  fur ther  explanat ion,  however ,  
some of  the consequences  of  this basic skeptical intuit ion should be clear. 
Given  just the informat ion  in the Nixon D i a m o n d ,  for example,  an inheri tance 
reasoner  guided by our  skeptical reasoning strategy,  won ' t  be able to conclude 
ei ther  that Nixon is a pacifist or  that  he isn't. It won ' t  conclude that  he is a 

Some implementations of credulous reasoning avoid generating multiple extensions, in one of 
two ways. An interactive knowledge base maintenance system developed by Rector [17] simply 
disallows networks with more than one extension. It issues an error message whenever an 
ambiguity is introduced; the user is required to resolve the problem before proceeding further. 
Another approach, followed by Nado and Fikes [15] in the OPUS system, is to adopt a restricted 
(but still nonmonotonic) language which is incapable of expressing the kinds of assertions that give 
rise to multiple extensions. In the terminology of [22, 23], OPUS is a unipolar class/property system 
with monotonic, explicit exception links. It is unipolar because it does not allow negative 
statements. A system must either provide for negative statements or have slots restricted to holding 
single values (which are an implicit form of negation) in order to have multiple extensions. 
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pacifist, since the information contained in the net provides the materials for 
constructing an argument  to the contrary; it won ' t  conclude that he isn't a 
pacifist, since the net also provides the materials for constructing an argument  
that he is. 

Although our approach is based, generally, on the skeptical idea that such 
paths tend to neutralize each other,  the special brand of skepticism we adopt  
here is restricted in two ways. First, we suppose that only compound paths can 
be neutralized at all; and second, that paths can be neutralized only by 
conflicting paths which are not themselves preempted. Both of these restrictions 
are important;  we examine them in turn. 

3.2.1. Compound versus direct conflicts 

As an example of a net containing conflicting direct paths, consider F a (Fig. 4). 
(Again, take a = Nixon and p = Pacifists.) According to the definition we 
provide, F 4 will permit  both the conflicting paths a--~ p and a - ~  p: our reasoner 
will conclude from F 4 both that Nixon is a pacifist and that he isn't. This may 
seem odd, especially in light of our cautious, skeptical approach to F 3. It may 
appear,  f rom a certain point of view, that F 4 presents us with nothing but a 
limiting case of the phenomenon  found in F3--so that consistency of principle 
should lead us to conclude, if F 3 doesn ' t  permit  either the path a--> q--~ p or 
the path a - ~  r - ~  p,  that F 4, likewise, shouldn't  permit  either of the paths a--~ p 
or a - ~ p .  But it is also possible to isolate a point of view from which our 
different t reatment  of the conflicting paths in ~ and F 4 seems just right. 

Remember ,  we are talking about  the design of an inheritance reasoner,  a 
mechanism for drawing conclusions from a certain kind of da t abase - - a  set of 
statements that can be represented as the set of links in a net. Now when we 
think of the net F 3 as a database,  it is, of course, consistent: in fact, under the 
Nixon interpretation, all of the statements contained in F 3 are true. Obviously, 
no one would want a reasoning mechanism to draw inconsistent conclusions 
from consistent information; so it follows at once tht F 3 cannot permit  both the 
paths a--~ q--~p and a--~ r-/*p, since these two paths enable the conflicting 
statements that Nixon is a pacifist (a--~p) and that he isn't (a-/->p). On the 
other hand, when we look at F 4 as a database,  it already contains both of these 

P 

a 

Fig. 4. F 4. 
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statements;  so in this case, we are faced with the problem of drawing the 
appropriate  conclusions f rom information that is already inconsistent. 

This is a notoriously difficult problem,  but we find that it is both possible and 
useful to adopt  in the context of inheritance reasoning a proposal  that was 
originally formulated by Belnap,  in [1, 2], as a guide for deductive reasoning in 
the presence of inconsistency. As a general principle, we propose that a 
reasoner  ought to be able to conclude from a set of statements every s ta tement  
actually contained in that set, at least----even if the set is inconsistent. It  
follows, of course, that if our  inheritance reasoner  were actually provided with 
the information contained in F4-- that  Nixon both is and isn't a pacifist--i t  
ought to be able to conclude f rom this information both that Nixon is a pacifist 
and that he isn't. Thinking of deductive reasoning, Belnap argues that the 
presence of inconsistent information shouldn' t  enable a mechanical reasoner  to 
derive arbitrary conclusions, as it would in the case of a theorem prover  using 
classical logic. We have shown in [21], however,  that this much of the 
motivation behind relevance logic is already built into inheritance reasoning, 
even in the simple case of monotonic  inheritance; and the arguments we 
provided there carry over  into the nonmonotonic  case. Thus,  the reasoner  we 
describe in this paper  will conclude f rom F4, as it should, both that Nixon is a 
pacifist and that he isn't; but it won' t  then go to draw irrelevant conclusions 
from this conflict: it won ' t  conclude, for instance, that Nixon is a Democrat .  

3.2.2. Preemption 

The second restriction on our broadly skeptical outlook is the idea that even 
compound arguments  are neutralized only by those conflicting arguments that 
are not themselves preempted.  This idea - - tha t  certain compound arguments  
can be, as we say, preempted by o thers - - rea l ly  lies at the heart  of our 
approach,  allowing us to transform a simple and dogmatic skepticism into 
something much more  interesting. 

Again,  we begin with an example,  the net F 5 (Fig. 5). This net results f rom 
adding the link p--~ r to F 1, and the interpretations of these two nets will 
overlap as well. J u s t a s  before,  we take a = Tweety,  q = Birds, and r = Flying 
Things; but now let 's shift the earlier interpretat ion so that p = Penguins, 

/,o 
8 

Fig. 5. rs. 
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giving some plausibility to the new link p-/-> r. If things are like this, what are 
we to conclude about Tweety: does he fly or not? Well, there are two paths to 
consider: a->p---> q---> r, which enables the conclusion that Tweety flies, and 
a ~ p ~ r, which enables the opposite conclusion. Since both of these paths are 
compound,  and they enable conflicting conclusions, simple skepticism would 
bar us from reaching any conclusion at all. But evidently, in this case, we do 
want to reach a conclusion: we want to conclude, in fact, that Tweety doesn't  
fly--since he is a penguin, and penguins don' t  fly. The reason we are able to 
conclude here that Tweety doesn't  f ly--even though he is a bird, and birds 
fly--is that penguins happen to be a specific kind of bird, so that, in case of 
conflicts, the information we have about Tweety in virtue of his being a 
penguin overrides whatever we would otherwise suppose to be true of him 
simply because he is a bird. 

This illustrates the central intuition behind preemption: that arguments based 
on more specific information override arguments based on less specific informa- 
tion. As we define it, a path will be preempted in a net, roughly, when the net 
provides the materials for constructing a conflicting argument based on more 
specific information. Looking again at the net ~ ,  we see that it both permits 
the path a--->p---> q (telling us that Tweety is a bird) and contains the link q--> r 
(telling us directly that birds fly). We want to say, however, that the path 
a--->p---~ q---~ r (telling us that Tweety flies, because he is a bird and birds fly) is 
preempted in Es, since the net also contains the link p ~ q (telling us directly 
that penguins don' t  fly), and conclusions deriving from the node p (penguins) 
are based on more specific information about a (Tweety) than conclusions 
deriving from the node q (birds). In terms of the topology of F 5, it's natural to 
suppose that the reason p can be said to provide more specific information 
about a than q does is simply that the net permits the a path f rom a through p 
to q; this path, a--~p---~q, tells us both that Tweety is a penguin and that 
penguins are a specific kind of bird. So, restating in a way that incorporates this 
analysis of specificity, we can say that the path a----> p ~ q--> r is preempted in 

just because there is a node p such that ~ both contains the direct link p ~ r 
and permits the path a--~ p ~ q. 

This idea of preemption can easily be generalized to apply to arbitrary nets 
and paths. We will say that a path of the form x ~ ~-~ v ~ y is preempted in a 
net F just in case there is a node z such that z 4-> y ~ F, and either z = x or F 
permits a path of the form x---~ ~'l ~ z---~ ~%--~ v. With exact symmetry, we say 
that a path of the form x---~ -c---~ v-/->y is preempted in a net F just in case there 
is a node z such that z ~ y E F and either z = x or F permits a path of the form 

X--..~ 71---~ Z---~ 72--.~ U. 

4. Defining Inheritance 

Let's use the symbol "~>" to stand for the permission relation, so that " F  ~> ~r" 
means that the net F permits the path ~r. We have now considered the central 
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principles underlying our approach to this idea--forward chaining, along with a 
certain kind of restricted skepticism. It  remains only to organize these principles 
into a rigorous definition. 

4 . 1 .  D e g r e e  

Our  adoption of forward chaining suggests that a bot tom-up,  inductive defini- 
tion should be possible. In order  to f rame such a definition, however,  we need 
to be able to associate with each path or some measure  of its "complexi ty"  in a 
given net F, in such a way that it can be decided whether  F ~> cr once it is 
known whether  F ~> o-' for each path or' less complex in F than cr itself. 

The natural thing to think is that we might be able to identify the complexity 
of a path, in this sense, with its l eng th - -bu t  this won ' t  work,  since we will often 
need to know about longer paths before we can decide whether  shorter paths 
are permitted.  As an example,  consider the net F 6 (Fig. 6). Here ,  it follows at 
once f rom our motivating principles that the path x ~ p--~ y, which has length 
two, shouldn' t  be permit ted,  since it is compound and it conflicts with the 
unpreempted  path x--~ q--~ r--/-~ y, of length three. A more complicated situa- 
tion arises in the case of F 7 (Fig. 7). Here ,  the path x-~p---~y should be 
permitted:  the potentially conflicting path x---~ q---~ r--~ y no longer interferes, 
since it is itself neutralized by the path x--~ s---~ t--~ u-/-~ r, which is longer still. 
Evidently, as this net suggests, before we can decide whether  a particular path 
is to be permit ted,  we need to know about all the conflicting paths that might 
neutralize it, as well as all the paths that might neutralize those conflicting 
paths, all the other  paths that might neutralize those, and so on. 

There  are several ways to order  the paths in a given net so that an inductive 
definition, as it steps through the ordering, will wind up considering all the 
paths relevant to a particular path before it considers that path itself. We adopt 
here what seems to be the simplest such ordering; later, in Section 6.2.1, we 
describe a slightly more complicated ordering, with other compensat ing vir- 
tues. To get at our simple ordering, we first introduce an auxiliary idea. As we 
recall f rom Section 2.1, a path is a joined sequence of links containing a 
negative link, if at all, only at the very end. Let 's  say, now, that a generalized 
path is a sequence of links joined like an ordinary path, except that it can 
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contain negative links anywhere, and perhaps more than one. Formally, we can 
catch this idea by specifying that each assertion is a generalized path, and that, 
if ~r is a generalized path, then both a--> y and ~r-~ y are generalized paths. (It 
follows, of course, that the generalized paths include the ordinary paths.) 
Using this auxiliary concept of a generalized path, we now define the degree o f  
a path cr in a net F--wr i t t en ,  degr(~r)--as the length of the longest generalized 
path in F from the initial node of ~r to its end node. Unlike length, degree is 
not a property of paths alone, but of paths in a net. For example, we have 

degl~,(x ~ p ~ y) = 3 ,  

degr~(X ~ p ~ y) '= 5 ,  

since in F6, the longest generalized path from x to y (which happens to be an 
ordinary path) has length three, while F 7 contains a (true) generalized path 
from x to y of length five. 

As it turns out, this idea of degree provides an acceptable notion of path 
"complexity" for an inductive definition of ~>, the permission relation between 
nets and paths: it can be decided whether F~> o- entirely on the basis of 
information regarding paths whose degree in F is less than that of o-, along with 
information about the direct links contained in F itself. On the other hand, in 
order to assure that degr(o- ) should always be well-defined, we need to restrict 
our attention to nets which are acyclic, in the sense that they contain no 
generalized paths whose initial nodes are identical with their end nodes. (This 
is a common restriction; much of the analysis in Touretzky [22], for instance, 
also applies only to acyclic nets.) 

4.2. The definition 

Given this idea of degree, then, and restricting ourselves to acyclic nets, we can 
now present our definition of the permission relation. Although the definition 
is inductive at heart, it has the overall structure of a definition by cases: it deals 
separately with compound paths and with direct links (non-compound paths). 
Only in the case of compound paths is there any need to resort to induction; 
direct links can be handled all at once, as follows. 

Case I: ~r is a direct link. Then F ~> a iff cr C F. 

It is important to note that even if o- is a direct link, it could easily turn out 
that degr(O- ) > 1, since F might contain a compound generalized path from the 
initial node of cr to its end node. On the other hand, if degr(O- ) = 1, then the 
path o- has to be a direct link. Thus, in addition to taking care of all the direct 
links at once, whatever their degree, Case I serves also as the basis clause for 
the induction on degree which extends the permission relation from direct links 
to compound paths. The inductive clause is as follows. 

Case II: or is a compound path with, say, degr(o- ) = n. As an inductive 
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hypothes~s, we can suppose it is settled whether F~>o` '  whenever 
degr(o` '  ) < n. There  are then two subcases to consider, depending on the form 
of o`. 

(1) o` is a positive path, of the form x--~ o,1--> u---~y.  Then F~> o` iff 
(a) F ~> x - - ~  o`, ---> u ,  

(b) u - - - > y E r ,  

(c) x -/-> y f ~  r ,  

(d) for all v and r such that F ~> x---~ z--~ v with v-/->y E F ,  there exist 
z, r 1 and ~'2 such that z---> y C F and either z = x or 
F ~> x-.-> rl---> z--.-> ,r2---.-~ v.  

(2) or is a negative path, of the form x---> o`1--~ u- / -~y .  Then F ~> or iff 
(a) F p x --> o'l ---> u , 

(b) u--/-> y E F ,  

(c) x-~ y ~ r ,  
(d) for all v and ~- such that F ~> x ~ ~- ~ v with v ~ y E F, there exist 

z ,  z 1 and r e such that z ~ y E F  and either z = x  or 
[" ~> x -----> ,r l .--> Z ----> ,r 2 --.-> v . 

It should be clear that this definition of the permission relation accurately 
represents the general approach to inheritance reasoning described in Section 
3. Case I tells us that any statement actually contained in a net should be 
permitted by that net. The two subcases of Case II, dealing respectively with 
positive and negative compound paths, are perfectly symmetric. In each 
subcase, the clauses (a) and (b) capture the idea of forward chaining: com- 
pound paths are permitted by a net only if they can be constructed by adding 
direct links from the net to initial permitted segments of those paths. The 
clauses (c) and (d) take care of conflicts. What (d) says is that, even if a 
compound path is constructible through forward chaining, it can be permitted 
only if each potentially conflicting compound path is preempted.  Of course, 
only compound conflicting paths can actually be preempted,  since preemption 
involves the intermediate nodes of a path, and direct links have no inter- 
mediate nodes; but if, for skeptical reasons, we don' t  want a path to be 
permitted which conflicts with an unpreempted compound path, we certainly 
don' t  want to permit a path that conflicts with a direct link. This is the force of 
the clause (c). 

Both the clauses (a) and (d) in the inductive step refer to other  paths of a 
certain form permitted by the net; but this is no problem, because at any step 
in the induction, paths of this form will always have a degree less than that of 
the path being considered. 

5. Discussion 

It is easy to see that the definition of  the permission relation presented in 
Section 4 yields the advertised results applied to the nets F 1 through F 5 from 
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Section 3. In this section we explore certain properties of the definition. We 
show that the t reatment  of inheritance embodied  in this definition is non- 
monotonic,  that it is sound, and that it has the proper ty  of atomic stability. We 
show that the skeptical theory of a network is not identical with the intersec- 
tion of its credulous theories, and that it allows for decoupling of conclusions. 

5.1. Nonmonotonicity 

The analysis presented here is put forth as an analysis of n o n m o n o t o n i c  

inheritance: paths permit ted by a net may no longer be permit ted once that net 
is supplemented with additional links; statements supported by a net may no 
longer be supported once that net is supplemented with additional links. 

The simplest kind of counterexample to monotonicity is illustrated by the 
nets F~ and F 9 (Figs. 8 and 9). Here ,  Fs permits the path a--> q - - > p ,  and so 
supports the statement a--> p. On the other hand, F~ neither permits the path 
nor supports the statement;  but of course Fs C_ F 9. From the standpoint of our 
general skeptical motivation, this is as it should be. Imagine that the nodes in 
these two nets are interpreted as in the Nixon Diamond,  with a = Nixon, 
q = Quakers ,  and p = Pacifists. Then F 8 gives us the materials for constructing 
an argument,  represented by the path a--> q--> p ,  for the conclusion that Nixon 
is a pacifist, but in the net F 9, both this argument  and its conclusion are 
neutralized by the direct s tatement  that Nixon is not a pacifist. 

A different kind of counterexample to monotonici ty--re lying on preempt ion 
rather than a conflict with direct l inks--is  provided by the nets F 1 and F 5 from 
Section 3. Again, F~ is a subset of F 5. However ,  F~ permits the path 
a - - > p - - > q - - > r ,  and so supports the s tatement  a - > r ;  F 5 neither permits the 
path nor supports the statement.  

5.2. Soundness 

A reasoning mechanism should be sound, at least in the sense that it never  
leads from a consistent set of assumptions to an inconsistent conclusion. 
Classical deductive systems, for example,  are sound in this sense; but of 
course, if a reasoner  based on classical logic were ever supplied with an 
inconsistent set of assumptions, it would then support  any conclusion at all. 

/ °  
/ °  
8 a 

Fig. 8. F s. Fig. 9, F 9. 
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Like classical logic, the inheritance reasoner  we describe here is also sound 
in this standard sense. However ,  as we ment ioned earlier, in Section 3.2.1, it is 
designed to behave more  sensibly than classical logic in the presence of 
conflicting information.  Although this reasoner  will conclude from a network 
containing conflicting statements every s tatement  actually contained in that 
network,  the effect of these conflicts is localized: they don ' t  lead the reasoner  
to other,  possibly irrelevant conclusions. The following theorem shows that the 
reasoner we describe won' t  ever draw conflicting conclusions from a network 
unless that network already contains conflicting statements,  as conflicting direct 
links; and even if the network does happen to contain conflicting statements,  
our  reasoner  won' t  draw any conflicting conclusions that aren ' t  already con- 
tained in the ne twork- - i t  will never  draw any new conflicting conclusions. 

Theorem 5.1. I f  F supports both x--~ y and x-l-~ y, then both x--~ y E F and 
x-/* y E F. 

Proof. Suppose F supports both x--~ y and x-/-~ y, but doesn ' t  contain both 
x--~y and x- /*y .  Then either (i) F supports exactly one of these statements 
only through compound paths, or (ii) F supports both of these statements only 
through compound paths. It is easy to see f rom clauses II. 1(c) and II.2(c) of the 
inheritance definition that (i) is impossible: if F contains either s tatement ,  it 
can ' t  permit  a compound path enabling the other. We prove the theorem by 
showing that (ii) is impossible as well. 

Suppose (ii) is true. Then F permits some path of the form x--~ or I --* u 1 --~ y, 
and also path of the form x--~ o- 2--~ u 2-¢~ y. Since F permits a compound path 
from x to y, it follows f rom I I . l ( a ) - ( b )  and I I .2 (a ) - (b )  that F permits some 
path of the form x--~ ~---~ v with ei ther v --~ y E F or v ~ y E F. Let  x--~ ~-' --~ v '  
be a path of minimal degree satisfying this condi t ion-- tha t  is, F permits 
x---~z'--~v' and either v ' - - * y E F  or v ' - l -~yEF;  and there is no path 
x--~ ~-"--~ v" with 

degr(X---~ ~-"---~ v") < degr(X---~ r '  ---~ v ')  

such that F permits x--~ r"---~ v" and either v"--~y @ F or v"-l-~y E F. Suppose 
v'--~y @ F. From the assumption that (ii), it follows that there are no direct 
links in F f rom x to y. Therefore ,  since F permits x--~ o.2--~ u2-1-y, it follows 
f rom II .2(d) that there must be a node z such that F~>x--~'rl---~z--~z2--~v' 
and z ~ y E F. From this it follows that F permits x--~ ~2--~ z, where 

degr(X--* r2--~ z) < degr(X---~ 7'---~ v ' )  

and z--~ y E F or z - ~  y E F. Therefore ,  the path x--~ r ' --~ v '  cannot be of  
minimal degree,  contrary to assumption.  If v ' - ~  y ~ F, it follows likewise f rom 
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the assumption that F permits x--> or 1 "-'->/~1 ._?t_> y and II. l (d)  that x--> ~-' --> v' 
cannot be of minimal degree. [] 

5.3. Stability 

The property of s tabi l i ty  is the property of being insensitive in certain ways to 
redundant information. In general, there are a number of different stability 
properties we might choose to require in an acceptable reasoner, and the 
differences between them can be subtle. Just to illustrate the kind of thing that 
goes wrong when an inheritance reasoner is entirely unstable, however, let's 
consider for a moment  a shortest-path reasoning algorithm, such as that 
suggested by Fahlman [5], which resolves differences among conflicting paths 
by favoring the shortest. 

Consider the nets F~0 and Fll (Figs. 10 and 11). Evidently, Fll results from 
F~0 simply through the addition of the link a--> r, which is both atomic and 
r e d u n d a n t - - i n  the sense that shortest-path reasoning applied to Fl0 already tells 
us that the statement represented by this link is true. Still, even though this 
atomic link is redundant from the standpoint of F~0, adding it to F~0 changes the 
semantics of that net, according to the shortest-path approach to inheritance 
reasoning: while Fn~ supports the statement a -/-> s (since the path a--> p --> q -/-> s 
is shorter than the conflicting path a --> p --> q ---> r--> s), the new net F x 1 would 
support the statement a--->s instead (since the path a---> r - ->s  is now shorter 
than the conflicting path a --> p --> q -/-> s). 

The example works out differently according to the analysis of inheritance 
presented here (as well as that of [22]). On the present analysis, it is clear that 
the two nets Fl0 and F~ support exactly the same statements. In particular, F~l 
doesn't  now permit the path a--> r--> s; so, like Fl0, the net F~ doesn't  support 
the statement a--> s. This situation illustrates the following a t o m i c  s tabi l i ty  
theorem, which shows that the reasoner we describe is stable with respect to 
redundant atomic statements in a way that shortest-path reasoning is not. 
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Fig. 10. F~o. Fig. 11. F~. 
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Theorem 5.2. For an atomic statement A ,  if  1" supports A ,  then for any 
statement B, 1" U {A} supports B if  and only if 1" supports B. 

The theorem is an immediate consequence of the following more general 
lemma, which establishes a connection between the set of paths permitted by a 
net, and the set of paths permitted once that net is supplemented with a 
redundant  atomic statement. 

Lemma 5.3. (a) Suppose F ~>a---~6---~p. It follows that, i f  F ~> cr, then F U 
{ a---~ p } ~, or; and also that, if F U { a ---~ p } ~> o', then F ~ o'*, where o'* is the 
result o f  replacing any occurrence o f  the link a ~ p in o" by the path a --0 ~ ~ p. 
(b) Likewise, suppose F~>a---~g--/-~p. It then follows that, if F~>o', then 
F U {a--ffp} ~> or, and also, i f F  U {a--&p} ~> ~r, that F ~, o-*, where ~r*, now, is 
the result o f  replacing any occurrence o f  the link a-t* p in o" by the path 
a----~ 6-/-~ p. 

Proof. We prove only (a); the proof of (b) is similar. First, suppose o- is a 
direct link. Let  F ~> or. Then we know from Case I of the definition that o- E F; 
so o ' E F U { a - - - ~ p } ;  so 1"U{a---~p}~>o-. Now let FU{a---~p}~>o-. If c r~  
a - * p ,  then o-@1", and also cr=o~*; so 1"~>o-*. If o'=a---~p, then ~ * =  
a---~ 6--*p; s o / "  ~> o-* by assumption. 

Next, suppose ~r is a compound path, with degru~a~p}(o" ) = n. As an 
inductive hypothesis, we suppose that for all o-' with degru{,~p}(cr ' )<  n, we 
know both (i) that 1"U { a - * p }  ~> or' if 1"~>o-' and (ii) that 1"~> or'* if 
[" U {a--~p} ~> or'. To carry out the inductive step of the proof, we need to 
consider two subcases, depending on whether o- is a positive or a negative 
compound path; and for each subcase, it is necessary to show both that 
FO{a- - -~p}~>tr i f r~>cr ,  and that F~>o'* i f F O { a - - ~ p } ~ > t r .  The cases are 
largely similar; we show here ony that if o- is a positive compound path, of the 
form x - ~  trl--~ u - * y ,  then F ~> tr* whenever F U {a--~p} ~> tr. 

Suppose that F U {a--~p} ~> tr. We know from Case II.1 of the definition 
that 

(a) 1" U { a ~ p } ~> x - - ,  ~ ~ u,  
(b) u---~y@FU{a---~p},  
(c) x--ff y ~ F U  {a---~p}, 
(d) for all v such that F U {a---~p} ~ x----~ "r--~ v with v--fly E F U {a---~p}, 

there exists z such that z---~y E F U {a----~p} and either z = x or F U 
{ a---~ p } ~> x--~ "l" 1 ~ Z " " ' ~  T2 ""-~ /). 

From (a) and (ii) of the inductive hypothesis, we can conclude that 

(a*) /~ ~> (X --'~ 0"1 ---~ U)*. 

We know that u--~y ~ a--~p, since a is an individual and u must be a kind; so 
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we can conclude f rom (b) that  

(b*) u~y~£ .  

It follows directly f rom (c) that  

(c*) xv*ye'r.  

Finally, suppose that ,  for some v, F ~> x ~ ~----> u with v-¢~ y E F. Of  course,  
v ~ y @ F tO { a ~ p } as well, and we know from (i) of  the inductive hypothesis  
that  FtO{a---)p}I>x--->'r--->v. There fo re  (d) above tells us that  there 
exists z such that  z ~ y E F U { a - - - * p }  and ei ther z = x  or  F U  
{ a---> p } ~> x--~ r I ~ z---~ r2---~ v. Here ,  there  are two cases to consider:  ei ther  
z - - * y C a ~ p  or  z ~ y = a - - > p .  In the first case, we have z - - ~ y E F .  If  
FU{a--->p}~>x--->'r~--->z-->h--->v, then we can conclude f rom (ii) of  the 
inductive hypothesis  that  F ~> (x--* "r 1 --~ Z---> "r2----~ 0 ) * .  Thus we know,  in this 
case, that  there exists z such that  z ~ y E F  and ei ther z - - x  or  
F ~> ( x ~  71 ~ z---> 72---> v)*. In the second case, we must  have z = x = a, since 
a is an individual, and also y = p ,  so that  x ~ ~ rv  -~  y = a ~ ~- --~ v -O p.  But  
by hypothesis ,  we have F ~> a ~ 8---* p ,  and also by hypothesis  F ~> x--~ r---> v 
and v - - * y E F - - t h a t  is, F ~ > a - - * r - - * v  and v ~ p E F .  Hence  the path 
a--->r---~v--/->p must  be p reempted  in F :  there must  be a z '  such that  

r ! 

z ' - - ~ p E F  and ei ther z ' = a  o r  F~>z---~'rl---->z'-->72o. But then z ' - - ~ y E F  
! 

(since y = p )  and either z ' = x  (since x = a )  or F~>z--~r'l--*z'--->-c2--->v. 
Combining  these two cases, we can see that  

(d*) for all v such that  F~>x---*~'--*v with v-C->yEF, there exists z such 
that z - - ->y@Fand either z = x  or  F~>(x---)~-l---*z----*72--->v)*. 

A n d  f rom (a*) th rough  (d*),  we can conclude that  F ~> 0-*. []  

What  Theo rem  5.2 shows, again, is that  you can ' t  affect the set of  s ta tements  
suppor ted  by a net  by supplement ing  it with a tomic s ta tements  it a l ready 
supports.  The  analog to this theorem fails, however ,  when  a net  is supplemen-  
ted with a redundant  generic statement .  To see this, consider  the nets F~2 and 
F~3 (Figs. 12 and 13). Here ,  /~12 doesn ' t  permit  the path a--~p--~q---)r---~s 
(since its initial segment  a---)p--->q---)r is p reempted) ;  so this net doesn ' t  
support  the s ta tement  a--->s. On the o ther  hand,  since F~2 permits the path 
q----> r--*s, it does suppor t  the generic s ta tement  q--~s. Evidently,  F13 results 
f rom /~12 only th rough  the addit ion of  this s ta tement ,  r edundan t  f rom the 
s tandpoint  of  F,2. Yet,  F~3 does now suppor t  the s ta tement  a--->s, since F~3 
permits  a ~ p ~ q ~ s. 

I t 's  hard to know what  to make  of  examples  like this. We view it a lmost  as a 
cri terion of  acceptabili ty in an inheri tance reasoner  that  it should exhibit 
atomic stability. No  one has ever  p roduced  a counterexample  to a tomic 
stability with any intuitive force;  and it was, in part ,  the failure of  this p roper ty  
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Fig. 12. F12. Fig. 13. /~13" 

in shortest-path reasoners that mot ivated both the theory of Touretzky [22] and 
the present  analysis. When it comes to generic stability, however,  the mat ter  is 
more  complicated. 

On one hand, it is surpr is ing--a t  least f rom the standpoint of our analogy 
between inheritance reasoning and deductive reason ing- - to  find that an accept- 
able inheritance reasoner  might fail to exhibit generic stability. The deductive 
analog of a network is a set of hypotheses,  or axioms; the statements supported 
by a network are like the theorems derivable f rom those axioms. From the 
standpoint of our analogy, then, the failure of stability is like a situation in 
which the consequences of a set of axioms would be affected if the axioms were 
supplemented,  not just with an arbitrary s tatement ,  but with a theorem 
derivable from those axioms--and this makes  little sense even from a general 
deductive point of view, allowing for the possibility of nonmonotonic  deductive 
systems, s On the other hand, even though it indicates a break in our analogy 
between inheritance and deduction, it is possible to argue that the kind of 
generic instability exhibited above might actually turn out to be a desirable 
proper ty  in an inheritance reasoner: it suggests a way in which the graph- 
theoretic nature of inheritance reasoning allows a kind of sensitivity to the 
structure of arguments  that is difficult to achieve in deductive systems. 

To illustrate, we supply F~2 and F~3 with the following interpretation,  inspired 
by an example from Sandewall [20]: a = Moby,  p =Whales ,  q = Mammals ,  
r = Land-dwellers,  s = Air-breathers.  On this interpretation,  what F12 tells us 
directly is that Moby is a whale, that whales are mammals ,  that mammals  are 
land-dwellers, that whales aren ' t  land-dwellers, and that land-dwellers are 
air-breathers.  Given just this information,  we shouldn' t  be able to conclude 
that Moby is an air-breather:  only land-dwellers are known directly to be 

s In a deductive system with consequence relation k, monotonicity is the principle that if FkA 
then F U z~kA; stability is the principle that if FkA then F U {A}kB iff FkB. Even nonmonotonic 
consequence relations--such as the relation I-e defined by McCarthy [12]--tend to be stable. 
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air-breathers, and we can conclude that Moby isn't a land-dweller, since he is a 
whale. Of course, F~2 does support the conclusion that Moby is a mammal, and 
also the conclusion that mammals are air-breathers. But we can't put these two 
ideas together in F~2 to conclude that Moby is an air-breather. In F~2 , the 
argument showing that mammals are air-breathers depends on their being 
land-dwellers. Therefore,  we shouldn't be able to apply this general conclusion 
about mammals to Moby, since the general conclusion holds of mammals only 
in virtue of their being land-dwellers, and we know of Moby in particular that 
he is not a land-dweller. It is different in F~3. Here,  the fact that mammals are 
air-breathers no longer depends solely on the fact that they are land-dwellers. 
According to F13, mammals would be air-breathers even if they weren' t  
land-dwellers. Therefore,  the fact that Moby in particular isn't a land-dweller 
shouldn't interfere in F13 with the general argument that, since he is a mammal, 
he is an air-breather. 

5.4. Intersections of credulous extensions 

We mentioned in Section 3 that the credulous (or belief-hungry) approach 
tends to associate with nets containing compound conflicting paths a number of 
different consistent extensions, or fixed points. It is tempting, therefore,  to 
suppose that the set of paths permitted by a given net under the present 
skeptical analysis might simply be the intersection of the various extensions 
associated with that net according to the credulous analysis provided by [22]. 
However,  nets like F~4 (Fig. 14)--which have the topology of nested Nixon 
Diamonds--show that this is not so. In this case, we have F~4 ~> a--> p-/-> q. The 
potentially conflicting path a->s--> t--> q poses no problem; this path is not 
permitted, since its initial segment a--> s--> t is itself neutralized by the path 

q 

p . S 

a 

Fig. 14. El4. 
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a - *  r--/-~ t. But the path a-*p-~* q isn't contained in all the credulous exten- 
sions associated with this net; some contain instead the path a---~s---~ t---~ q. 

5.5. Decoupling 

In inheritance reasoners that construct inference paths through backward 
chaining, such as that of Touretzky [22], conclusions about items in a network 
depend on conclusions about their immediate superiors. According to Touret-  
zky's theory,  for example, a path of the form x - *  u--> o---> y will belong to an 
extension only if the path u--> o--* y also belongs to that extension; a path of 
the form x - +  u---> o--~ y will belong to an extension only if u - *  a-/-> y does. 

As the net F15 (Fig. 15) shows, our analysis allows items in a network to be 
decoupled from their immediate superiors, in the sense that it allows particular 
items to possess properties possessed by none of their immediate superiors. 
Here ,  we have F15~>a--~p-*q--~s. The potentially conflicting path 
a - *  p -*  r--/-~ s poses no problem since its compound initial segment a -*  p ~ r 
conflicts with the direct link a--/-~ r. On the other hand, though F~5 permits 
a---~p---~ q - * s ,  and so supports the statement a-*s ,  the net does not permit 
the path p ~ q - *  s, and indeed does not support the statement p - *  s. 

This kind of decoupling can seem a bit anomalous if one's ideas about 
inheritance reasoning are conditioned by the top-down or "proper ty  flow" 
approach, according to which individuals are supposed to inherit their prop- 
erties strictly in virtue of belonging to certain classes of things--their  ancestors 
in the network--which possess those properties. The problem is that, while F15 
supports the statement that the individual a is an s, it is unclear how a could 
have inherited this property.  After  all, the only immediate ancestor of a in the 
network is the node p. According to the top-down approach, then, a must have 
inherited all the positive properties it does inherit simply in virtue of being a p;  
if it possess any particular property,  such as being an s, this could only be due 
to the fact that p ' s  possess that property.  But as we have seen, F~5 doesn't 
support the statement that p ' s  are s's. 
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Fig, 15. F15. 
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Against the background of the bottom-up or "argument  construction" view 
of inheritance reasoning, however, the situation presented by this example is 
perfectly coherent.  Since F~5 contains the materials for constructing unpre- 
empted, compound arguments enabling both the conclusion that p 's  are s's and 
the conclusion that p 's  are not s's, our broadly skeptical point of view forces us 
to withhold judgment,  endorsing neither of these conclusions. The individual a, 
though, is a particular p for which the general kind of argument enabling the 
conclusion that p 's  are not s's is blocked: that argument depends on the 
information that p 's  are r's, but F~5 tells us explicitly that a is not an r. Since 
the general argument that p 's  are not s's is explicitly blocked for this particular 
indiviudal, then, it cannot conflict in the case of a with the argument that p 's  
are s's; so we conclude that a is an s. 

6. A Hybrid Inference Algorithm 

Inheritance networks are attractive as formalisms for knowledge representation 
because they allow information to be organized in such a way that certain 
important kinds of inference can be carried out through efficient graph- 
searching techniques. In particular, ever since their inception in the work of 
Quillian [16], network representations have been associated with parallel 
inference schemes. This tendency culminated in the NETL system of Fahlman 
[5], which combined a nonmonotonic network representation languge with a 
massively parallel reasoning architecture, known as a Parallel Marker  Propaga- 
tion Machine (PMPM). Unfortunately,  the NETL representation language was 
never provided with a clear semantics of its own, independent of the associated 
inference algorithms; and it turned out, because of their treatment of excep- 
tions, that these algorithms often led to anomalous results [7]. Once a 
satisfactory semantic account was developed for inheritance networks with 
exceptions--initially, with the work of Etherington [4] and Touretzky [22]--it 
soon became clear that the kinds of inferences appropriate to these networks 
could not be carried out through purely parallel reasoning. 

In this section, after reviewing Fahlman's PMPM architecture, we present a 
hybrid (parallel-serial) inference algorithm that reasons in accord with the 
definition of inheritance presented here. The algorithm is designed to exploit 
the parallelism of the PMPM to the greatest extent possible, resorting to serial 
reasoning only when necessary. 

6.1. Parallel marker propagation machines 

A PMPM is an automaton composed of active elements that play the roles of 
nodes and links in a graph. Each element has a small number of internal states 
(marker bits, which can be on or off, representing the presence or absence of 
markers), and a limited ability to communicate information to the elements to 
which it is connected. The nodes and links in a PMPM are responsive to 
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various marker propagation commands, each of which directs the assignment 
of markers to particular nodes, often by "propagating" them from one node to 
another through the intervening links. PMPMs are SIMD (Single Instruction 
stream, Multiple Data stream) machines: marker propagation commands are 
broadcast globally to all elements and executed in parallel by the elements to 
which they apply. Parallel marker propagation algorithms can be described as 
sequences of marker propagation commands; the result of executing such an 
algorithm in a particular net is a coloring--a static assignment of marker bits to 
nodes--that is used to convey some information about the net. 

The notation used here for specifying marker propagation commands is a 
slight extension of the one defined in Touretzky [22]. Commands may be either 
conditional or unconditional. Unconditional commands are executed by all 
elements regardless of their current state. The unconditional command 
elear[M~], for instance, causes all elements to clear marker bit M~. Conditional 
commands are more common. The command, 

link-type["---~"], on-tail[M1], off-head[M~] ~ set-head[M1], 

would be executed by any element meeting the conditions on the left-hand side 
of the arrow: if the element represents a link of type "---~ ", the node at its tail 
bears the marker M1, and the node at its head does not bear marker M 1, then 
the link will perform the action specified on the right-hand side of the arrow, 
marking the node at its head with M 1. 

Looping is accomplished with a simple loop body endioop construct, which 
repeats the commands in the body of the loop until no conditional command 
appearing in the body has its left-hand side satisfied. The following loop, for 
example, propagates the marker M~ up "---~" links, thereby computing the 
transitive closure of the "-->" relation. The loop terminates when all eligible 
nodes have been marked with M 1. (The off-head[M~] condition assures that 
nodes already marked with M1 are not eligible to be marked on subsequent 
iterations.) 

loop 
link-type["----> "], on-tail[M1], off-head[M1] ~ set-head[M 1] 

endioop 

It is also possible to address particular nodes by name using conditional 
commands. The node x would be selected by placing the restriction name[x] on 
the left-hand side of the conditional arrow; only the element representing that 
node would then respond. This technique is used to select and mark an initial 
node at the beginning of certain marker propagation procedures. For example, 
the procedure below would compute the transitive closure of the "--->" relation 
starting at a given node x, marking the nodes in the resulting set with M~. 
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procedure transitive-closure(x: node) = begin 

clear[Mr ]; 

name[x] ~ set[M1]; 

loop 

link-type["--> "], on-tail[M 1], off-head[M 1 ] ~ set-head[M 1 ] 

endloop 

end 

The set of conditions on the left-hand side of the conditional arrow are 
always treated conjunctively. Many conditions accept multiple arguments, 
which also are treated conjunctively; for example, on-tail[Ml, M2] is satisfied 
by a link element only if it satisfies both on-tail[M~] and on-tail[M2]. It is 
possible, however, to specify disjunctions of markers on the left-hand side, by 
using a different set of multi-argument commands: the link-type condition and 
all conditions beginning with " a n y - "  are disjunctive. For example, the com- 
mand any-on-tail[Mi, M2] calls those link elements that satisfy either on- 
taii[M~] or on-tail[M2]. 

A parallel marker  propagation machine is controlled by a host computer  that 
broadcasts commands to all the individual elements, where they are executed 
in synchrony. The extension we have made here to the PMPM algorithm 
nota t ion--a  loop of the form for vat in (parallel-condition) do body---doesn't 
really affect the parallel capabilities of the machine at all, but involves only 
statements to be executed by the host. The point of the extension is to allow 
elements to be processed serially when necessary. The parallel-condition 
specifies a conditional test, equivalent to the left-hand side of a rule, that is 
broadcast to all elements. Elements satisfying the condition are then identified 
by the host computer,  using some addressing mechanism which we won't  go 
into here (see Fahlman [5] for details), and processed serially. 

6.2. Skeptical inheritance on a PMPM 

Because each of the computing elements of a PMPM can represent only a 
small, fixed number of marker bits, it isn't possible to use a PMPM algorithm 
to compute,  all at once, the entire theory of a net: for a net with N nodes, that 
would require each node to carry at least 2N marker bits. Moreover,  since it is 
only under rare circumstances that a user would actually be interested in 
knowing the entire theory of a network, it would be unwise in any case to 
invest the computational resources necessary for computing the full theory. In 
the general case, the user comes to a database with a particular query in mind: 
he wants to know whether the database supports a particular statement, or its 
negation. Therefore,  what we define here is a query procedure,  query(x,y), 
which is able to determine,  for any net F and nodes x and y, whether F 
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supports the statement x---~ y, the statement x--~ y, neither statement, or both. 
The procedure we define is economical. It scans only that portion of the 

network directly relevant to a particular query. It uses only fourteen markers 
all told, and only the two markers M a- and M F to represent the result of the 
query. As a result of performing the query(x,y) in the net F, the marker  M T 
will be present on the node y iff F supports x---~y, and marker  M r will be 
present on the node y iff F supports x ~  y. 

6.2.1. Degree x'y 

In Section 4, we ordered the paths in a given net by degree, and then 
proceeded to define the permission relation through an induction on the degree 
of a path in a net. In that contex t - -where  definition, not implementation, was 
the issue-- the ordering by degree was appropriate,  since it is a particularly 
simple ordering, and it is adequate,  in the sense that all the paths that could 
possibly be relevant to a given path are assigned a lesser degree. 

In the present context, however,  since implementation is itself the issue, the 
ordering by degree is no longer quite so appropriate.  For reasons of efficiency, 
we would like our query procedure to examine the minimum of paths necessary 
to decide whether a particular statement is supported by a net; but if it were to 
sort through the paths in the net by degree, in addition to all the paths relevant 
to the query, the query procedure would wind up considering a number of 
irrelevant paths as well. For example, in the net/~16 (Fig. 16), both the paths 
x---~ t---~ u and the path x---~ p ~ q--~ r are assigned a lower degree than the 
path x ~ z--~ y. Since it is obvious from the structure of the network, however,  
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Fig. 16. /'16. Fig. 17. F~7. 
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that neither of these paths could possibly have an effect on the path x--~ z--~ y, 
it would be wasteful for the procedure query(x,y) even to consider them. In 
order to implement  our query procedure efficiently, we need to define another  
ordering of the paths in a net, which differs from the standard by degree in 
considering only the paths relevant to a particular query. 

As a first step, we specify the restriction of a net F with respect to the 
query(x,y).  Intuitively, this query-restricted network,  written F x°', is supposed 
to represent  the subgraph of F which it is necessary to examine in order to 
determine whether F supports either of the statements x--~ y or x ~  y. We 
capture the notion formally by specifying that F x'y is the minimal set containing 
(i) every link on every path in F from x to y, as well as (ii) every link on every 
path in F from x to w, for all nodes w occurring in F x'y. For example,  we have 
F~'6 y = {x--~z, z--~y},  since x--~z---~y is the only path in El6 from x to y, and 
there are no other paths in F~6 from x to any of the nodes on this path. 
However ,  F~7 y includes, as it should, every link in ~7 except for the two links 
x--*t and t--~u (see Fig. 17). Since ~7  contains the additional path 
x---~ v--~ r-/~y, the path x--~p--~ q-/~ r, which was contained in F~6 but irrelev- 
ant there to query(x,y),  is now relevant to the query; so the links in this path 

x ,  y 
must be contained in F17 . 

Once we have defined the query-restricted net / 'x 'Y in this way, it is easy to 
show that, for any path o- in F x'y, F ~> ~r iff F x'y ~> o'. It is then natural to define 
the degree of a path ~ in a net F with respect to the query(x,y)--wri t ten 
degr'Y(cr)--as the degree of the path ~r in the suitably restricted net F x°'. 
Formally, we take 

degrx.~.(o- ), if or is a path in F x'y , 
d e g J ( ~ )  = [undef ined,  otherwise. 

In order to distinguish it f rom the familiar (Section 4.1) notion of degree,  we 
refer to this new, query-restricted notion as degree ~'y. Evidently, the procedure 
query(x,y) can accurately determine whether  a net F supports x ~ y or x - ~  y 
while limiting its attention to F~'Y: it need only consider those paths in a net 
whose degree x'y is defined, and it can consider those paths in order  of 
increasing degree ~'y. 

For convenience, we will also refer in what follows to the degree x'y of a 
node; where w is a node, the degree ~'y in F o f  w is defined as the degree ~'y of 
any path in F from x to w. (Of  course, all such paths have the same degreeX'Y.) 

6.2.2. The algorithm 

We can now describe query(x,y),  our PMPM algorithm for responding to 
queries in accord with the definition of skeptical inheritance presented here. 
We begin with the two subprocedures trim-for-query(x,y) and select-next- 
degree(); after that, we present the bulk of query(x,y) itself, with the exception 
of the subprocedure check-preemption(c), which is described last of all. 
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The procedure tr im-for-query(x,y)  trims the network F so that only the 
query-restricted F x'y will be considered in future processing. It begins in lines 3 
and 4 by marking x with M x and y with My. In the loop at lines 5-8,  it 
propagates the marker  M~ up positive paths in F f r o m  x. If there is a path in F, 
positive or negative, from x to y, it marks y with M 2 in lines 9-10. Finally, in 
the loop at lines 11-14, the procedure propagates M 2 down both "--->" links 
and " - & "  links in F into those nodes already marked with M x. 

1 procedure trim-for-query(x, y: node) = begin 
2 clear[Mx ,My ,M 1 ,M2]; 
3 name[x[ ~ set[Mx]; 

4 name[y] ~ set[My]; 

5 loop 
6 link-type [" -->" ], any-on-tail[Mx, M 1 ], off-head[M 1 ] 

7 ~ set-head[M1] 
8 endloop 
9 link-type[" --> ", "--k> "[, on-tail[M~], on-head[My] 

10 ~ set-head[M2]; 
11 loop 
12 link-type["--> ",  "-¢-> "], on-head[M2], on-tail[M1], off-tail[M2] 
13 ~ set-tail[M2]; 

14 endioop 
15 end 

The overall effect of carrying out this procedure in a net F is to mark each 
node in F x'y (with the exception of x itself) with the marker M2, a fact 
recorded in the following lemma. In future processing, we then manage to 
ignore irrelevant paths by restricting certain commands so that they apply only 
to nodes marked with M 2. 

Lemma 6.1. As  a result o f  running the procedure trim-for-query(x,y) in F, 
each node w occurring in F will be marked with M 2 i f f  w ~ x and w occurs in 
Fx,y 

Proof. Trim-for-query(x,y)  begins in lines 5 -8  by marking the nodes on 
positive paths in F from x, except for x itself, with M~. It is clear that y itself 
will be marked with M 2 in lines 9-10 iff there is a path from x to y in F. Now 
suppose that not all nodes occurring in F x'y are marked with M2; in particular, 
let w be a node of maximal degree x'y in F x'y that is not marked with M 2. Since 
w occurs in F x'y, _IF' must contain a path either of the form x---> ~----~ w---~ z or of 
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the form x---> r---> w-f-> z, such that z occurs in rx'Y; since w is maximal,  z will 
be marked with M 2. Since w is on a positive path from x, w will have to be 
marked with M1; so w will be marked  with M 2 in the loop at lines 11-14, which 
contradicts our assumption. Thus, all nodes occurring in F x'y will be marked  
with M 2. Further,  since only nodes that are on paths from x to a node with M 2 
will be marked with M2, all nodes marked with M 2 will occur in F x'y. [] 

The procedure select-next-degree() will be called each time through the main 
loop of the procedure query(x,y) to mark the nodes of degreex.y n. 

1 
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5 
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8 

procedure select-next-degree() = begin 

c l e a r [ M d j ;  

link-type["--> ",  "-¢-> "], any-on-tail[Mx, Mold] , on-head[M2], 

off-head[Mold] ~ set-head[MdCg]; 

link-type[" --~ " , " - ~  "], on-head[Mdeg], on-tail[M2], 

off-tail[Mx, Mold] ~ clear-head[Mdj; 

on[Mdeg] ~ set[Mold]; 

end 

The effect of this procedure,  in the context in which it occurs in query(x,y),  
is recorded in the following lemma. 

Lemma 6.2. After executing trim-for-query(x, y) and clearing Mol d in a network 
F, the nth call to select-next-degree() leaves exactly the nodes of  degree x'y n in F 
marked with Mdeg, and exactly the nodes of  degree ~'y less than or equal to n in F 
marked with Mol d . 

Proof. Nodes of degree x'y 1 will be connected to x in F X'y by direct links, and 
only direct links. It is obvious that the first time select-next-degree() is called, it 
will mark all such nodes with Mdeg in lines 3-4;  the command  on lines 5 -6  can 
have no effect, since it applies only to links not emanating from x; and then at 
line 7, the nodes marked  with Mdeg will be marked also with Mo~ d. Thus the 
theorem is true for n = 1. 

For induction, suppose the theorem holds for all calls prior to the nth. The 
nodes of degree x'y n are just those nodes w for which (i) F x'y contains either of 
the links u---> w or u--& w with u a node of degree ~'y n -  1; and (ii) F x'y 
contains no links v---> y or v-C-> y with v a node of degree x'y greater  than or 
equal to n. Given the inductive hypothesis, then, the procedure select-next- 
degree() behaves as follows on its nth call. First, in line 2, it clears the marker  
Mdeg from nodes of degree x'y n. Next,  in lines 3-4,  it places Mdeg on exactly 
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those nodes w satisfying ( i)--s ince,  by hypothesis, any such node u will already 
be marked with Mo~ d, w will of course be marked with M 2, but w will not yet 
be marked with Mol d. Then,  in lines 5-6 ,  it clears Md~g from all those nodes w 
satisfying (i) except those also satisfying (i i)--since, if w fails to satisfy (ii), any 
such node v will of course be marked with M 2 and will by hypothesis be 
marked neither with M x nor Mol d. Finally, in line 7, the procedure marks the 
nodes displaying Mdeg also with Mol d. Thus, if the theorem is true for the all 
calls prior to the nth, it is true also for the nth call. [] 

At this point, we can describe query(x,y) itself, our main inference al- 
gorithm. 
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The procedure begins on line 2 by clearing the result marks MT, MF, and MsK, 
as well as the auxiliary marks Mtt , and Mff, and then calling trim-for- 
query(x, y) on line 3 to mark all the relevant nodes with M 2. Then the main 
loop (lines 4-17)  is entered. Through the calls to select-next-degree() on line 5, 
nodes are processed in order of increasing degree: during each iteration n of 
the loop, the nodes of exactly degree x'y n are selected and marked for 
processing with Mdeg. If there are direct links from x to w, where x is a node of 
degree x'y n, lines 6 -9  mark w with M r or MF, as appropriate. The real work 
begins on lines 10-11. Here ,  each node w of appropriate degree x'y is given the 

procedure query(x, y: node) = begin 
clear[Mold, Mr ,  MF, MsK, M . ,  Mff]; 
trim-for-query(x, y); 

loop 
select-next-degree(); 
link-type["--> "], on-tail[Mx], on-head[Mdeg ] 

set-head[Mr]; 
link-type["-/~ "], on-tail[Mx], on-head[Mdeg [ 

set-head[ME]; 
l ink-type["-* "], on-tail[Mr] , on-head[Mdeg], off-head[Mr, My] 

set-head[Mtt]; 
link-type["?& "], on-tail[Mr], on-head[Mdeg], off-head[Mr, MF] 

set-head[Mff]; 

on[Mtt ], off]Mff] ~ set[Mr]; 

on[Mff], off[M~t ] ~ set[ME]; 

for c in (on[Mtt, Mff, Mdeg]~ do check-preemption(c); 
endloop 

end 
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auxiliary marker M .  if it is connected by a " - + "  link to some node u already 
marked with M T. Likewise, in lines 10-11, w is marked with Mf~ if it is 
connected by a "--/->" link to a node v already marked with M v. These auxiliary 
markers indicate tentative conclusions. If w is marked with Mtt in lines 8-9,  but 
not with Mff in lines 12-13, there is tentative evidence for thinking that the 
statement x--> w should be supported, and no evidence to the contrary; 
therefore,  the node will be marked with M x in line 14. Likewise, if w is marked 
with Mff but not M . ,  it will be marked in line 15 with M v. However,  some 
nodes may be marked with both M .  and Mff: if w is such a node there is 
tentative reason to think x--> w is supported, as well as a tentative reason for 
thinking that x -~  w is supported. For each of these "conflicted" nodes, we 
must then call the following check-preemption procedure individually, in line 
16, to determine whether either of the conflicting tentative arguments are 
preempted. 

1 procedure check-preemption(c: node) = begin 

2 clear[Mc, Mdir, Mpre] ; 

3 name[c] ~ set[Mc],clear[M.,  Mff]; 

4 link-type[" --~ ", " ~  "], on-tail[M1- ], on-head[M~ ] 

5 ~ set-tail[Mdir]; 

6 loop 
7 link-type["--> "], any-on-tail[Md~ r, Mp,.~], on-head[My], 
8 off-head[Mpr~, My] ~ set-head[Mpr,,]; 

9 endloop; 
I0 link-type[" ---> "], on-tail[Md~r], off-tail[Mpr e ] 
11 ~ set-head[M,t]; 
12 link-type["-P "], on-tail[Md~r], off-tail[Mpre] 

13 -~ set-head[Mff]; 
14 on[M~], on[M.] ,  off[Mff] ~ set[M,r]; 

15 on[M.], on[M.] ,  off[Mu] ~ set[My]; 

16 on[Me] , on[M u, Mfr ] ~ set[MsK]; 

17 end 

Where c is such a conflicted node, the procedure check-preemption(c) marks 
nodes with direct links to c with Md~ ,. on lines 4-5.  It then marks preempted 
nodes, in the loop at lines 6-9,  by propagating Mpr ~ upwards from nodes with 
Md~ ~. In lines 10-13, the tentative markers M u and Mf~. which were deleted 
from c in line 3. are reset only if they were propagated from nodes which are 
not marked as preempted. If only one of these two tentative markers is reset, it 
must be that the tentative conflicting evidence was preempted;  so c is marked 
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in lines 14-15 either with M v or with MF, as appropriate. If both of the 
tentative markers are reset, then neither of the conflicting tentative arguments 
is preempted. In accord with our general skeptical viewpoint, therefore, these 
paths neutralize each other; so the node c is marked in line 16 with MsK. 

6.3. Correctness of the algorithm 

The PMPM algorithm we have described in this section can be proved to be 
correct - - that  is, both sound and complete--with respect to the inheritance 
definition from Section 4. 

Theorem 6.3. As a result of  executing the procedure query(x, y) in a net F, the 
node y will be marked with M T iff  F supports x ~ y, and with M r iff F supports 
x-C* y. 

This theorem follows at once from the following lemma, along with the 
observation that no command in query(x,y) ever deletes either of the markers 
M v or M E. 

Lemma 6.4. Suppose procedure query(x,y) is executed in F; let w be a node of  
degree x'y n in F. Then w will be marked with M T during the nth iteration o f  the 
main loop in query(x,y) iff F supports x---> w, and w will be marked with M E 
during the nth iteration of  the main loop in query(x, y) iff F supports x--k> w. 

Proof. First, let the degree x'y of w be 1, so that F contains direct links, and 
only direct links, from x to w. Suppose x--~ w E F. Then of course F supports 
x---~ w. Lemma 6.2 tells us that, on the first time through its main loop, 
query(x,y) marks w with Mdeg in line 5; then w is marked in lines 6-7  with M T. 
Similar reasoning shows us that the theorem holds also when x - ~  w E F. 
Therefore, the theorem is true when w is a node of degree x'y 1. Assuming the 
theorem is true for nodes of degree x'y less than n, we show that it's true also 
for the node w, where w is of degree x'y n. The induction proceeds in four parts. 

Part 1: Completeness for positive paths. Suppose F supports x----> w. If 
x---~ w E F, Lemma 6.2 tells us that w will be marked with Mdeg by the time the 
nth pass through the main loop of query(x,y) reaches line 6; it will therefore be 
marked with M v in lines 6-7.  If x---> w ~ F ,  then F must permit some path of 
the form x---> 0-1 ~ u---> w. By II . l (a)  of the inheritance definition, we know 
F ~> x---> ~r~ ---> u; so by inductive hypothesis, query(x, y) marks u with M T prior 
to the nth iteration of the main loop. By I I . l (b) ,  we know u---> w E F .  
Therefore,  on the nth iteration of the main loop, when Lemma 6.2 tells us that 
the node w is marked with Mdeg, w will be marked in lines 10-11 with Mtt. If 
there is no node v such that v-C* w E F and F ~> x---~ r---~ v, we can see using 
the inductive hypotheses that the node w cannot be marked with Mff in lines 
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12-13.  I t  will t he re fo re  be  m a r k e d  with M x at l ine 14. On  the  o t h e r  hand ,  if 
t he re  is a node  v such that  v ~ w E F and  F ~> x --~ ~- ~ v, we can see using the  
induct ive  hypo thes i s  tha t  the  node  w will be  m a r k e d  with Mff in l ines 12-13;  it 
will t he r e fo re  sat isfy the  cond i t ion  in the  for  loop  at l ine 16, and  so check- 
preemption(c) will have  to be  ca l led ,  with c -- w. 

F o r  any such node  v, c lause I I . l ( d )  tells  us tha t  the re  mus t  be a z such tha t  
z ~ w E F and e i the r  z = x or  F ~> x--~ ~'1 --~ z ~ r 2 --~ v. T h e r e  may ,  of  course ,  
be  many  nodes  z sat isfying this cond i t ion :  let  z '  be one  of  the  min ima l  
deg ree  x'y. In  line 3 of  check-preemption(c), the  m a r k e r s  Mtt and  Mff a re  
c l ea red  f rom w, and  M C is set.  In l ines 4 - 5 ,  the  m a r k e r  Mdi r - - i nd i ca t i ng  
a d i rec t  l ink to w - - i s  set on bo th  the  nodes  v and z ' .  Since 
F ~> x---~ ~'1 --~ z ' - -~  r2---~ v, the  induct ive  hypo thes i s  tells  us tha t  every  nodes  on 
this pa th  mus t  d i sp lay  the  m a r k e r  M T by the t ime  we en t e r  the  n th  i t e r a t ion  of  
the  ma in  query(x,y) loop .  T h e r e f o r e ,  the  loop  in l ines 6 - 9  of  check-preem- 
ption(c) will p r o p a g a t e  Mpr e up this p a t h ,  beg inn ing  with the  node  i m m e d i a t e l y  
af ter  z '  and  cont inu ing  all the  way  to v itself.  H o w e v e r ,  s ince z '  is min ima l ,  
the re  a re  no  nodes  on p e r m i t t e d  pa ths  f rom x to z '  with d i rec t  l inks to w; so we  
can see using the  induct ive  hypo thes i s  tha t  z '  will no t  be  m a r k e d  with Mpr e. 
T h e r e f o r e ,  w will be  m a r k e d  with Mtt in l ines 10-11 of  check-preemption(c), 
but  no t  with Mff in l ines 12-13;  and  so on  l ine 14, w will be  m a r k e d  with M x. 

Part 2: Soundness for positive paths. Suppose  tha t  query(x, y) marks  w with 
M x on  the  n th  i t e r a t ion  of  the  ma in  loop.  T h e r e  are  only  t h ree  c o m m a n d s  in 
the  loop  that  could  resul t  in w's be ing  m a r k e d  with  MT: ( i)  the  c o m m a n d  in 
l ines 6 - 7  of  query(x,y), (ii)  the  c o m m a n d  in l ine 14 of  query(x,y), and (i i i)  the  
c o m m a n d  in line 14 of  check-preemption(c). We e xa mine  t hem in turn ,  showing 
that  no m a t t e r  how M T is ass igned to w, it mus t  turn  out  tha t  F s u p p o r t s  x--~ w. 

(i)  If  w is m a r k e d  with M~ in l ines 6 - 7  of  query(x,y), it must  be  tha t  
x----~ w ~ F. H e n c e ,  F suppor t s  x---~ w. 

(ii) Suppose  w is m a r k e d  with M v in line 14 of  query(x,y). T h e n  w mus t  
have been  m a r k e d  with Mtt in l ines 10-11.  L o o k i n g  at  l ines 10-11,  we can see 
the re fo re ,  tha t  the re  mus t  be  some  node  u with u--~ w E F such tha t  query(x, y) 
m a r k s  u with M T. By induct ive  hypothes i s ,  then ,  F ~> x----~ o-1 ~ u, for  some  
pa th  ~r x. This  tells  us tha t  c lauses  I I . l ( a )  and  I I . l ( b )  of  the  inhe r i t ance  
def ini t ion are  satisfied.  M o r e o v e r ,  c lause  I I . l ( c )  is sat isf ied as well:  we know 
tha t  x-/* w~F,  since if x--~ w ~ F,  then  w would  have  been  m a r k e d  with M F at  
l ine 8, and  so w could  not  have  been  m a r k e d  with Mtt in l ines 10-11.  F ina l ly ,  
suppose  the re  were  some  node  v such tha t  F ~> x ~ ~---~ v and v-7~ y ~ F.  By 
induct ive  hypothes i s ,  query(x,y) would  a l r eady  have  m a r k e d  v with M a- on a 
p rev ious  i t e ra t ion  of  the  loop .  T h e  node  w would  then  be  m a r k e d  with Mff in 
l ines 12-13 of  the  cu r ren t  i t e ra t ion ,  and  so w could  not  be m a r k e d  with M T at 
l ine 14, con t r a ry  to our  suppos i t ion .  H e n c e ,  the re  can be  no such node  v, and  
clause I I . l ( d )  is vacuous ly  t rue .  T h e r e f o r e ,  s ince the  c lauses  I I . l ( a )  t h rough  
I I . l ( d )  a re  sat isf ied,  F ~> x--~ o- l --~ u---~ w, and  so F suppor t s  x---~ w. 
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(iii) Suppose  w is marked  with M v in line 14 of  check-preempt ion(c) ,  with 
c = w. In order  for  check-preempt ion(c)  even to be called on the node  w, the 
node  must  have been  marked  with Mtt in lines 10-11 of  q u e r y ( x , y ) ,  and also 
with Mff in lines 12-13.  Since w is ma rked  with Mtt, we know by an a rgument  
identical to that  p resen ted  in (ii) that  F ~> x---~ o- 1 ~  u, that  u--> w E F, and 
that  x--/-> w ~ F .  So clauses I I . l ( a )  th rough  I I . l (c )  of  the inheri tance definition 
are satisfied. Since w is also marked  with Mff, however ,  an analogous a rgumen t  
tells us that  there  exist nodes  v such that  F ~> x---~ ~ -~  v and v--/-> y E F. 

If  clause I I . l ( d )  were false, there  would  be some such node  v for  which there  
is no  node  z such that  F ~> x---~ T 1 ~ Z ~ T 2 ~ [3 and z---> w E F. Let  v '  be a 
node  satisfying these condi t ions  of  minimal degree  x'y. Since w is ma rked  with 
M x on line 14 of  check-preempt ion(c) ,  it cannot  have been  marked  with M ,  in 
lines 12-13;  therefore ,  v '  must  have been  marked  with Mpr e by the loop in 
lines 6 -9 .  The  effect of  this loop,  however ,  is to p ropaga te  the marke r  Mpr e up 

a positive path,  all of  whose  nodes  are marked  with M x but  not  with MF, f rom 
a node  marked  with M T and l inked directly to w. There fore ,  we know that  by 
the n th  i teration of  the main  loop of  q u e r y ( x , y )  there  must  exist a sequence  of  
nodes  z0, z~ . . . .  , z m occurr ing in F such that:  each z i is marked  with MT, none  
of  the z i except  perhaps  z 0 is marked  with M F ,  Zo---)WE I ' ,  Z m = V' ,  and 
zi--->zi+ 1 E F for  all O < ~ i < m .  The  inductive hypothesis  tells us that ,  for  
0 ~  < i ~ < m ,  F supports  each of  the s ta tements  x - ->z i ,  and also that ,  for 
0 < i ~ m, none  of  the s ta tements  x--/-> z i is conta ined  in F. We can then 
conclude f rom L e m m a  6.5 that  F permits  a path  of  the form 
x---~Zo--->Zo--->z~---~.. .-->zn(=v').  Since z o - - - ~ w E F ,  this contradicts  the 
above  assumpt ion concerning  v ' ;  and so clause I I . l ( d )  must  be true. F 
therefore  permits  the path  x---> o-1 ~ u and so supports  x ~ w. 

Part 3: Completeness  f o r  negative paths.  Similar to Part  1. 

Part 4: Soundness  f o r  negative paths.  Similar to Part  2. [] 

L e m m a  6.5. For a sequence  o f  nodes  Zo, Zl,  . . . , zm,  suppose  that 
(i) [ ' s u p p o r t s  x---~ z i f o r  O<~i <~m, 

(ii) zi---~ zg+ 1 E  F f o r  O<~ i < m ,  and 
(iii) x-/-> z i ~ F  f o r  O < i < ~ m .  
Then F permi ts  a path  o f  the f o r m  x ~ r o ---> z o ~ z i -->" " " ~  Zm" 

Proof.  It follows f rom (i) that  F~>x-->%-->Zo,  for  some T 0. Assuming  
F~>x- -~%--~zo - - -~Z l - -> . . . - - ->z , ,  for  some  n < m ,  we show that  
F ~> x---~ r0---~ z0--> z~ --->. • .--> z ,  ~ z ,+  1 . We satisfy clause I I . l ( a )  by inductive 
hypothesis ;  we satisfy I I . l ( b )  by (ii) and I I . l (c )  by (iii). Finally, suppose there  
exists v such that  F~>x- - -~ - - -~v  with v - - / *Zn+lEF .  By (i) we know that  
F ~>x---~%+~---~ z ,+  1 for  some path  rn+ 1. There fo re  there  exists z such that  
z---> z ,+  1 E F and ei ther  z = x or  F ~> x---~ ~-'---~ z---> T"---> v. So clause I I . l ( d )  is 
satisfied as well. []  
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6.4. Performance of the algorithm 

We now give bounds  on the running t ime of  query(x,y) in a net F. 
Let  d(x) be the length of  the longest  shortest  path f rom x to any node  in F. 

The  procedure  trim-for-query(x,y), which propagates  M I up and M 2 down the 
hierarchy between x and y, runs in O(d(x)) time. Note  that  d(x) depends  on 
the ne twork  as a whole;  it does not  depend  on y. In most  practical applications,  
however ,  d(x) is not  expected to be significant. 6 

The  procedure  select-next-degree() contains no loops. It therefore  runs in 
constant  time. 

Let  C(x, y) represent  the number  of  conflicted nodes  encoun te red  when 
comput ing  query(x,y) in F. Conflicted nodes  are terminal  nodes  of  c o m p o u n d  
paths that  conflict with some o ther  c o m p o u n d  path,  but  not with any direct 
path.  Tha t  is, the conflicted nodes  in F are those nodes  c such that:  (i) F 
permits  paths of  the form x--~ cr ~ u and x--> ~- --> v, where F contains bo th  the 
links u ~ y and v-/~ y, and (ii) F contains nei ther  of  the links x--~ y or  x-C-> y. 
These  nodes  will be marked  with both  Mtt and Mff by query(x,y); then 
check-preemption must be called sequential ly for each node.  Let  d(x, y) denote  
the length of  the longest  shortest  path f rom x to any other  node  in the t r immed 
ne twork  F x'y. Obviously,  d(x, y)<~ d(x). The p rocedure  check-preemption 
contains a single loop that propagates  Mpr e up "--->" links in F x'y, it runs in 
O(d(x, y)) time. 

Let  D(x, y) be the " d e p t h "  of  the t r immed ne twork  F x'y, that  is, the 
degree  x'y of  the node  y. Note  that  d(x, y)<~D(x, y). The main loop of  
query(x, y) is executed at most  1 + D(x, y) times. Inside this loop is the for 
loop that calls check-preemption(c), the total number  of  calls to which is 
C(x, y), each running in time O(d(x, y)). Therefore ,  the running t ime of  the 
entire p rocedure  query(x,y) is 

O(max(d(x) ,  D(x, y) + [C(x, y). d(x, y)])) . 

Since d(x) is not  expected to be a significant factor  in realistic knowledge  bases, 
the running time of  a query(x,y) in such a knowledge  base will be 

O(D(x, y) + [C(x, y). d(x, Y)])- 

In a realistic knowledge base containing very few conflicted nodes,  the running 
time of  query(x,y) will of  course approach  the purely parallel O(D(x, y)). 

61f inheritance were completely stable (see Section 5.3), the running time for trim-for- 
query(x,y) could be incrementally reduced to constant time, or even a single time step, by 
modifying the query procedure so that it adds redundant links to F as a side-effect until d(x) falls 
below the desired value. Since inheritance fails to exhibit generic stability, however, we would 
have to resort instead to more complex conditioning procedures (mentioned below, in Section 6.5) 
to improve the running time of this part of the algorithm. 
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6.5. Discussion 

The PMPM architecture we described in this section is rather limited in 
computational power, which makes economical implementations possible. 
Fahlman estimated in [6] that a million-element marker  propagation machine 
could be constructed using just a few custom VLSI chips, plus a lot of RAM. 
The connection machine [8], which is the closest physical realization to our 
idealized PMPM, was inspired by Fahlman's work; the algorithm we present 
here is thus well suited to the connection machine. Our algorithm also maps 
very naturally onto other parallel architectures. We briefly mention two 
extensions. 

First, suppose the PMPM architecture is modified so that, in a network with 
N nodes, each node has at least 2N marker bits, so that the entire theory of the 
network can be represented at once. We reserve the bits Mxx and MF, for each 
node x in the net. I f y  is marked with MTx it indicates that F permits x-+y, and 
similarly for Mvx. A PMPM with this many marker  bits could simply compute 
the entire theory of a network at once, and then use table lookup to answer 
queries. A more practical approach would be to compute the results of queries 
as needed and cache them in the nodes. 

A second possible extension involves the sequential calls to check-pre- 
emption(c) in the body of the for loop in the main inference procedure.  
Suppose that we had the ability to propagate m different sets of markers 
independently,  in parallel. (This might be the case if a PMPM were being 
simulated on a dataflow architecture ith m processors.) We could then create m 
sets of markers Me.i, Mu,i, Mff,i, Mdlr,i, and Upre,i, for 1 ~< i <~ m, and process 
conflicted nodes of degree i in parallel, m at a time. 

Two related inheritance reasoners that have appeared in the literature 
recently are Touretzky's  TINA [22], and Etherington's nondeterministic al- 
gorithm [4]. Both are implementations of credulous rather than skeptical 
definitions. TINA (for Topological Inference Architecture) computes the 
credulous extension of a network according to the theory provided by [22], 
provided that the extension is unique. If the network has multiple credulous 
extensions, TINA detects this fact and issues an error message. Etherington's 
algorithm generates one credulous extension, but which one depends on the 
choice of order in which markers are propagaged; this is the source of the 
nondeterminism. Etherington notes that in some cases the algorithm will never 
choose certain extensions which his theory permits. 

In addition to computing the extension, TINA had another function. In a 
process known as "condit ioning," it augmented the inheritance network with 
extra links so that a marker propagation algorithm, called an upscan, could 
reconstruct portions of the extension as needed. The upscan algorithm was 
quite simple: it used shortest-path reasoning and had no sequential bottleneck, 
unlike the algorithm presented here. We should emphasize, however, that its 
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purpose  was to reconstruct  an extension ra ther  than compu te  it. 7 The  condi- 
t ioning process,  which takes a ne twork  and its correct  extension as inputs,  
alters the ne twork  as necessary to ensure that  upscans p roduce  correct  results. 
A similar trick could be used with any inheri tance definition. 

T I N A  also suppor ted  a second kind of  scan, called a downscan.  A downscan 
of  y marked  all nodes  x such that  F permits  x ~ y or  ( represented by a different 
marker)  x--/*y. Downscans  are useful for  finding all the members  of  a set, 
which can then be intersected with o ther  sets in parallel, for example,  to find 
all the gray elephants  by intersecting elephants  and gray things. It would  
appear  to be far more  expensive to compu te  downscans  than upscans on a 
PMPM.  Each  conflicted node  c encoun te red  during a downscan f rom y would  
have to be resolved individually by calling query(c, y). 

7. Conclusion 

We have presented in this paper  a new, skeptical theory  of  inheri tance 
reasoning in nonm ono t on i c  semantic  networks.  As  far as we know, this theory  
represents  the first significant al ternative to the analysis of  n o n m o n o t o n i c  
inheri tance reasoning presented  in Toure tzky  [22]. (A less radical alternative is 
described by Sandewall  in [20]; a l though it differs in some ways f rom Touret -  
zky 's ,  Sandewall 's  is nevertheless  a credulous  theory.)  The  fact that  there 
should be distinct but,  perhaps ,  equally wel l -motivated accounts  of  correct  
reasoning in this context  comes  as something of  a surprise; it is reminiscent  of  
the situation in philosophical  logic, where  there exist rival logics embody ing  
distinct concept ions  of  correct  deduct ive reasoning.  

In the context  of  inheri tance reasoning,  the existence of  these distinct 
approaches  raises a number  of  issues, which we are exploring in our  current  
research.  Much of  this research is focused more  or  less directly on inheri tance 
theory:  we are studying the relations a m o n g  the different analyses of  non- 
mono ton ic  inheri tance reasoning [9, 23, 24] and working to extend some of  
these analyses to more  expressive n o n m o n o t o n i c  ne twork  languages [10, 25]. 
However ,  it is also possible that  this research will shed some light on more  
general  t rea tments  of  n o n m o n o t o n i c  reasoning.  It has been shown by Ether-  
ington [4], for example,  that  the default  logic of  Rei ter  [18] can be used to 
provide a specification for correct  inheri tance reasoning in n o n m o n o t o n i c  
semantic  networks:  E ther ing ton  establishes a close cor respondence  between 
these networks  and certain kinds of  default  theories ( "ne twork  default  
theor ies") .  But  these results, linking default  logic to n o n m o n o t o n i c  inheri- 

T It does not appear possible to compute extensions on a PMPM according to the inheritance 
definition provided in [22], even when the extension is unique. The difference appears to be 
unrelated to the choice between the skeptical and credulous approaches. Instead, it derives from 
the fact that [22] relies on a slightly different treatment of preemption, which forces a reasoning 
architecture to pay more attention to actual paths, rather than just supported conclusions. We 
compare these two styles of preemption in [23]. 
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t a n c e ,  p r e s u p p o s e  a credulous ana lys i s  o f  i n h e r i t a n c e  r e a s o n i n g ;  this  b ias  

t o w a r d  t h e  c r e d u l o u s  a p p r o a c h  to  n o n m o n o t o n i c  r e a s o n i n g  is in fac t  bu i l t  i n to  

R e i t e r ' s  d e f a u l t  log ic ,  a n d  a lso  in to  t h e  n o n m o n o t o n i c  logics  o f  M c D e r m o t t  

and  D o y l e  [13] a n d  M o o r e  [14]. S ince ,  as w e  h a v e  s h o w n ,  t h e r e  t u rn s  o u t  to  be  

an e q u a l l y  w e l l - m o t i v a t e d  skeptical t h e o r y  o f  n o n m o n o t o n i c  r e a s o n i n g ,  at  l eas t  

in t h e  case  o f  s e m a n t i c  n e t w o r k s ,  it m i g h t  be  use fu l  at this  p o i n t  to  s e e k  a 

w e a k e r  v e r s i o n  o f  d e f a u l t  o r  n o n m o n o t o n i c  log ic ,  e x h i b i t i o n g  i n s t e a d  a bias  

t o w a r d  s k e p t i c i s m - - - o r  p e r h a p s  a m o r e  g e n e r a l  log ic  tha t  is n e u t r a l  b e t w e e n  t h e  

c r e d u l o u s  a n d  s k e p t i c a l  a p p r o a c h e s .  
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